Skip to main content

Recent Advances in Photocatalytic Degradation of Dyes Using Heterogeneous Catalysts

  • Chapter
  • First Online:
Trends and Contemporary Technologies for Photocatalytic Degradation of Dyes

Abstract

Synthetic dyes are playing a vital role in day-to-day life as different products ranging from textiles to leather to furniture contain dye for colouring purposes. It is reported that 12% of these dyes are wasted during processing. However, these industrial non-biodegradable dyes often enter water bodies such as groundwater, river, and lake and pollute them. Removal of these hazardous pollutants or dyes from wastewater has gained attention due to environmental concerns. Various techniques have been developed for the removal of these carcinogenic dyes from the natural environment. Degradation of dyes and eventually their removal from the mainstream and aquatic media using UV or visible light in the presence of photocatalyst (PC) are some reasonable technologies. Photocatalytic degradation (PD) could convert bio non-degradable dye complex molecules into smaller, non-carcinogenic, low molecular species. The process of PD is based on the generation of highly reactive, hydroxyl and superoxide anion radicals, which target the dye molecules and convert them into H2O and CO2. The chapter focuses on the principle and mechanism of dye degradation using heterogeneous photocatalyst. A brief discussion of the various important heterogeneous photocatalyst in the degradation of dye will be discussed in the latter part of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah FH, Rauf MA, Ashraf SS (2007) Kinetics and optimization of photolytic decolouration of carmine by UV/H2O2. Dyes Pigm 75:194–198

    Article  CAS  Google Scholar 

  • Abid MF, Zablouk MA, Abid-Alameer AM (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. J Environ Health Sci Engineer 9:17

    Article  Google Scholar 

  • Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29:342001

    Article  Google Scholar 

  • Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330

    Article  CAS  Google Scholar 

  • Ajaz M, Rehman A, Khan Z, Nisar MA, Hussain S (2019) Degradation of azo dyes by Alcaligenes aquatilis 3c and its potential use in the wastewater treatment. AMB Expr 9:64

    Article  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  CAS  Google Scholar 

  • Alahiane S, Sennaoui A, Sakr F, Qourzal S, Dinne M, Assabbane A (2017) A study of the photocatalytic degradation of the textile dye reactive yellow 17 in aqueous solution by TiO2-coated non-woven fibres in a batch photoreactor. J Mater Environ Sci 8:3556–3563

    Google Scholar 

  • Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7:103248

    Article  CAS  Google Scholar 

  • Alnuaimi MM, Rauf MA, Ashraf SS (2007) Comparative decolouration study of neutral red by different oxidative processes. Dyes Pigm 72:367–371

    Article  CAS  Google Scholar 

  • Andronic L, Duta A (2007) TiO2 thin films for dyes photodegradation. Thin Solid Films 515:6294–6297

    Article  CAS  Google Scholar 

  • Anwer H, Mahmood A, Lee J, Kim K-H, Park J-W, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12:955–972

    Article  CAS  Google Scholar 

  • Atarod M, Nasrollahzadeh M, Mohammad Sajadi S (2016) Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J Colloid Interface Sci 462:272–279

    Article  CAS  Google Scholar 

  • Babu SG, Karthik P, John MC, Lakhera SK, Ashokkumar M, Khim J, Neppolian B (2019) Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrason Sonochem 50:218–223

    Article  CAS  Google Scholar 

  • Bandara WRLN, de Silva RM, de Silva KMN, Dahanayake D, Gunasekara S, Thanabalasingam K (2017) Is nano ZrO2 a better photocatalyst than nano TiO2 for degradation of plastics? RSC Adv 7:46155–46163

    Article  CAS  Google Scholar 

  • Baran W, Makowski A, Wardas W (2008) The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dyes Pigm 76:226–230

    Article  Google Scholar 

  • Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001

    Article  Google Scholar 

  • Behnajady MA, Modirshahla N, Shokri M (2004) Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 55:129–134

    Article  CAS  Google Scholar 

  • Bedja I, Hotchandani S, Kamat PV (2002) Photoelectrochemistry of quantized WO3 colloids: electron storage, electrochromic, and photoelectrochromic effects. J Phys Chem 97:11064–11070

    Article  Google Scholar 

  • Belpaire C, Reyns T, Geeraerts C, Van Loco J (2015) Toxic textile dyes accumulate in wild European eel Anguilla anguilla. Chemosphere 138:784–791

    Article  CAS  Google Scholar 

  • Benatti CT, Tavares CRG, Guedes TA (2006) Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. J Environ Manage 80:66–74

    Article  CAS  Google Scholar 

  • Ben Fradj A, Boubakri A, Amor H, Hamouda S (2019) Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration. Results Chem 2:100017

    Article  Google Scholar 

  • Benkhaya S, M’ rabet S, El Harfi A, (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891

    Article  CAS  Google Scholar 

  • Blanco-Galvez J, Fernández-Ibáñez P, Malato-Rodríguez S (2007) Solar photocatalytic detoxification and disinfection of water: recent overview. J Sol Energy Eng 129:4–15

    Article  CAS  Google Scholar 

  • Chandanshive VV, Kadam SK, Khandare RV, Kurade MB, Jeon B-H, Jadhav JP, Govindwar SP (2018) In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere 210:968–976

    Article  CAS  Google Scholar 

  • Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, Wang L, Liu H, Liu Y, Ruan R (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725

    Article  CAS  Google Scholar 

  • Chequer FMD, Oliveira GAR de, Ferraz ERA, Cardoso JC, Zanoni MVB, Oliveira DP de (2013) Textile dyes: dyeing process and environmental impact. IntechOpen, pp 151–176

    Google Scholar 

  • Che Ramli ZA, Asim N, Isahak WNRW, Emdadi Z, Ahmad-Ludin N, Yarmo MA, Sopian K (2014) Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci World J 2014:1–8

    Article  Google Scholar 

  • Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett 12:143

    Article  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    Article  CAS  Google Scholar 

  • Dahiya A, Patel BK (2021) Photocatalytic degradation of organic dyes using heterogeneous catalysts. In: Photocatalytic degradation of dyes. Elsevier, pp 43–90

    Google Scholar 

  • Daneshvar N, Salari D, Khataee AR (2003) Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A Chem 157:111–116

    Article  CAS  Google Scholar 

  • Din MI, Khalid R, Hussain Z (2021) Recent research on development and modification of nontoxic semiconductor for environmental application. Sep Purif Rev 50:244–261

    Article  CAS  Google Scholar 

  • Dionysiou DD, Khodadoust AP, Kern AM, Suidan MT, Baudin I, Laîné J-M (2000) Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl Catal B24:139–155

    Article  Google Scholar 

  • Drumond CFM, de Oliveira GAR, Ferraz ERA, Carvalho J, Zanoni MVB, de Oliveir DP (2013) Textile dyes: dyeing process and environmental impact. In: Gunay M (ed) Eco-Friendly Textile Dyeing and Finishing. InTech. 10.5772/53659

    Google Scholar 

  • Es-sahbany H, Berradi M, Nkhili S, Bassir D, Belfaquir M, Youbi MSE (2018) Valorization of Moroccan clay: application to the adsorption of cobalt ions contained in wastewater synthesized. Mor J Chem 6:173–179

    CAS  Google Scholar 

  • Fenoll J, Martínez-Menchón M, Navarro G, Vela N, Navarro S (2013) Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor suspensions exposed to solar energy. Chemosphere 91:571–578

    Article  CAS  Google Scholar 

  • Ferreira ESB, Hulme AN, McNab H, Quye A (2004) The natural constituents of historical textile dyes. Chem Soc Rev 33:329–336

    Article  CAS  Google Scholar 

  • Franca RDG, Vieira A, Carvalho G, Oehmen A, Pinheiro HM, Barreto Crespo MT, Lourenço ND (2020) Oerskovia paurometabola can efficiently decolourize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotoxicol Environ Saf 191:110007

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  • Fukushima M, Tatsumi K, Morimoto K (2000) Influence of iron(III) and humic acid on the photodegradation of pentachlorophenol. Environ Toxicol Chem 19:1711–1716

    Article  CAS  Google Scholar 

  • Garg A, Singhania T, Singh A, Sharma S, Rani S, Neogy A, Yadav SR, Sangal VK, Garg N (2019) Photocatalytic degradation of bisphenol-a using N, Co codoped TiO2catalyst under solar light. Sci Rep 9:765

    Article  Google Scholar 

  • Gnanaprakasam A, Sivakumar VM, Thirumarimurugan M (2015) Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J Mater Sci 2015:1–16

    Google Scholar 

  • Haibach MC, Kundu S, Brookhart M, Goldman AS (2012) Alkane metathesis by tandem alkane-dehydrogenation–olefin-metathesis catalysis and related chemistry. Acc Chem Res 45:947–958

    Article  CAS  Google Scholar 

  • Hassena H (2016) Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3nano composite under visible light. Mod Chem Appl 4:176

    Google Scholar 

  • Haq I, Raj A, Markandeya (2018) Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196:58–68

    Article  CAS  Google Scholar 

  • Hasnat M, Uddin M, Samed A, Alam S, Hossain S (2007) Adsorption and photocatalytic decolourization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces. J Hazard Mater 147:471–477

    Google Scholar 

  • Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231

    Article  Google Scholar 

  • Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manage 182:351–366

    Article  CAS  Google Scholar 

  • Hu C, Yu JC, Hao Z, Wong PK (2003) Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Appl Catal B 46:35–47

    Article  CAS  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Ishchenko OM, Rogé V, Lamblin G, Lenoble D (2016) TiO2- and ZnO-based materials for photocatalysis: material properties, device architecture and emerging concepts. In: Cao W (ed) Semiconductor photocatalysis—materials, mechanisms and applications. InTech

    Google Scholar 

  • Ito T, Adachi Y, Yamanashi Y, Shimada Y (2016) Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes. Water Res 100:458–465

    Article  CAS  Google Scholar 

  • Jadhav SB, Yedurkar SM, Phugare SS, Jadhav JP (2012) Biodegradation studies on acid violet 19, a triphenylmethane dye, by pseudomonas aeruginosa BCH. Clean Soil Air Water 40:551–558

    Google Scholar 

  • Javaid R, Qazi UY, Kawasaki S-I (2016) Highly efficient decomposition of Remazol Brilliant Blue R using tubular reactor coated with thin layer of PdO. J Environ Manage 180:551–556

    Article  CAS  Google Scholar 

  • Javaid R, Qazi UY, Ikhlaq A, Zahid M, Alazmi A (2021) Subcritical and supercritical water oxidation for dye decomposition. J Environ Manage 290:112605

    Article  CAS  Google Scholar 

  • Khan S, Malik A (2018) Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res Int 25:4446–4458

    Article  CAS  Google Scholar 

  • Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328:8–26

    Article  CAS  Google Scholar 

  • Kiran Avasarala B, Tirukkovalluri SR (2016) Magnesium doped titania for photocatalytic degradation of dyes in visible light. J Environ Anal Toxicol 6:2

    Article  Google Scholar 

  • Kong G, Pang J, Tang Y, Fan L, Sun H, Wang R, Feng S, Feng Y, Fan W, Kang W, Guo H, Kang Z, Sun D (2019) Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing. J Mater Chem A 7:24301–24310

    Article  CAS  Google Scholar 

  • Kuang S, Yang L, Luo S, Cai Q (2009) Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays. Appl Surf Sci 255:7385–7388

    Article  CAS  Google Scholar 

  • Kumar K, Chitkara M, Sandhu IS, Mehta D, Kumar S (2014) Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J Alloys Compd 588:681–689

    Google Scholar 

  • Kushniarou A, Garrido I, Fenoll J, Vela N, Flores P, Navarro G, Hellín P, Navarro S (2019) Solar photocatalytic reclamation of agro-waste water polluted with twelve pesticides for agricultural reuse. Chemosphere 214:839–845

    Article  CAS  Google Scholar 

  • Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39:75–90

    Article  CAS  Google Scholar 

  • Lai C, Wang M-M, Zeng G-M, Liu Y-G, Huang D-L, Zhang C, Wang R-Z, Xu P, Cheng M, Huang C, Wu H-P, Qin L (2016) Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl Surf Sci 390:368–376

    Article  CAS  Google Scholar 

  • Lakshmi Prasanna V, Rajagopalan V (2016) A new synergetic nanocomposite for dye degradation in dark and light. Sci Rep 6:38606

    Google Scholar 

  • Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2012) Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination Water Treat 41:131–169

    Article  CAS  Google Scholar 

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  Google Scholar 

  • Lewis DM (2011) The chemistry of reactive dyes and their application processes. In: Handbook of textile and industrial dyeing. Elsevier, pp 303–364

    Google Scholar 

  • Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111

    Article  CAS  Google Scholar 

  • Lin X, Liu Z, Guo X, Liu C, Zhai H, Wang Q, Chang L (2014) Controllable synthesis and photocatalytic activity of spherical, flower-like and nanofibrous bismuth tungstates. Mater Sci Eng B188:35–42

    Article  Google Scholar 

  • Liu F, Leung YH, Djurišić AB, Ng AMC, Chan WK (2013) Native defects in ZnO: effect on dye adsorption and photocatalytic degradation. J Phys Chem C 117:12218–12228

    Article  CAS  Google Scholar 

  • Li Y, He J, Zhang K, Hong P, Wang C, Kong L, Liu J (2020) Oxidative degradation of sulfamethoxazole antibiotic catalyzed by porous magnetic manganese ferrite nanoparticles: mechanism and by-products identification. J Mater Sci 55:13767–13784

    Article  CAS  Google Scholar 

  • López-Ramón MV, Rivera-Utrilla J, Sánchez-Polo M, Polo AMS, Mota AJ, Orellana-García F, Álvarez MA (2019) Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation. Sci Total Environ 650:1207–1215

    Article  Google Scholar 

  • Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2015) Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Sci Rep 4:4043

    Article  Google Scholar 

  • Lü W, Chen J, Wu Y, Duan L, Yang Y, Ge X (2014) Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res Lett 9:148

    Article  Google Scholar 

  • Moura DC de, Quiroz MA, Silva DR da, Salazar R, Martínez-Huitle CA (2016) Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environ Nanotechnol Monit Manag 13–20

    Google Scholar 

  • Mozia S, Tomaszewska M, Morawski AW (2005) Photocatalytic degradation of azo-dye acid red 18. Desalination 185:449–456

    Article  CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2006) TiO2–UV photocatalytic oxidation of reactive yellow 14: effect of operational parameters. J Hazard Mater 135:78–86

    Article  CAS  Google Scholar 

  • Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89:303–317

    Article  CAS  Google Scholar 

  • Olama N, Dehghani M, Malakootian M (2018) The removal of amoxicillin from aquatic solutions using the TiO2/UV-C nanophotocatalytic method doped with trivalent iron. Appl Water Sci 8:97

    Article  Google Scholar 

  • Ollis DF, Pelizzetti E, Serpone N (1991) Destruction of water contaminants. Environ Sci Technol 25:1522–1529

    Article  CAS  Google Scholar 

  • Pan L, Zou J-J, Zhang X, Wang L (2010) Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2. Ind Eng Chem Res 49:8526–8531

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Pingmuang K, Chen J, Kangwansupamonkon W, Wallace GG, Phanichphant S, Nattestad A (2017) Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci Rep 7:8929

    Article  Google Scholar 

  • Poulopoulos SG, Philippopoulos CJ (2004) Photo-assistedo of chlorophenols in aqueous Solutions using hydrogen peroxide and titanium dioxide. J Environ Sci Health A 39:1385–1397

    Article  CAS  Google Scholar 

  • Prihod’ko RV, Soboleva NM (2013) Photocatalysis: oxidative processes in water treatment. J Chem e168701

    Google Scholar 

  • Qamar M, Saquib M, Muneer M (2004) Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes Pigm 65:1–9

    Article  Google Scholar 

  • Rahmat M, Rehman A, Rahmat S, Bhatti HN, Iqbal M, Khan WS, Bajwa SZ, Rahmat R, Nazir A (2019) Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J Mater Res Technol 8:5149–5159

    Article  CAS  Google Scholar 

  • Rajabi HR, Khani O, Shamsipur M, Vatanpour V (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J Hazard Mater 250–251:370–378

    Article  Google Scholar 

  • Rajbongshi BM, Ramchiary A, Samdarshi S (2014) Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Mater Lett 134:111–114

    Article  CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng Technol 151:10–18

    Article  CAS  Google Scholar 

  • Ray MB (2000) Photodegradation of the volatile organic compounds in the gas phase: a review. Chem Eng Process 8:405–439

    Google Scholar 

  • Reddy ChV, Babu B, Reddy IN, Shim J (2018) Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram Int 44:6940–6948

    Article  CAS  Google Scholar 

  • Rehman A, Usman M, Bokhari TH, Haq A, Saeed M, Rahman HMA, Siddiq M, Rasheed A, Nisa M (2020) The application of cationic-nonionic mixed micellar media for enhanced solubilization of Direct Brown 2 dye. Jmol Liq 301:112408

    Article  CAS  Google Scholar 

  • Rehman R, Uz-Zaman W, Abbas A, Mitu L (2019) Rapid photocatalytic degradation of methylene blue, tartrazine and brilliant green dyes by high-flux UV irradiation photolysis reactor. BCC 51:337–341

    Article  Google Scholar 

  • Saeed K, Khan I, Park S-Y (2015) TiO2/amidoxime-modified polyacrylonitrile nanofibres and its application for the photodegradation of methyl blue in aqueous medium. Desalin Water Treat 54:3146–3151

    Article  CAS  Google Scholar 

  • Sahel K, Perol N, Chermette H, Bordes C, Derriche Z, Guillard C (2007) Photocatalytic decolourization of Remazol Black 5 (RB5) and Procion Red MX-5B—isotherm of adsorption, kinetic of decolourization and mineralization. Appl Catal B 77:100–109

    Article  CAS  Google Scholar 

  • Sahoo C, Gupta AK, Pillai IMS (2012) Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. J Environ Sci Health Part A 47:1428–1438

    Article  CAS  Google Scholar 

  • Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    Article  CAS  Google Scholar 

  • Salem IA, El-Ghamry HA, El-Ghobashy MA (2014) Catalytic decolourization of acid blue 29 dye by H2O2 and a heterogeneous catalyst. Beni-Seuf Univ J Basic Appl Sci 3:186–192

    Google Scholar 

  • Samadi-Maybodi A, Sadeghi-Maleki M-R (2016) In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes. Spectrochimica Acta Part A Spectrochim Acta A Mol Biomol Spectrosc 152:156–164

    Article  CAS  Google Scholar 

  • Serpone N, Emeline AV (2002) Suggested terms and definitions in photocatalysis and radiocatalysis. Int J Photoenergy 4:91–131

    Article  CAS  Google Scholar 

  • Sharma S, Hasan A, Kumar N, Pandey LM (2018) Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environ Sci Pollut Res Int 25:21605–21615

    Article  CAS  Google Scholar 

  • Silva PM dos S, Fiaschitello TR, Queiroz RS de, Freeman HS, Costa SA da, Leo P, Montemor AF, Costa SM da (2020) Natural dye from Croton urucurana Baill. bark: extraction, physicochemical characterization, textile dyeing and colour fastness properties. Dyes Pigm 173:107953

    Google Scholar 

  • Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  Google Scholar 

  • Sripiboon S, Suwannahong K (2018) Colour removal by ozonation process in biological wastewater treatment from the breweries. IOP Conf Ser Earth Environ Sci 167:012010

    Article  Google Scholar 

  • Štengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226

    Article  Google Scholar 

  • Stylidi M (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B 40:271–286

    Article  CAS  Google Scholar 

  • Su B, Wang K, Bai J, Mu H, Tong Y, Min S, She S, Lei Z (2007) Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation. Front Chem China 2:364–368

    Article  Google Scholar 

  • Tanaka K, Padermpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34:327–333

    Article  CAS  Google Scholar 

  • Tayade RJ, Natarajan TS, Bajaj HC (2009) Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes. Ind Eng Chem Res 48:10262–10267

    Article  CAS  Google Scholar 

  • Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222

    Article  CAS  Google Scholar 

  • Touati A, Hammedi T, Najjar W, Ksibi Z, Sayadi S (2016) Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: effect of cerium doping Titania. J Ind Eng Chem J 35:36–44

    Article  CAS  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Article  CAS  Google Scholar 

  • Uyguner CS, Bekbolet M (2008) Aqueous photocatalysis, natural organic matter characterization and removal: a case study of the photacatalytic oxidation of fulvic acid. Dangerous pollutants (xenobiotics) in urban water cycle. Springer, Netherlands, Dordrecht, pp 247–256

    Chapter  Google Scholar 

  • Vázquez-Ortega F, Lagunes I, Trigos Á (2020) Cosmetic dyes as potential photosensitizers of singlet oxygen generation. Dyes Pigm 176:108248

    Article  Google Scholar 

  • Vinu R, Akki SU, Madras G (2010) Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J Hazard Mater 176:765–773

    Article  CAS  Google Scholar 

  • Wang F, Ma Z, Ban P, Xu X (2017) C, N and S codoped rutile TiO2 nanorods for enhanced visible-light photocatalytic activity. Mater Lett 195:143–146

    Article  CAS  Google Scholar 

  • Wang N, Li J, Zhu L, Dong Y, Tang H (2008) Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process. J Photochem Photobiol A 198:282–287

    Article  CAS  Google Scholar 

  • Wang Z, Gao M, Li X, Ning J, Zhou Z, Li G (2020) Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins. Mater Sci Eng C Mater Biol Appl 108:110196

    Article  CAS  Google Scholar 

  • Wu C-H, Chang H-W, Chern J-M (2006) Basic dye decomposition kinetics in a photocatalytic slurry reactor. J Hazard Mater 137:336–343

    Article  CAS  Google Scholar 

  • Yan-fen F, Ying-ping H, De-fu L, Yang H, Wei G, Johnson D (2006) Photocatalytic degradation of the dye sulforhodamine-B: a comparative study of different light sources. Res J Environ Sci 19:97–102

    Google Scholar 

  • Yoon J, Lee Y, Kim S (2001) Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci Technol 44:15–21

    Article  CAS  Google Scholar 

  • Yuan H, Chen L, Cao Z, Hong F (2020) Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency. Biochem Eng J 156:107501

    Article  CAS  Google Scholar 

  • Zada N, Khan I, Saeed K (2017) Synthesis of multiwalled carbon nanotubes supported manganese and cobalt zinc oxides nanoparticles for the photodegradation of malachite green. Sep Sci Technol 52:1477–1485

    Article  CAS  Google Scholar 

  • Zahrim AY, Hilal N (2013) Treatment of highly concentrated dye solution by coagulation/flocculation–sand filtration and nanofiltration. Water Resour Ind 3:23–34

    Article  Google Scholar 

  • Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain Isa M (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36

    Google Scholar 

  • Zazo JA, Pliego G, Blasco S, Casas JA, Rodriguez JJ (2011) Intensification of the Fenton process by increasing the temperature. Ind Eng Chem Res 50:866–870

    Article  CAS  Google Scholar 

  • Zhang G, Zhang S (2020) Quantitative structure-activity relationship in the photodegradation of azo dyes. J Environ Sci (china) 90:41–50

    Article  CAS  Google Scholar 

  • Zhang L, Jaroniec M (2017) Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl Surf Sci 430:2–17

    Article  Google Scholar 

  • Zhang T, Oyama T, Horikoshi S, Hidaka H, Zhao J, Serpone N (2002) Photocatalyzed N-demethylation and degradation of methylene Blue in titania dispersions exposed to concentrated sunlight. Sol Energy Mater Sol Cells 73:287–303

    Article  CAS  Google Scholar 

  • Zhang X, Wu Y, Xiao G, Tang Z, Wang M, Liu F, Zhu X (2017) Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite. PLoS ONE 12:e0172747

    Article  Google Scholar 

  • Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278

    Article  CAS  Google Scholar 

  • Zheng Y, Cao L, Xing G, Bai Z, Huang J, Zhang Z (2019) Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution. RSC Adv 9:7338–7348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhisma K. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, B., Dhara, H.N., Dahiya, A., Patel, B.K. (2022). Recent Advances in Photocatalytic Degradation of Dyes Using Heterogeneous Catalysts. In: Dave, S., Das, J. (eds) Trends and Contemporary Technologies for Photocatalytic Degradation of Dyes. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-08991-6_2

Download citation

Publish with us

Policies and ethics