Skip to main content

Mechanistic Understanding of Heterogeneous Photocatalysis for the Dye Degradation in Wastewater

  • Chapter
  • First Online:
Fate and Transport of Subsurface Pollutants

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 24))

Abstract

Water is one of the fundamental needs for the life on earth. However, the wastewater released from the industries consists of dyes and other organic molecules, which become the serious issue for the water pollution. Among all water remediation techniques, heterogeneous photocatalysis has gained scientific attention for the water purification in terms of degradation of dyes and other organic pollutants. Heterogeneous photocatalysis is a very robust, low cost method and can provide complete mineralization of the pollutants. In this context, this chapter deals with the basic principle and mechanism of heterogeneous photocatalysis; and the parameters affecting the degradation kinetics. Furthermore, the different functional photocatalyst material, their limitation and the modification in the structure of semiconductor catalyst to absorb visible light are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215:3–29

    Article  CAS  Google Scholar 

  • Ahmed MA, Abou-Gamra ZM, Medien HAA, Hamza MA (2017) Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward rhodamine B photodegradation. J Photochem Photobiol B Biol 176:25–35

    Article  CAS  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  CAS  PubMed  Google Scholar 

  • Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B 54:19–24

    Article  CAS  Google Scholar 

  • Aly HF, Abd-Elhamid AI (2018) Photocatalytic degradation of methylene blue dye using silica oxide nanoparticles as a catalyst. Water Environ Res 90(9):807–817. https://doi.org/10.2175/106143017X15131012187953

    Article  CAS  PubMed  Google Scholar 

  • An L, Wang G, Cheng Y, Zhao L, Gao F, Cheng Y (2015) Synthesis of CdS/ZnO Nanocomposite and its enhanced photocatalytic activity in degradation of methyl orange. Russ J Phys Chem A 89(10):1878–1883

    Article  CAS  Google Scholar 

  • Aziz MI, Mughal F, Naeem HF, Zeb A, Tahir MA, Basit MA (2019) Evolution of photovoltaic and photocatalytic activity in anatase-TiO2 under visible light via simplistic deposition of CdS and PbS quantum-dots. Mater Chem Phys 229:508–513

    Article  CAS  Google Scholar 

  • Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation off selected organic pollutants in aqueous suspensions. Catal Today 124:133–148

    Article  CAS  Google Scholar 

  • Balciolu IA, Otker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50:85–95

    Article  Google Scholar 

  • Behjou A, Aghaie H, Zare K, Aghaie M (2013) Synthesis and investigation of visible-light-activated rutile phase modified TiO2. Asian J Chem 25(2):880–882

    Article  CAS  Google Scholar 

  • Bendjabeur S, Zouaghi R, Kaabeche ONH, Sehili T (2017) Parameter affecting adsorption and photocatalytic degradation behavior of gentian violet under UV irradiation with several kinds of TiO2 as a photocatalyst. Int J Chem React Eng 15(4):20160206. https://doi.org/10.1515/ijcre-2016-0206

    Article  CAS  Google Scholar 

  • Boldish SI, White WB (1998) Optical band gaps of selected ternary sulfides minerals. Am Mineral 83:865–871

    Article  CAS  Google Scholar 

  • Bubacz K, Choina J, Dolat D, Morawski AW (2010) Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol J Environ Stud 19:685–691

    CAS  Google Scholar 

  • Buddee S, Wongnawa S (2015) Removal of dyes by photocatalytically active curcumin-sensitized amorphous TiO2 under visible light irradiation. J Sol-Gel Sci Technol 75:152–163

    Article  CAS  Google Scholar 

  • Buddee S, Wongnawa S, Sriprang P, Sriwong C (2014) Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light. J Nanopart Res 16:2336

    Article  CAS  Google Scholar 

  • Cassano AE, Alfano OM (2000) Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal Today 58:167–197

    Article  CAS  Google Scholar 

  • Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo dyes. Nanoscale Res Lett 12:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Cai T, Cheng C, Xiong Z, Ding D (2018) Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: a comparative study. Chem Eng J 351:1137–1146

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Ertis IF, Boz I (2017) Synthesis and characterization of metal-doped (Ni, co, Ce, Sb) CdS catalysts and their use in methylene blue degradation under visible light irradiation. Modern Research in Catalysis 6:1–14

    Article  CAS  Google Scholar 

  • Feilizadeh M, Attar F, Mahinpey N (2019) Hydrogen peroxide-assisted photocatalysis under solar light irradiation: interpretation of interaction effects between an active photocatalyst and H2O2. Can J Chem Eng 97(7):2009–2014

    Article  CAS  Google Scholar 

  • Flores NM, Pal U, Galeazzia R, Sandovalb A (2014) Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv 4:41099

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Article  CAS  Google Scholar 

  • Garcia OA, Valencia JE, Romero R, Rico-Cerda JL, Albiter MA, Natividad R (2017) W and Mo doped TiO2: synthesis, characterization and photocatalytic activity. Fuel 198:31–41

    Article  CAS  Google Scholar 

  • Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernandez-Alba AR (2003) Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50:71–78

    Article  CAS  PubMed  Google Scholar 

  • Ghaly MY, Hartel G, Mayer R, Haseneder R (2001) Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manag 21:41–47

    Article  CAS  PubMed  Google Scholar 

  • Giannakas AE, Antonopouloua M, Daikopoulos C, Deligiannakis Y, Konstantinoua I (2016) Characterization and catalytic performance of B-doped, B–N co-doped and B–N–F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl Catal B Environ 184:44–54

    Article  CAS  Google Scholar 

  • Gleick PH (2015) Dirty water: estimated death from water-related diseases 2000-2020. Pacific Institute for Studies in Development, Environment, and Security, Oakland, pp 1–12. www.pacinst.org

    Google Scholar 

  • Goncalves MST, Oliveira-Campos AMF, Pinto EMMS, Plasencia PMS, Queiroz MJRP (1999) Photochemical treatment of solutions of Azo dyes containing TiO2. Chemosphere 39:781–786

    Article  CAS  Google Scholar 

  • Goswami L, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017) Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling-an overview. RSC Adv 2:6380–6388

    Article  CAS  Google Scholar 

  • He R, Zhou J, Fu H, Zhang S, Jiang C (2018) Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 430:273–282

    Article  CAS  Google Scholar 

  • Helmy AT, Nemr AE, Mousa M, Arafa E, Eldafrawy S (2018) Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. J Water Environ Nanotechnol 3(2):116–127

    CAS  Google Scholar 

  • Hoshiyama N, Dabwan AHA, Katsumata H, Suzuki T, Furukawa M, Kaneco S (2016) Enhanced photocatalytic degradation of bisphenol A in aqueous solution by Ag-doping ZnO. Open J Inorg Non-Met Mater 6:13–17. https://doi.org/10.4236/ojinm.2016.63003

    Article  CAS  Google Scholar 

  • Inturi SNR, Boningari T, Suidanb M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ 144:333–342

    Article  CAS  Google Scholar 

  • Jana TK, Maji SK, Pal A, Maiti RP, Dolai TK, Chatterjee K (2016) Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J Collids Interface Sci 480:9–16

    Article  CAS  Google Scholar 

  • Jin YJ, Linghu J, Chai J, Chua CS, Wong LM, Feng YP, Yang M, Wang S (2018) Defect evolution enhanced visible-light photocatalytic activity in nitrogen-doped anatase TiO2 thin films. J Phys Chem C 122:16600–16606

    Article  CAS  Google Scholar 

  • Kang X, Han Y, Song X, Tan Z (2018) A facile photo assisted route to synthesis N, F-codoped oxygen-deficient TiO2 with enhanced photocatalytic performance under visible light irradiation. Appl Surf Sci 434:725–734

    Article  CAS  Google Scholar 

  • Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci Mater Electron 27(5):4206–4215

    Article  CAS  Google Scholar 

  • Khataee V, Vatanpour V, Amani AR (2009) Decolorization of C.I. acid blue 9 solution by UV/nano -TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater 161:1225–1233. https://doi.org/10.1016/j.jhazmat.2008.04.075

    Article  CAS  PubMed  Google Scholar 

  • Koltsakidou A, Antonopoulou M, Evgenidou E, Konstantinou I, Lannakas AE, Papadaki M, Bikiaris D, Lambropoulou DA (2018) Photocatalytical removal of fluorouracil using TIO2-P25 and N/S doped TiO2 catalysts: a kinetic and mechanistic study. Sci Total Environ 578:257–267

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Thomas T, David AA, Ahmed M (2017) A new insight to adsorption and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium Acinetobacter junii L. Pb1 isolated from coal mine dump. Environ Sci Pollut Res 24:10652–10661

    Article  CAS  Google Scholar 

  • Lee JC, Park H-J, Lee J-H, Kim H-S, Chung Y-J (2009) Photocatalytic degradation of TOC from aqueous phenol solution using combusted ZnO nanopowder. J Electroceram 22:110–113

    Article  CAS  Google Scholar 

  • Liang B, Zhang W, Zhang Y, Zhang R, Liu Y (2019) Efficient visible-light photocatalyst synthesized by modifying SnO with activated carbon. Mater Res Express 6:015603

    Article  CAS  Google Scholar 

  • Lin HH-H, Lin AY-C, Hung C-L (2015) Photocatalytic oxidation of cytostatic drugs by microwave-treated N-doped TiO2 under visible light. J Chem Technol Biotechnol 90:1345–1354

    Article  CAS  Google Scholar 

  • Lin P, Hu H, Lv H, Ding Z, Xu L, Qian D, Wang P, Pan J, Li C, Cui C (2018) Hybrid reduced graphene oxide/TiO2/graphitic carbon nitride composites with improved photocatalytic activity for organic pollutant degradation. Appl Phys A 124:510

    Article  CAS  Google Scholar 

  • Lindner M, Bahnemann DW, Hirthe B, Griebler WD (1995) Novel TiO2 powders as highly active photocatalysts. In: Stine WB, Tanaka T, Claridge DE (eds) Solar water detoxification; solar engineering. ASME, New York, pp 339–408

    Google Scholar 

  • Ling CM, Mohamed AR, Bhatia S (2004) Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere 57:547–554

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Qiu X, Miyauchi M, Hashimoto K (2013) Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J Am Chem Soc 135(27):10064–10072

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Hu Y, He X, Jia H, Liu X, Xu B (2015) In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity. J Alloys Compd 650:633–640

    Article  CAS  Google Scholar 

  • Liu B, Mu L, Han B, Zhang J, Shi H (2017) Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl Surf Sci 396:1596–1603

    Article  CAS  Google Scholar 

  • Lu A, Li Y, Lv M, Wang C, Yang L, Liu J (2007) Photocatalytic oxidation of methyl orange by natural V bearing rutile under visible light. Sol Energy Mater Sol Cells 91:849–1855

    Article  Google Scholar 

  • Lu C, Zhang L, Zhang Y, Liu S (2016) Electrodeposition of TiO2/CdSe heterostructure films and photocatalytic degradation of methylene blue. Mater Lett 185:342–345

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS (2006) Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J Colloid Interface Sci 295:159–164

    Article  CAS  PubMed  Google Scholar 

  • Mansournia M, Ghaderi L (2017) CuO@ZnO core-shell nanocomposites: novel hydrothermal synthesis and enhancement in photocatalytic property. J Alloys Compd 691:171–177

    Article  CAS  Google Scholar 

  • Martin ST, Herrmann H, Choi W, Hoffmann MR (1994) Time-resolved microwave conductivity. Part 1.-TiO2 photoreactivity and size quantization. J Chem Soc Faraday Trans 90:3315–3322

    Article  CAS  Google Scholar 

  • Muneer M, Singh HK, Bagnemann D (2002) Semiconductor-mediated photocatalysed degradation of two selected priority organic pollutants, benzidine and 1, 2-diphenylhydrazine, in aqueous suspension. Chemosphere 49:193–203

    Article  CAS  PubMed  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  PubMed  Google Scholar 

  • Ollis DF (1985) Contaminant degradation in water. Environ Sci Technol 19(6):480–484

    Article  CAS  PubMed  Google Scholar 

  • Ollis DF, Pelizzetti E, Serpone N (1992) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25:1522–1529

    Article  Google Scholar 

  • Osin OA, Yu T, Cai X, Jiang Y, Peng G, Cheng X, Li R, Qin Y, Lin S (2018) Photocatalytic degradation of 4-nitrophenol by C, N-TiO2: degradation efficiency vs. embryonic toxicity of the resulting compounds. Front Chem 6:192. https://doi.org/10.3389/fchem.2018.00192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimental D (1991) Global warming, population growth, and natural resources for food production. Soc Nat Resour 4:347–363. https://doi.org/10.1080/08941929109380766

    Article  Google Scholar 

  • Poulios I, Avranas A, Rekliti E, Zouboulis A (2000) Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides. J Chem Technol Biotechnol 75:205–212

    Article  CAS  Google Scholar 

  • Qamar M, Muneer M (2009) A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin. Desalination 249:535–540

    Article  CAS  Google Scholar 

  • Qiang F, James R (2003) Encyclopedia of atmospheric sciences. Academic Press, Amsterdam, pp 1859–1863

    Google Scholar 

  • Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni M, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C 9(4):171–192

    Article  CAS  Google Scholar 

  • Raza W, Faisal SM, Owais M, Bahnemann D, Muneer M (2016) Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity. RSC Adv 6:78335

    Article  CAS  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170(2–3):560–569

    Article  CAS  PubMed  Google Scholar 

  • Rehman F, Sayed M, Khan JV, Shah NS, Khan HM, Dionysioua DD (2018) Oxidative removal of brilliant green by UV/S2O82−, UV/HSO5− and UV/H2O2 processes in aqueous media: a comparative study. J Hazard Mater 357:506–514

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Li Y, Hou J, Zhao X, Pan C (2014) Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores. ACS Appl Mater Interfaces 6:1608–1615

    Article  CAS  PubMed  Google Scholar 

  • Reza KM, Kurny AS, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  CAS  Google Scholar 

  • Saad ST, Al-Gubury HY, Alrazzak NA (2018) Photocatalytic degradation of monoazo dye in ethanol using zinc oxide in ultra-violet radiation. Asian J Chem 30(10):2334–2336

    Article  CAS  Google Scholar 

  • Saggioro EM, Oliveira AS, Moreira JC (2016) Heterogeneous photocatalysis remediation of wastewater polluted by indigoid dyes. In: Textile wastewater treatment. Intech Open, London, p 94. https://doi.org/10.5772/63790

    Chapter  Google Scholar 

  • Salehi M, Hashemipour H, Mirzaee M (2012) Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder. Am J Environ Eng 2(1):1–7

    Article  Google Scholar 

  • Saquib M, Tariq MA, Faisal M, Muneer M (2008) Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 219:301–311

    Article  CAS  Google Scholar 

  • Saravanan R, Gracia F, Stephen A (2017) Basic principles, mechanism, and challenges of photocatalysis. In: Khan MM et al (eds) Nanocomposites for visible light-induced photocatalysis. Springer, Cham, pp 19–40. https://doi.org/10.1007/978-3-319-62446-4_2

    Chapter  Google Scholar 

  • Serpone N, Horikoshi S, Emeline AV (2010) Microwaves in advanced oxidation processes for environmental applications: a brief review. J Photochem Photobiol C 11:114–131

    Article  CAS  Google Scholar 

  • Serpone N, Emeline AV, Horikoshi S, Kuznetsov VN, Ryabchuk VK (2012) On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem Photobiol Sci 11:1121

    Article  CAS  PubMed  Google Scholar 

  • Sharma MVP, Kumari VD, Subrahmanyam M (2008) TiO2 supported over SBA-15: An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 73:1562–1569

    Article  CAS  Google Scholar 

  • Shifu C, Gengyu C (2005) Photocatalytic degradation of pesticides using floating photocatalyst TiO2.SiO2 beads by sunlight. Sol Energy 79:1–9

    Article  CAS  Google Scholar 

  • Shiga Y, Umezawa N, Srinivasan N, Koyasu S, Sakai E, Miyauchi M (2016) A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production. Chem Commun 52:7470–7473

    Article  CAS  Google Scholar 

  • Shinde DR, Tambade PS, Chaskar MG, Gadave KM (2017) Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2: a comparative study. Drink Water Eng Sci 10:109–117

    Article  CAS  Google Scholar 

  • Singh PK, Kushwaha A, Hans N, Gautam A, Rani R (2019) Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1. Braz J Microbiol 50(1):223–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Sowmya SR, Madhu GM, Hashir M (2018) Studies on nano-engineered TiO2 photo catalyst for effective degradation of dye. IOP Conf Ser Mater Sci Eng 310:012026. https://doi.org/10.1088/1757-899X/310/1/012026

    Article  Google Scholar 

  • Su Y, Deng L, Zhang N, Wang X, Zhu X (2009) Photocatalytic degradation of C.I. acid blue 80 in aqueous suspensions of titanium dioxide under sunlight. React Kinet Catal Lett 98(2):227–240. https://doi.org/10.1007/s11144-009-0059-4

    Article  CAS  Google Scholar 

  • Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3:629–639

    Article  CAS  PubMed  Google Scholar 

  • Thennarasu G, Sivasamy A (2019) Mn doped ZnO nano material: a highly visible light active photocatalyst for environmental abatment. Inorg Nano-Metal Chem 48(4–5):239–246

    Google Scholar 

  • Viswanathan B (2018) Photocatalytic degradation of dyes: an overview. Current Catalysis 7(1):1–25

    Google Scholar 

  • Wang S, Shiraishi F, Nakano K (2002) A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chem Eng J 87:261–271

    Article  CAS  Google Scholar 

  • Wang F, Ma Z, Ban P, Xu X (2017) C, N and S codoped rutile TiO2 nanorods for enhanced visible-light photocatalytic activity. Mater Lett 195:143–146

    Article  CAS  Google Scholar 

  • Wang T, Zhang Y-L, Pan J-H, Li B-R, Wu L-G, Jiang B-Q (2019) Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater. Appl Surf Sci 480:896–904

    Article  CAS  Google Scholar 

  • Yoon J, Lee Y, Kim S (2001) Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci Technol 44(5):15–21

    Article  CAS  PubMed  Google Scholar 

  • Zulmajdi SLN, Ajak SNFH, Hobley J, Duraman N, Harunsani MH, Yasin HM, Nur M, Usman A (2017) Kinetics of photocatalytic degradation of methylene blue in aqueous dispersions of TiO2 nanoparticles under UV-LED irradiation. Am J Nanomater 5(1):1–6

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Thareja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thareja, S. (2021). Mechanistic Understanding of Heterogeneous Photocatalysis for the Dye Degradation in Wastewater. In: Gupta, P.K., Bharagava, R.N. (eds) Fate and Transport of Subsurface Pollutants. Microorganisms for Sustainability, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-15-6564-9_15

Download citation

Publish with us

Policies and ethics