Skip to main content
Log in

Two-way communication retrial queues with multiple types of outgoing calls

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we start with single server Markovian retrial queues with multiple types of outgoing calls. Incoming calls arrive at system according to a Poisson process. Service times of incoming calls follow the exponential distribution. Incoming calls that find the server busy upon arrival join an orbit and retry after some exponentially distributed time. On the other hand, the server makes an outgoing call after some exponentially distributed idle time. We assume that there are multiple types of outgoing calls whose durations follow distinct exponential distributions. For this model, we obtain explicit expressions for the joint stationary distribution of the number of calls in the orbit and the state of the server via the generating function approach. We also obtain simple asymptotic and recursive formulae for the joint stationary distribution. We show a stochastic decomposition property where we prove that the number of incoming calls in the system (server and orbit) can be decomposed into the sum of three independent random variables which have a clear physical meaning. We then consider the multiserver model for which we obtain the stability condition and derive some exact formulae by mean value analysis. Finally, we extend the single server model to the case where service time distribution of incoming calls and that of each type of outgoing calls are arbitrary. For this case, we obtain explicit expressions for the partial generating functions and recursive formulae for the joint stationary distribution of the server’s state and the number of calls in the orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Artalejo JR (2010) Accessible bibliography on retrial queues: progress in 2000–2009. Math Comput Modell 51:1071–1081

    Article  Google Scholar 

  • Artalejo JR, Falin GI (1994) Stochastic decomposition for retrial queues. Top 2:329–342

    Article  Google Scholar 

  • Artalejo JR, Gomez-Corral A (2008) Retrial Queueing systems: a computational approach. Springer, Berlin

  • Artalejo JR, Phung-Duc T (2012) Markovian retrial queues with two way communication. J Indust Manag Opt 8:781–806

  • Artalejo JR, Phung-Duc T (2013) Single server retrial queues with two way communication. Appl Math Modell 37:1811–1822

    Article  Google Scholar 

  • Avram F, Chedom DF (2011) On symbolic RG factorization of quasi-birth-and-death processes. Top 19:317–335

    Article  Google Scholar 

  • Bhulai S, Koole G (2003) A queueing model for call blending in call centers. IEEE Trans Automat Contr 48:1434–1438

    Article  Google Scholar 

  • Choi BD, Choi KB, Lee YW (1995) M/G/1 retrial queueing systems with two types of calls and finite capacity. Queueing syst 19:215–229

    Article  Google Scholar 

  • Cinlar E (1975) Introduction to Stochastic Processes. Prentince-Hall, Englewood Cliffs

    Google Scholar 

  • Deslauriers A, L’Ecuyer P, Pichitlamken J, Ingolfsson A, Avramidis AN (2007) Markov chain models of a telephone call center with call blending. Comput Oper Res 34:1616–1645

    Article  Google Scholar 

  • Dimitriou I (2014) A modified vacation queueing model and its application on the discontinuous reception power saving mechanism in unreliable Long Term Evolution networks. Perform Evalu 77:37–56

    Article  Google Scholar 

  • Falin GI (1979) Model of coupled switching in presence of recurrent calls. Eng Cybern Rev 17:53–59

    Google Scholar 

  • Falin GI, Artalejo JR, Martin M (1993) On the single server retrial queue with priority customers. Queueing Syst 14:439–455

    Article  Google Scholar 

  • Falin GI, Templeton JGC (1997) Retrial queues. Chapman & Hall

  • Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge

  • Martin M, Artalejo JR (1995) Analysis of an M/G/1 queue with two types of impatient units. Adv Appl Prob 27:840–861

    Article  Google Scholar 

  • Krishnamoorthy A, Pramod PK, Chakravarthy SR (2014) Queues with interruptions: a survey. Top 22:290–320

    Article  Google Scholar 

  • Phung-Duc T, Masuyama H, Kasahara S, Takahashi Y (2009) Performance analysis of optical burst switched networks with limited-range wavelength conversion, retransmission and burst segmentation. J Oper Res Socf Jpn 52:58–74

    Google Scholar 

  • Phung-Duc T, Masuyama H, Kasahara S, Takahashi Y (2009) M/M/3/3 and M/M/4/4 retrial queues. J Indust Manag Opt 5:431–451

    Article  Google Scholar 

  • Phung-Duc T, Masuyama H, Kasahara S, Takahashi Y (2010) A simple algorithm for the rate matrices of level-dependent QBD processes. In: Proceedings of the 5th international conference on queueing theory and network applications, pp 46–52

  • Phung-Duc T, Masuyama H, Kasahara S, Takahashi Y (2010) State-dependent M/M/c/c+r retrial queues with Bernoulli abandonment. J Indust Manag Opt 6:517–540

    Article  Google Scholar 

  • Phung-Duc T, Kawanishi K (2011) Multiserver retrial queues with after-call work. Numer Algebra, Cont Opt 1:639–656

    Article  Google Scholar 

  • Phung-Duc T, Kawanishi K (2014) Performance analysis of call centers with abandonment, retrial and after-call work. Perform Evalu 80:43–62

    Article  Google Scholar 

  • Phung-Duc T, Kawanishi K (2014) An efficient method for performance analysis of blended call centers with redial. Asia-Pacific J Oper Res 31, 1440008

  • Phung-Duc T, Rogiest W, Takahashi Y, Bruneel H (2014) Retrial queues with balanced call blending: analysis of single-server and multiserver model. Published Online First in Annals of Operations Research. doi:10.1007/s10479-014-1598-2

  • Sakurai H, Phung-Duc T (2013) Single server Markovian retrial queues with multiple types of outgoing call. In: Proceedings of the 8th international conference on queueing theory and network applications, pp 39–46

  • Tweedi RL (1975) Sufficient conditions for regularity, recurrence and ergodicity and Markov processes. Math Proc Camb Philos Soc 78:125–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Phung-Duc.

Appendix: Special case

Appendix: Special case

We consider only the case \(\nu _1 = \lambda + \nu _3\) but the case \(\nu _1 = \lambda + \nu _2\) is the same. It should be noted that (15) and (24)–(27) are also established for these special cases.

Theorem 16

For \(|z| \le 1\),

$$\begin{aligned} \Pi _0(z)&= \frac{1 - \rho }{1 + \sigma _2 + \sigma _3} \exp \left[ - \frac{\alpha _2 \rho \hat{\rho }}{\mu } \right] \nonumber \\&\times \left( \frac{1 - \rho }{1 - \rho z} \right) ^{\frac{D_1}{\mu }} \exp \left[ \frac{\alpha _2 \rho ^2 z}{\mu (1 - \rho z)} \right] \left( \frac{1 - \theta _3}{1 - \theta _3 z} \right) ^{\frac{D_3}{\mu }} \nonumber \\&= \pi _{0,0} (1 - \rho z)^{- \frac{D_1}{\mu }} \exp \left[ \frac{\alpha _2 \rho ^2 z}{\mu (1 - \rho z)} \right] (1 - \theta _3 z)^{- \frac{D_3}{\mu }}, \qquad \\ \Pi _1(z)&= \left( \frac{\lambda + C_{13}}{\nu _1 - \lambda z} + \frac{\lambda \alpha _2}{(\nu _1 - \lambda z)^2} + \frac{C_3}{\lambda + \nu _3 - \lambda z} \right) \Pi _0(z), \nonumber \\ \Pi _2(z)&= \frac{\alpha _2}{\nu _1 - \lambda z} \Pi _0(z), \nonumber \\ \Pi _3(z)&= \frac{\alpha _3}{\lambda + \nu _3 - \lambda z} \Pi _0(z), \nonumber \end{aligned}$$
(48)

where

$$\begin{aligned} C_{13}&= - \frac{\lambda \alpha _3}{\nu _1 - (\lambda + \nu _3 )},~~~~C_3 = \frac{\lambda \alpha _3}{\nu _1 - (\lambda + \nu _3 )}, \\ D_1&= \lambda + \alpha _2 - \frac{\lambda \alpha _3}{\nu _1 - (\lambda + \nu _3 )},~~~~D_3 = \frac{\alpha _3 (\nu _1 - \nu _3 )}{\nu _1 - (\lambda + \nu _3 )}, \\ \rho&= \frac{\lambda }{\nu _1},~~~~\hat{\rho } = \frac{\rho }{1 - \rho },~~~~\theta _3 = \frac{\lambda }{\lambda + \nu _3}, \\ \sigma _2&= \frac{\alpha _2}{\nu _2},~~~~\sigma _3 = \frac{\alpha _3}{\nu _3}, \\ \pi _{0,0}&= \frac{1 - \rho }{1 + \sigma _2 + \sigma _3} (1 - \rho )^{\frac{D_1}{\mu }} \exp \left[ - \frac{\alpha _2 \rho \hat{\rho }}{\mu } \right] (1 - \theta _3 )^{\frac{D_3}{\mu }}. \end{aligned}$$

Proof

This theorem is obtained after a minor modification of the derivation in Section 3.1. \(\square \)

Theorem 17

For \(j \in {\mathbb Z}_+\),

$$\begin{aligned} \pi _{0,j}&= \sum _{k=0}^{j-1} \sum _{\ell =0}^{j-k-1} \bigg \{ \left( \frac{D_1}{\mu } \right) _k \frac{\rho ^k}{k!} \left( \frac{D_3}{\mu } \right) _\ell \frac{\theta _3^\ell }{\ell !} \nonumber \\&\times \left( \sum _{m=1}^{j-k-\ell } {}_{j-k-\ell -1} \mathrm{C}_{m-1} \frac{1}{m!} \left( \frac{\alpha _2 \rho }{\mu } \right) ^m \right) \rho ^{j-k-\ell } \bigg \} \nonumber \\&+ \sum _{k=0}^j \left( \frac{D_1}{\mu } \right) _k \frac{\rho ^k}{k!} \left( \frac{D_3}{\mu } \right) _{j-k} \frac{\theta _3^{j-k}}{(j-k)!}, \\ \pi _{1,j}&= \frac{1}{\lambda + \nu _1} \sum _{k=0}^j (\lambda \pi _{0,k} + (k + 1) \mu \pi _{0,k+1} ) \left( \frac{\lambda }{\lambda + \nu _1} \right) ^{j-k} \nonumber \\&= \left( \rho + \frac{C_{13}}{\nu _1} \right) \sum _{k=0}^j \pi _{0,k} \rho ^{j-k} \nonumber \\&+ \frac{\lambda \alpha _2}{\nu _1^2} \sum _{k=0}^j \pi _{0,k} (j - k + 1) \rho ^{j-k} + \frac{C_3}{\lambda + \nu _3} \sum _{k=0}^j \pi _{0,k} \theta _3^{j-k}, \qquad \nonumber \\ \pi _{2,j}&= \frac{\alpha _2}{\nu _1} \sum _{k=0}^j \pi _{0,k} \rho ^{j-k}, \nonumber \\ \pi _{3,j}&= \frac{\alpha _3}{\lambda + \nu _3} \sum _{k=0}^j \pi _{0,k} \theta _3^{j-k}. \nonumber \end{aligned}$$
(49)

Proof

We prove (49) from which the expressions for \(\pi _{i,j}\) (\(i=1,2,3\)) are straightforward. First, we derive the Taylor expansion at \(z=0\) for the exponential part in (48) as follows.

$$\begin{aligned} \exp \left[ \frac{\alpha _2 \rho ^2 z}{\mu (1 - \rho z)} \right]&= \sum _{k=0}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho ^2 z}{\mu (1 - \rho z)} \right) ^k \\&= \sum _{k=0}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho }{\mu } \left( \frac{1}{1 -\rho z} - 1 \right) \right) ^k \\&= \sum _{k=0}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho }{\mu } \right) ^k \left( \sum _{j=1}^\infty (\rho z)^j \right) ^k \\&= \sum _{k=0}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho ^2 z}{\mu } \right) ^k \left( \sum _{j=0}^\infty (\rho z)^j \right) ^k \\&= 1 + \sum _{k=1}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho ^2 z}{\mu } \right) ^k \sum _{j=0}^\infty {}_{j+k-1} \mathrm{C}_{k-1} (\rho z)^j \\&= 1 + \sum _{k=1}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho }{\mu } \right) ^k \sum _{j=0}^\infty {}_{j+k-1} \mathrm{C}_{k-1} (\rho z)^{j+k} \\&= 1 + \sum _{k=1}^\infty \frac{1}{k!} \left( \frac{\alpha _2 \rho }{\mu } \right) ^k \sum _{j=k}^\infty {}_{j-1} \mathrm{C}_{k-1} (\rho z)^j \\&= 1 + \sum _{j=1}^\infty \left( \sum _{k=1}^j {}_{j-1} \mathrm{C}_{k-1} \frac{1}{k!} \left( \frac{\alpha _2 \rho }{\mu } \right) ^k \rho ^j \right) z^j. \end{aligned}$$

It follows from (48) that

$$\begin{aligned} \Pi _0(z)&= \pi _{0,0} (1 - \rho z)^{- \frac{D_1}{\mu }} \exp \left[ \frac{\alpha _2 \rho ^2 z}{\mu (1 - \rho z)} \right] (1 - \theta _3 z)^{- \frac{D_3}{\mu }} \\&= \pi _{0,0} \left( \sum _{j=0}^\infty \left( \frac{D_1}{\mu } \right) _j \frac{\rho ^j}{j!} z^j \right) \left( \sum _{j=0}^\infty \left( \frac{D_3}{\mu } \right) _j \frac{\theta _3^j}{j!} z^j \right) \\&\times \left\{ 1 + \sum _{j=1}^\infty \left( \sum _{k=1}^j {}_{j-1} \mathrm{C}_{k-1} \frac{1}{k!} \left( \frac{\alpha _2 \rho }{\mu } \right) ^k \rho ^j \right) z^j \right\} , \end{aligned}$$

leading to (49). Other formulae are obtained by the same manner as is presented in Artalejo and Phung-Duc (2012). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, H., Phung-Duc, T. Two-way communication retrial queues with multiple types of outgoing calls. TOP 23, 466–492 (2015). https://doi.org/10.1007/s11750-014-0349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-014-0349-5

Keywords

Mathematics Subject Classification

Navigation