Skip to main content

A Queueing System with Batch Renewal Input and Negative Arrivals

  • Chapter
  • First Online:
Applied Probability and Stochastic Processes

Part of the book series: Infosys Science Foundation Series ((ISFM))

Abstract

This paper studies an infinite buffer single server queueing model with exponentially distributed service times and negative arrivals. The ordinary (positive) customers arrive in batches of random size according to renewal arrival process, and join the queue/server for service. The negative arrivals are characterized by two independent Poisson arrival processes, a negative customer which removes the positive customer undergoing service, if any, and a disaster which makes the system empty by simultaneously removing all the positive customers present in the system. Using the supplementary variable technique and difference equation method we obtain explicit formulae for the steady-state distribution of the number of positive customers in the system at pre-arrival and arbitrary epochs. Moreover, we discuss the results of some special models with or without negative arrivals along with their stability conditions. The results obtained throughout the analysis are computationally tractable as illustrated by few numerical examples. Furthermore, we discuss the impact of the negative arrivals on the performance of the system by means of some graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, K., Aïssani, D.: Strong stability of the embedded Markov chain in an GIM∕1 queue with negative customers. Appl. Math. Model. 34(10), 2806–2812 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akar, N., Arikan, E.: A numerically efficient method for the MAPD∕1∕K queue via rational approximations. Queueing Syst. 22(1), 97–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artalejo, J.R.: G-networks: a versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126(2), 233–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atencia, I., Moreno, P.: The discrete-time GeoGeo∕1 queue with negative customers and disasters. Comput. Oper. Res. 31(9), 1537–1548 (2004)

    Article  MATH  Google Scholar 

  5. Barbhuiya, F.P., Gupta, U.C.: A difference equation approach for analysing a batch service queue with the batch renewal arrival process. J. Differ. Equ. Appl. 25(2), 233–242 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbhuiya, F.P., Gupta, U.C.: Discrete-time queue with batch renewal input and random serving capacity rule: GI XGeo Y∕1. Queueing Syst. 91, 347–365 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbhuiya, F.P., Kumar, N., Gupta, U.C.: Batch renewal arrival process subject to geometric catastrophes. Methodol. Comput. Appl. Probab. 21(1), 69–83 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boxma, O.J., Perry, D., Stadje, W.: Clearing models for MG∕1 queues. Queueing Syst. 38(3), 287–306 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brière, G., Chaudhry, M.L.: Computational analysis of single-server bulk-arrival queues: GI XM∕1. Queueing Syst. 2(2), 173–185 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chakravarthy, S.R.: A catastrophic queueing model with delayed action. Appl. Math. Model. 46, 631–649 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaudhry, M.L., James, G.C.: Templeton. In: First Course in Bulk Queues. Wiley, New York (1983)

    Google Scholar 

  12. Chen, A., Renshaw, E.: The MM∕1 queue with mass exodus and mass arrivals when empty. J. Appl. Probab. 34(1), 192–207 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dharmaraja, S., Kumar, R.: Transient solution of a Markovian queuing model with heterogeneous servers and catastrophes. Opsearch 52(4), 810–826 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Easton, G., Chaudhry, M.L., Posner, M.J.M.: Some corrected results for the queue GI XM∕1. Eur. J. Oper. Res. 18(1), 131–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Easton, G., Chaudhry, M.L., Posner, M.J.M.: Some numerical results for the queuing system GI XM∕1. Eur. J. Oper. Res. 18(1), 133–135 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelenbe, E.: Random neural networks with negative and positive signals and product form solution. Neural Comput. 1(4), 502–510 (1989)

    Article  Google Scholar 

  17. Goswami, V., Mund, G.B.: Analysis of discrete-time batch service renewal input queue with multiple working vacations. Comput. Ind. Eng. 61(3), 629–636 (2011)

    Article  Google Scholar 

  18. Harrison, P.G., Pitel, E.: Sojourn times in single-server queues by negative customers. J. Appl. Probab. 30(4), 943–963 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harrison, P.G., Pitel, E.: MG∕1 queues with negative arrival: an iteration to solve a fredholm integral equation of the first kind. In: Proceedings of the Third International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’95)., pp. 423–426. IEEE, Piscataway (1995)

    Google Scholar 

  20. Harrison, P.G., Pitel, E.: The MG∕1 queue with negative customers. Adv. Appl. Probab. 28(2), 540–566 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jain, G., Sigman, K.: A Pollaczek–Khintchine formula for MG∕1 queues with disasters. J. Appl. Probab. 33(4), 1191–1200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krishnamoorthy, A., Pramod, P.K., Chakravarthy, S.R.: Queues with interruptions: a survey. Top 22(1), 290–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar, B.K., Arivudainambi, D.: Transient solution of an MM∕1 queue with catastrophes. Comput. Math. Appl. 40(10–11), 1233–1240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kumar, B.K., Madheswari, S.P.: Transient behaviour of the MM∕2 queue with catastrophes. Statistica 62(1), 129–136 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Park, H.M., Yang, W.S., Chae, K.C.: Analysis of the GIGeo∕1 queue with disasters. Stoch. Anal. Appl. 28(1), 44–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Singh, G., Gupta, U.C., Chaudhry, M.L.: Analysis of queueing-time distributions for MAPD N∕1 queue. Int. J. Comput. Math. 91, 1911–1930 (2014)

    Article  MATH  Google Scholar 

  27. Towsley, D., Tripathi, S.K.: A single server priority queue with server failures and queue flushing. Oper. Res. Lett. 10(6), 353–362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Van Do, T.: Bibliography on G-networks, negative customers and applications. Math. Comput. Model. 53(1–2), 205–212 (2011)

    Article  Google Scholar 

  29. Wang, J., Huang, Y., Dai, Z.: A discrete-time on–off source queueing system with negative customers. Comput. Ind. Eng. 61(4), 1226–1232 (2011)

    Article  Google Scholar 

  30. Yang, W.S., Chae, K.C.: A note on the GIM∕1 queue with Poisson negative arrivals. J. Appl. Probab. 38(4), 1081–1085 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, W.-H.: Performance analysis of discrete-time queue GIG∕1 with negative arrivals. Appl. Math. Comput. 170(2), 1349–1355 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Gupta .

Editor information

Editors and Affiliations

Appendix

Appendix

Theorem 1

The c.e. \(A^*( \delta + (\mu +\eta ) (1-z)) \sum _{i=1}^{b} g_i z^{b-i} - z^b = 0\) have exactly b roots inside the unit circle |z| = 1 subject to the condition δ > 0.

Proof

Let us assume f 1(z) = −z b and \(f_2(z)=A^*( \delta + (\mu +\eta ) (1-z)) \sum _{i=1}^{b} g_i z^{b-i}= K(z)\). Since \(A^*( \delta + (\mu +\eta ) (1-z)) \sum _{i=1}^{b} g_i z^{b-i}\) is an analytic function, it can be written in the form \(K(z)= \sum _{i=1}^{\infty }k_iz^i\) such that k i ≥ 0 for all i. Consider the circle |z| = 1 − 𝜖 where 𝜖 > 0 and is a sufficiently small quantity. Now

$$\displaystyle \begin{aligned} \begin{array}{rcl} |f_1(z)|&\displaystyle =&\displaystyle |z^b|=(1-\epsilon)^b=1-b\epsilon +o(\epsilon) \\ |f_2(z)|&\displaystyle =&\displaystyle |K(z)||\sum_{i=1}^{b} g_i z^{b-i}|\leq K(|z|)\sum_{i=1}^{b} g_i|z|{}^{b-i} =K(1-\epsilon)\sum_{i=1}^bg_i(1-\epsilon)^{b-i} \\ &\displaystyle =&\displaystyle A^*( \delta ) - \epsilon \{2A^*( \delta ) (b-\overline{g}) - (\mu+\eta) A^{*(1)}( \delta ) \} + o(\epsilon) \\ &\displaystyle &\displaystyle < 1- b\epsilon +o(\epsilon) \end{array} \end{aligned} $$

under the sufficient condition δ > 0. Thus from Rouch\(\acute {e}\)’s theorem we have exactly the same number of zeroes in f 1(z) and f 1(z) + f 2(z) inside the unit circle, and hence the theorem. □

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, U.C., Kumar, N., Barbhuiya, F.P. (2020). A Queueing System with Batch Renewal Input and Negative Arrivals. In: Joshua, V., Varadhan, S., Vishnevsky, V. (eds) Applied Probability and Stochastic Processes. Infosys Science Foundation Series(). Springer, Singapore. https://doi.org/10.1007/978-981-15-5951-8_10

Download citation

Publish with us

Policies and ethics