Skip to main content

Analyzing the Effect of Catastrophic Breakdowns with Retrial Queues in a Two-Way Communication System

  • Conference paper
  • First Online:
Information Technologies and Mathematical Modelling. Queueing Theory and Applications (ITMM 2021)

Abstract

A two-way communication system is modeled in this paper. A retrial queueing system with a finite and an infinite sources is used in the model. The system has two sources. The first source is finite, the second source is infinite. Jobs from the first source are the primary jobs (requests). They can be called as first order job, as well. Jobs from the second source are the secondary jobs. They can be called as second order job, as well. In case of an idle server, the second order customers are called for service. This situation is said as a special search for customers.

The non-reliable server is subject to random breakdowns. Two types of breakdowns are considered: the regular breakdown, when the first or second order customer under service is sent back to the orbit or the infinite source, respectively, and the catastrophic breakdown, when all of the requests at the server and in the orbit are sent back to the corresponding sources. The novelty of this paper is to investigate the effect of catastrophic breakdown in a two-way communication environment. The goal is to determine the steady-state probabilities and the system characteristics. The system balance equations are formulated for different cases, but the analytic solution is very difficult. A software tool is used instead. Figures illustrate the effect of the system parameters on the performance measures in scenarios of regular and catastrophic breakdowns.

The research work was supported by the Austro-Hungarian Cooperation Grant No 106öu4, 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Falin, G.I.: Waiting time in a single-channel queuing system with repeated calls. Mosc. Univ. Comput. Math. Cybern. 4, 66–69 (1977)

    MATH  Google Scholar 

  2. Artalejo, J.R.: Retrial queues with a finite number of sources. J. Korean Math. Soc. 35, 503–525 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)

    Book  Google Scholar 

  4. Templeton, J.G.C.: Retrial queues. Top 7(2), 351–353 (1999)

    Article  MathSciNet  Google Scholar 

  5. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review, and research prospects. Manuf. Serv. Oper. Manage. 5(2), 79–141 (2003)

    Article  Google Scholar 

  6. Artalejo, J.R., Gomez Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78725-9

    Book  MATH  Google Scholar 

  7. Falin, G.I., Artalejo, J.R.: A finite source retrial queue. Eur. J. Oper. Res. 108, 409–424 (1998)

    Article  Google Scholar 

  8. Falin, G.I.: Model of coupled switching in presence of recurrent calls. Eng. Cybern. 17(1), 53–59 (1979)

    MATH  Google Scholar 

  9. Dimitriou, I.: A retrial queue to model a two-relay cooperative wireless system with simultaneous packet reception. In: Wittevrongel, S., Phung-Duc, T. (eds.) ASMTA 2016. LNCS, vol. 9845, pp. 123–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43904-4_9

    Chapter  MATH  Google Scholar 

  10. Dragieva, V., Phung-Duc, T.: Two-way communication M/M/1 retrial queue with server-orbit interaction. In: Proceedings of the 11th International Conference on Queueing Theory and Network Applications, p. 11. ACM (2016)

    Google Scholar 

  11. Nazarov, A., Phung-Duc, T., Paul, S.: Heavy outgoing call asymptotics for MMPP/M/1/1 retrial queue with two-way communication. In: Dudin, A., Nazarov, A., Kirpichnikov, A. (eds.) ITMM 2017. CCIS, vol. 800, pp. 28–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68069-9_3

    Chapter  Google Scholar 

  12. Nazarov, A.A., Paul, S., Gudkova, I., et al.: Asymptotic analysis of Markovian retrial queue with two-way communication under low rate of retrials condition. In: Proceedings 31st European Conference on Modelling and Simulation (2017)

    Google Scholar 

  13. Phung-Duc, T., Rogiest, W.: Two way communication retrial queues with balanced call blending. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.) ASMTA 2012. LNCS, vol. 7314, pp. 16–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30782-9_2

    Chapter  Google Scholar 

  14. Sakurai, H., Phung-Duc, T.: Two-way communication retrial queues with multiple types of outgoing calls. TOP 23(2), 466–492 (2014). https://doi.org/10.1007/s11750-014-0349-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Sakurai, H., Phung-Duc, T.: Scaling limits for single server retrial queues with two-way communication. Ann. Oper. Res. 247(1), 229–256 (2015). https://doi.org/10.1007/s10479-015-1874-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Aguir, S., Karaesmen, F., Akşin, O.Z., Chauvet, F.: The impact of retrials on call center performance. OR Spectr. 26(3), 353–376 (2004)

    Article  MathSciNet  Google Scholar 

  17. Aksin, Z., Armony, M., Mehrotra, V.: The modern call center: a multi-disciplinary perspective on operations management research. Prod. Oper. Manag. 16(6), 665–688 (2007)

    Article  Google Scholar 

  18. Brown, L., et al.: Statistical analysis of a telephone call center: a queueing-science perspective. J. Am. Stat. Assoc. 100(469), 36–50 (2005)

    Article  MathSciNet  Google Scholar 

  19. Pustova, S.V.: Investigation of call centers as retrial queuing systems. Cybern. Syst. Anal. 46(3), 494–499 (2010)

    Article  MathSciNet  Google Scholar 

  20. Wolf, T.: System and method for improving call center communications. US Patent App. 15/604,068, 30 November 2017

    Google Scholar 

  21. Subramanian, S., et al.: A stochastic model for automated teller machines subject to catastrophic failures and repairs. Queueing Models Serv. Manage. 1(1), 75–94 (2018)

    Google Scholar 

  22. Thilaka, B., Poorani, B., Udayabaskaran, S.: Performance analysis for queueing systems with close down periods subject to catastrophe. Int. J. Pure Appl. Math. 119(7), 39–57 (2018)

    Google Scholar 

  23. Gupta, U.C., Kumar, N., Barbhuiya, F.P.: A queueing system with batch renewal input and negative arrivals. In: Joshua, V.C., Varadhan, S.R.S., Vishnevsky, V.M. (eds.) Applied Probability and Stochastic Processes. ISFS, pp. 143–157. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5951-8_10

    Chapter  MATH  Google Scholar 

  24. Piriadarshani, D., Narasimhan, S., Maheswari, M., James, B., et al.: A retrial queuing system operating in a random environment subject to catastrophes. Eur. J. Mol. Clin. Med. 7(2), 5029–5032 (2020)

    Google Scholar 

  25. Ammar, S.I., Zeifman, A., Satin, Y., Kiseleva, K., Korolev, V.: On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs. J. Ind. Manage. Optim. 17(3), 1057 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Kuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuki, A., Bérczes, T., Sztrik, J. (2022). Analyzing the Effect of Catastrophic Breakdowns with Retrial Queues in a Two-Way Communication System. In: Dudin, A., Nazarov, A., Moiseev, A. (eds) Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2021. Communications in Computer and Information Science, vol 1605. Springer, Cham. https://doi.org/10.1007/978-3-031-09331-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09331-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09330-2

  • Online ISBN: 978-3-031-09331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics