Skip to main content

Developing Failure Modes and Effect Analysis on Offshore Wind Turbines Using Two-Stage Optimization Probabilistic Linguistic Preference Relations

  • Chapter
  • First Online:
Advanced Decision-Making Methods and Applications in System Safety and Reliability Problems

Abstract

The interest in offshore wind power operation and exploitation is increasing in many countries. The stakeholders and energy planners need to confidently decide how to minimize the maintenance cost and vulnerabilities of the offshore wind power immaturity as much as possible. Thus, this paper aims to develop an advanced failure mode and effect analysis (FMEA) technique to analyze offshore wind turbines (OWTs) by predicting the weak links of the system and improving the system safety and reliability performance, suggesting the subsequent corrective actions. We put forward to integrate FMEA with probabilistic linguistic preference relations (PLPRs), the multiplicative consistency-based weight tool, and the best–worst method (BWM). The PLPRs describe the risk factors and failure modes elected from a group of decision-makers. A two-stage optimization is used to drive the optimum importance weight of risk factors. In addition, the advanced BWM method is developed to prioritize the failure modes in descending order. The proposed method is then applied to a real case OWT to show its potential and applicability. Finally, a comparison is conducted to validate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IRENA: Renewable energy benefits: leveraging local capacity for offshore wind. Abu Dhabi (2018)

    Google Scholar 

  2. IRENA: 30 years of policies for wind energy. Lessons from 12 wind energy markets. International Renewable Energy Agency, Abu Dhabi (2013)

    Google Scholar 

  3. Díaz, H., Guedes Soares, C.: Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 209, 107381 (2020). https://doi.org/10.1016/j.oceaneng.2020.107381

  4. Li, H., Guedes Soares, C., Huang, H.-Z.: Reliability analysis of a floating offshore wind turbine using Bayesian Networks. Ocean Eng. 217, 107827 (2020). https://doi.org/10.1016/j.oceaneng.2020.107827

  5. Zhu, W., Castanier, B., Bettayeb, B.: A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition. Reliab. Eng. Syst. Saf. 190, 106512 (2019). https://doi.org/10.1016/j.ress.2019.106512

  6. Sinha, Y., Steel, J.A.: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis. Renew. Sustain. Energy Rev. 42, 735–742 (2015). https://doi.org/10.1016/j.rser.2014.10.087

    Article  Google Scholar 

  7. Scheu, M.N., Kolios, A., Fischer, T., Brennan, F.: Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability. Reliab. Eng. Syst. Saf. 168, 28–39 (2017). https://doi.org/10.1016/j.ress.2017.05.021

    Article  Google Scholar 

  8. Wu, X., Hu, Y., Li, Y., Yang, J., Duan, L., Wang, T., Adcock, T., Jiang, Z., Gao, Z., Lin, Z., Borthwick, A., Liao, S.: Foundations of offshore wind turbines: a review. Renew. Sustain. Energy Rev. 104, 379–393 (2019). https://doi.org/10.1016/j.rser.2019.01.012

    Article  Google Scholar 

  9. Shafiee, M., Dinmohammadi, F.: An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore. Energies 7 (2014). https://doi.org/10.3390/en7020619

  10. Kang, J., Sobral, J., Soares, C.G.: Review of condition-based maintenance strategies for offshore wind energy. J. Mar. Sci. Appl. 18, 1–16 (2019). https://doi.org/10.1007/s11804-019-00080-y

    Article  Google Scholar 

  11. Yazdi, M.: Ignorance-aware safety and reliability analysis: a heuristic approach. Qual. Reliab. Eng. Int. 36 (2020). https://doi.org/10.1002/qre.2597

  12. Yazdi, M., Golilarz, N.A., Nedjati, A., Adesina, K.A.: Intelligent fuzzy Pythagorean Bayesian decision making of maintenance strategy selection in offshore sectors. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (Eds) Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation, pp. 598–604. Springer International Publishing, Cham (2022)

    Google Scholar 

  13. Rausand, M.: Risk Assessment: Theory, Methods, and Applications. Wiley (2011)

    Google Scholar 

  14. Rausand, M., Haugen, S.: Risk Assessment: Theory, Methods, and Applications. Wiley (2020)

    Google Scholar 

  15. Yazdi, M.: Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. 110, 438–448 (2018). https://doi.org/10.1016/j.ssci.2018.03.005

    Article  Google Scholar 

  16. Yazdi, M., Khan, F., Abbassi, R.: Microbiologically influenced corrosion (MIC) management using Bayesian inference. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.108852

    Article  Google Scholar 

  17. Yazdi, M., Khan, F., Abbassi, R.: Operational subsea pipeline assessment affected by multiple defects of microbiologically influenced corrosion. Process Saf. Environ. Prot. 158, 159–171 (2021). https://doi.org/10.1016/j.psep.2021.11.032

    Article  Google Scholar 

  18. Yazdi, M., Adesina, K.A., Korhan, O., Nikfar, F.: Learning from fire accident at Bouali Sina petrochemical complex plant. J. Fail. Anal. Prev. (2019). https://doi.org/10.1007/s11668-019-00769-w

    Article  Google Scholar 

  19. Nedjati, A., Yazdi, M., Abbassi, R.: A sustainable perspective of optimal site selection of giant air‑purifiers in large metropolitan areas. Springer, Netherlands (2021). https://doi.org/10.1007/s10668-021-01807-0

  20. Liu, H.: FMEA Using Uncertainty Theories and MCDM Methods (2016). https://doi.org/10.1007/978-981-10-1466-6

  21. Liu, H.C., Chen, X.Q., Duan, C.Y., Wang, Y.M.: Failure mode and effect analysis using multi-criteria decision making methods: a systematic literature review. Comput. Ind. Eng. 135, 881–897 (2019). https://doi.org/10.1016/j.cie.2019.06.055

    Article  Google Scholar 

  22. Liu, H.C., Li, Z., Song, W., Su, Q.: Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Trans. Reliab. 66, 1058–1072 (2017). https://doi.org/10.1109/TR.2017.2754642

    Article  Google Scholar 

  23. Liu, H.C., Liu, L., Liu, N.: Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Syst. Appl. 40, 828–838 (2013). https://doi.org/10.1016/j.eswa.2012.08.010

    Article  Google Scholar 

  24. Liu, H.C., You, J.X., Shan, M.M., Shao, L.N.: Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. Soft Comput. 19, 1085–1098 (2015). https://doi.org/10.1007/s00500-014-1321-x

    Article  Google Scholar 

  25. Liu, H., Liu, L., Li, P.: Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. Int. J. Syst. Sci. 45, 2012–2030 (2014). https://doi.org/10.1080/00207721.2012.760669

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, H.C., You, J.X., Fan, X.J., Lin, Q.L.: Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst. Appl. 41, 4670–4679 (2014). https://doi.org/10.1016/j.eswa.2014.01.031

    Article  Google Scholar 

  27. Liu, H.-C., Li, P., You, J.-X., Chen, Y.-Z.: A novel approach for FMEA: combination of interval 2-tuple linguistic variables and gray relational analysis. Qual. Reliab. Eng. Int. 31, 761–772 (2015). https://doi.org/10.1002/qre.1633

  28. Korayem, M.H., Iravani, A.: Improvement of 3P and 6R mechanical robots reliability and quality applying FMEA and QFD approaches. Robot. Comput. Integr. Manuf. 24, 472–487 (2008). https://doi.org/10.1016/j.rcim.2007.05.003

    Article  Google Scholar 

  29. Garrick, B.J.: The approach to risk analysis in three industries: nuclear power, space systems, and chemical process. Reliab. Eng. Syst. Saf. 23, 195–205 (1988). https://doi.org/10.1016/0951-8320(88)90109-3

    Article  Google Scholar 

  30. McNally, K.M., Page, M.A., Sunderland, V.B.: Failure-mode and effects analysis in improving a drug distribution system. Am. J. Health. Syst. Pharm. 54, 171–177 (1997)

    Article  Google Scholar 

  31. Zhang, Y., Andrews, J., Reed, S., Karlberg, M.: Maintenance processes modelling and optimisation. Reliab. Eng. Syst. Saf. 168, 150–160 (2017). https://doi.org/10.1016/j.ress.2017.02.011

    Article  Google Scholar 

  32. Institute of Electrical and Electronics Engineers: M. IEEE Aerospace Conference 2014.03.01–08 Big Sky, IEEE Aerospace Conference, 2014 1–8 March 2014, Yellowstone Conference Center, Big Sky, Montana, IEEE (2014)

    Google Scholar 

  33. International Society for Pharmacoepidemiology., International Society of Pharmacovigilance: Pharmacoepidemiology and Drug Safety. Wiley

    Google Scholar 

  34. Su, C.-T., Lin, H.-C., Teng, P.-W., Yang, T.: Improving the reliability of electronic paper display using FMEA and Taguchi methods: a case study. Microelectron. Reliab. 54, 1369–1377 (2014). https://doi.org/10.1016/j.microrel.2014.02.015

    Article  Google Scholar 

  35. ICRSE 1. 2015 Peking, Wang, Z., Zhang, S.: Reliability Society, International Conference on Reliability Systems Engineering 1 2015.10.21–23 Beijing, ICRSE 1 2015.10.21–23 Beijing, 2015 ICRSE 21–23 October 2015, Vision Hotel, Beijing, China: Proceedings of the 2015 First International Conference on Reliability Systems Engineering, IEEE (2015)

    Google Scholar 

  36. American Society of Mechanical Engineers: Nuclear Engineering Division, Nihon Kikai Gakkai, Zhongguo He Xue Hui, Proceedings of the 21st International Conference on Nuclear Engineering–2013: Presented at 2013 21st International Conference on Nuclear Engineering, July 29–August 2, 2013, Chengdu, China

    Google Scholar 

  37. Wu, Z., Ming, X.G., Song, W., Zhu, B., Xu, Z.: Nuclear product design knowledge system based on FMEA method in new product development. Arab. J. Sci. Eng. 39, 2191–2203 (2014). https://doi.org/10.1007/s13369-013-0726-7

    Article  Google Scholar 

  38. Joo, B., Kim, S., Kim, S., Moon, Y.H.: FMEA for the reliability of hydroformed flanged part for automotive application. J. Mech. Sci. Technol. 27, 63–67 (2013). https://doi.org/10.1007/s12206-012-1226-5

    Article  Google Scholar 

  39. de Aguiar, D.C., Salomon, V.A.P., Mello, C.H.P.: Quality paper an ISO 9001 based approach for the implementation of process FMEA in the Brazilian automotive industry. Int. J. Qual. Reliab. Manage. 32, 589–602 (2015). https://doi.org/10.1108/IJQRM-09-2013-0150

    Article  Google Scholar 

  40. Jong, C.H., Tay, K.M., Lim, C.P.: Application of the fuzzy failure mode and effect analysis methodology to edible bird nest processing. Comput. Electron. Agric. 96, 90–108 (2013). https://doi.org/10.1016/j.compag.2013.04.015

    Article  Google Scholar 

  41. Dargahi, M.D., Naderi, S., Hashemi, S.A., Aghaiepour, M., Nouri, Z., Sahneh, S.K.: Use FMEA method for environmental risk assessment in ore complex on wildlife habitats. Hum. Ecol. Risk Assess. 22, 1123–1132 (2016). https://doi.org/10.1080/10807039.2015.1106912

    Article  Google Scholar 

  42. Bin Y. Muhammad, A., Bt A. Nazlin, H.: Failure mode and effect analysis (FMEA) of butterfly valve in oil and gas industry. J. Eng. Sci. Technol. 11, 9–19 (2016)

    Google Scholar 

  43. Zhou, Q., Thai, V.V.: Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction. Saf. Sci. 83, 74–79 (2016). https://doi.org/10.1016/j.ssci.2015.11.013

    Article  Google Scholar 

  44. Wang, W., Liu, X., Qin, Y., Fu, Y.: A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Saf. Sci. 110, 152–163 (2018). https://doi.org/10.1016/j.ssci.2018.08.009

    Article  Google Scholar 

  45. Yousefi, S., Alizadeh, A., Hayati, J., Baghery, M.: HSE risk prioritization using robust DEA-FMEA approach with undesirable outputs: a study of automotive parts industry in Iran. Saf. Sci. 102, 144–158 (2018). https://doi.org/10.1016/j.ssci.2017.10.015

    Article  Google Scholar 

  46. Yazdi, M., Daneshvar, S., Setareh, H.: An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). https://doi.org/10.1016/j.ssci.2017.06.009

    Article  Google Scholar 

  47. Fattahi, R., Khalilzadeh, M.: Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Saf. Sci. 102, 290–300 (2018). https://doi.org/10.1016/j.ssci.2017.10.018

    Article  Google Scholar 

  48. Daneshvar, S., Yazdi, M., Adesina, K.A.: Fuzzy smart failure modes and effects analysis to improve safety performance of system: Case study of an aircraft landing system. Qual. Reliab. Eng. Int. 1–20 (2020). https://doi.org/10.1002/qre.2607

  49. Adesina, K.A., Nedjati, A., Yazdi, M.: A short communication Improving marine safety management system by addressing common safety program. Res. Mar. Sci. 5, 671–680 (2020)

    Google Scholar 

  50. Helvacioglu, S., Ozen, E.: Fuzzy based failure modes and effect analysis for Yacht system design. Ocean Eng. 79, 131–141 (2014). https://doi.org/10.1016/j.oceaneng.2013.12.015

    Article  Google Scholar 

  51. Yazdi, M.: Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int. J. Interact. Des. Manuf. 13, 441–458 (2019). https://doi.org/10.1007/s12008-018-0496-2

    Article  Google Scholar 

  52. Liu H., Liu L., Li, P.: Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator, 7721 (2016). https://doi.org/10.1080/00207721.2012.760669

  53. Liu, H.C., Liu, L., Bian, Q.H., Lin, Q.L., Dong, N., Xu, P.C.: Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Syst. Appl. 38, 4403–4415 (2011). https://doi.org/10.1016/j.eswa.2010.09.110

    Article  Google Scholar 

  54. Chai, K.C., Jong, C.H., Tay, K.M., Lim, C.P.: A perceptual computing-based method to prioritize failure modes in failure mode and effect analysis and its application to edible bird nest farming. Appl. Soft Comput. J. 49, 734–747 (2016). https://doi.org/10.1016/j.asoc.2016.08.043

    Article  Google Scholar 

  55. Yazdi, M., Kabir, S., Walker, M.: Uncertainty handling in fault tree based risk assessment: state of the art and future perspectives. Process Saf. Environ. Prot. 131, 89–104 (2019). https://doi.org/10.1016/j.psep.2019.09.003

    Article  Google Scholar 

  56. Yazdi, M., Khan, F., Abbassi, R., Rusli, R.: Improved DEMATEL methodology for effective safety management decision-making. Saf. Sci. 127, 104705 (2020). https://doi.org/10.1016/j.ssci.2020.104705

    Article  Google Scholar 

  57. Yazdi, M.: A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis. Int. J. Syst. Assur. Eng. Manage. 10, 1–18 (2019). https://doi.org/10.1007/s13198-018-00757-7

    Article  Google Scholar 

  58. Kabir, S., Papadopoulos, Y.: Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: a review. Saf. Sci. 115, 154–175 (2019). https://doi.org/10.1016/j.ssci.2019.02.009

    Article  Google Scholar 

  59. Kabir, S., Walker, M., Papadopoulos, Y.: Dynamic system safety analysis in HiP-HOPS with Petri nets and Bayesian networks. Saf. Sci. 105, 55–70 (2018). https://doi.org/10.1016/j.ssci.2018.02.001

    Article  Google Scholar 

  60. Arabian-Hoseynabadi, H., Oraee, H., Tavner, P.J.: Failure modes and effects analysis (FMEA) for wind turbines. Int. J. Electr. Power Energy Syst. 32, 817–824 (2010). https://doi.org/10.1016/j.ijepes.2010.01.019

    Article  Google Scholar 

  61. Fischer, K., Besnard, F., Bertling, L.: Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience. IEEE Trans. Energy Convers. 27, 184–195 (2012). https://doi.org/10.1109/TEC.2011.2176129

    Article  Google Scholar 

  62. Kang, J., Sun, L., Sun, H., Wu, C.: Risk assessment of floating offshore wind turbine based on correlation-FMEA. Ocean Eng. 129, 382–388 (2017). https://doi.org/10.1016/j.oceaneng.2016.11.048

    Article  Google Scholar 

  63. Tazi, N., Châtelet, E., Bouzidi, Y.: Using a hybrid cost-FMEA analysis for wind turbine reliability analysis. Energies 10 (2017). https://doi.org/10.3390/en10030276

  64. Mukherjee, U., Maroufmashat, A., Ranisau, J., Barbouti, M., Trainor, A., Juthani, N., El-Shayeb, H., Fowler, M.: Techno-economic, environmental, and safety assessment of hydrogen powered community microgrids; case study in Canada. Int. J. Hydrogen Energy 42, 14333–14349 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.083

  65. Bhardwaj, U., Teixeira, A.P., Soares, C.G.: Reliability prediction of bearings of an offshore wind turbine gearbox. In: Advance Renewable Energies Offshore—Proceedings of 3rd International Conference on Renewable Energies Offshore, RENEW 2018, pp. 779–787 (2019)

    Google Scholar 

  66. Adem, A., Çolak, A., Dağdeviren, M.: An integrated model using SWOT analysis and Hesitant fuzzy linguistic term set for evaluation occupational safety risks in life cycle of wind turbine. Saf. Sci. 106, 184–190 (2018). https://doi.org/10.1016/j.ssci.2018.02.033

  67. Ozturk, S., Fthenakis, V., Faulstich, S.: Failure modes, effects and criticality analysis for wind turbines considering climatic regions and comparing geared and direct drive wind turbines. Energies 11 (2018). https://doi.org/10.3390/en11092317

  68. Chan, D., Mo, J.: Life cycle reliability and maintenance analyses of wind turbines. Energy Procedia 110, 328–333 (2017). https://doi.org/10.1016/j.egypro.2017.03.148

  69. Li, X., Han, Z., Zhang, R., Zhang, Y., Zhang, L.: Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach. Int. J. Hydrogen Energy. 45, 29630–29642 (2020)

    Article  Google Scholar 

  70. Yazdi, M., Korhan, O., Daneshvar, S.: Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in the process industry. Int. J. Occup. Saf. Ergon. 26, 319–335 (2020)

    Article  Google Scholar 

  71. Jiang, G.-J., Chen, H.-X., Sun, H.-H., Yazdi, M., Nedjati, A., Adesina, K.A.: An improved multi-criteria emergency decision-making method in environmental disasters. Soft Comput. (2021). https://doi.org/10.1007/s00500-021-05826-x

    Article  Google Scholar 

  72. Zhou, X., Shi, Y., Deng, X., Deng, Y.: D-DEMATEL: A new method to identify critical success factors in emergency management. Saf. Sci. 91, 93–104 (2017). https://doi.org/10.1016/j.ssci.2016.06.014

    Article  Google Scholar 

  73. Vosoughi, S., Rostamzadeh, S., Chalak, M.H., Farshad, A.A., Jahanpanah, M.: A novel approach based on DEMATEL method for causal modeling an effective factors in falling from height accidents in construction projects, Iran. J. Heal. Saf. Environ. 6, 1355–1365 (2020)

    Google Scholar 

  74. Lin, R.J.: Using fuzzy DEMATEL to evaluate the green supply chain management practices. J. Clean. Prod. 40, 32–39 (2013). https://doi.org/10.1016/j.jclepro.2011.06.010

    Article  Google Scholar 

  75. Jia, X., Wang, X.: A PROMETHEE II method based on regret theory under the probabilistic linguistic environment. IEEE Access 8, 228255–228263 (2020). https://doi.org/10.1109/ACCESS.2020.3042668

    Article  Google Scholar 

  76. Abedi, M., Ali Torabi, S., Norouzi, G.H., Hamzeh, M., Elyasi, G.R.: PROMETHEE II: a knowledge-driven method for copper exploration. Comput. Geosci. 46, 255–263 (2012). https://doi.org/10.1016/j.cageo.2011.12.012

  77. Andreopoulou, Z., Koliouska, C., Galariotis, E., Zopounidis, C.: Renewable energy sources: using PROMETHEE II for ranking websites to support market opportunities. Technol. Forecast. Soc. Change 131, 31–37 (2018). https://doi.org/10.1016/j.techfore.2017.06.007

    Article  Google Scholar 

  78. Opricovic, S., Tzeng, G.H.: Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 178, 514–529 (2007). https://doi.org/10.1016/j.ejor.2006.01.020

    Article  MATH  Google Scholar 

  79. Sayadi, M.K., Heydari, M., Shahanaghi, K.: Extension of VIKOR method for decision making problem with interval numbers. Appl. Math. Model. 33, 2257–2262 (2009). https://doi.org/10.1016/j.apm.2008.06.002

    Article  MathSciNet  MATH  Google Scholar 

  80. Liu, H.C., Wu, J., Li, P.: Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method. Waste Manage. 33, 2744–2751 (2013). https://doi.org/10.1016/j.wasman.2013.08.006

    Article  Google Scholar 

  81. Mohammadi, M., Rezaei, J.: Bayesian best-worst method: a probabilistic group decision making model. Omega (United Kingdom) 1–8 (2019). https://doi.org/10.1016/j.omega.2019.06.001

  82. Ghasemian Sahebi, I., Arab, A., Sadeghi Moghadam, M.R.: Analyzing the barriers to humanitarian supply chain management: a case study of the Tehran red crescent societies. Int. J. Disaster Risk Reduct. 24, 232–241 (2017). https://doi.org/10.1016/j.ijdrr.2017.05.017

  83. Safari, H., Faraji, Z., Majidian, S.: Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR. J. Intell. Manuf. 27, 475–486 (2016). https://doi.org/10.1007/s10845-014-0880-0

    Article  Google Scholar 

  84. Lo, H.W., Liou, J.J.H.: A novel multiple-criteria decision-making-based FMEA model for risk assessment. Appl. Soft Comput. J. 73, 684–696 (2018). https://doi.org/10.1016/j.asoc.2018.09.020

    Article  Google Scholar 

  85. Song, W., Ming, X., Wu, Z., Zhu, B.: Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. Int. J. Comput. Integr. Manuf. 26, 1172–1186 (2013). https://doi.org/10.1080/0951192X.2013.785027

    Article  Google Scholar 

  86. Başhan, V., Demirel, H., Gul, M.: An FMEA-based TOPSIS approach under single valued neutrosophic sets for maritime risk evaluation: the case of ship navigation safety. Soft Comput. 24, 18749–18764 (2020). https://doi.org/10.1007/s00500-020-05108-y

    Article  Google Scholar 

  87. Certa, A., Enea, M., Galante, G.M., La Fata, C.M.: ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: an alternative to the risk priority number. Comput. Ind. Eng. 108, 100–110 (2017). https://doi.org/10.1016/j.cie.2017.04.018

    Article  Google Scholar 

  88. Liou, J.J.H., Liu, P.C.Y., Lo, H.-W.: A failure mode assessment model based on neutrosophic logic for switched-mode power supply risk analysis. Math. 8 (2020). https://doi.org/10.3390/math8122145

  89. Tian, Z.P., Wang, J.Q., Zhang, H.Y.: An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR methods. Appl. Soft Comput. J. 72, 636–646 (2018). https://doi.org/10.1016/j.asoc.2018.03.037

  90. Nie, R.X., Tian, Z.P., Wang, X.K., Wang, J.Q., Wang, T.L.: Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment. Knowl.-Based Syst. 162, 185–201 (2018). https://doi.org/10.1016/j.knosys.2018.05.030

  91. Karatop, B., Taşkan, B., Adar, E., Kubat, C.: Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach. Comput. Ind. Eng. 151, 106958 (2021). https://doi.org/10.1016/j.cie.2020.106958

  92. Lo, H.-W., Liou, J.J.H.: A novel multiple-criteria decision-making-based FMEA model for risk assessment. Appl. Soft Comput. 73, 684–696 (2018). https://doi.org/10.1016/j.asoc.2018.09.020

    Article  Google Scholar 

  93. Teng, F., Wang, L., Rong, L., Liu, P.: Probabilistic linguistic Z number decision-making method for multiple attribute group decision-making problems with heterogeneous relationships and incomplete probability information. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01161-3

    Article  Google Scholar 

  94. Zhang, Y., Xu, Z., Wang, H., Liao, H.: Consistency-based risk assessment with probabilistic linguistic preference relation. Appl. Soft Comput. 49, 817–833 (2016). https://doi.org/10.1016/j.asoc.2016.08.045

    Article  Google Scholar 

  95. Li, B., Zhang, Y.-X., Xu, Z.-S.: The aviation technology two-sided matching with the expected time based on the probabilistic linguistic preference relations. J. Oper. Res. Soc. China. 8, 45–77 (2020). https://doi.org/10.1007/s40305-019-00274-9

    Article  MathSciNet  MATH  Google Scholar 

  96. Du, Y.-W., Wang, Y.-C.: Evaluation of marine ranching resources and environmental carrying capacity from the pressure-and-support perspective: A case study of Yantai. Ecol. Indic. 126, 107688 (2021). https://doi.org/10.1016/j.ecolind.2021.107688

    Article  Google Scholar 

  97. Jiang, L., Liao, H.: A nondominated selection procedure with partially consistent non-reciprocal probabilistic linguistic preference relations and its application in social donation channel selection under the COVID-19 outbreaks. Inf. Sci. (NY) 564, 416–429 (2021). https://doi.org/10.1016/j.ins.2021.02.044

    Article  MathSciNet  Google Scholar 

  98. Liu, N., He, Y., Xu, Z.: A new approach to deal with consistency and consensus issues for hesitant fuzzy linguistic preference relations. Appl. Soft Comput. J. 76, 400–415 (2019). https://doi.org/10.1016/j.asoc.2018.10.052

    Article  Google Scholar 

  99. Pang, Q., Wang, H., Xu, Z.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. (NY) 369, 128–143 (2016). https://doi.org/10.1016/j.ins.2016.06.021

    Article  Google Scholar 

  100. Zavadskas, E.K., Govindan, K., Antucheviciene, J., Turskis, Z.: Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Econ. Res. Istraživanja 29, 857–887 (2016). https://doi.org/10.1080/1331677X.2016.1237302

    Article  Google Scholar 

  101. Adumene, S., Okwu, M., Yazdi, M., Afenyo, M., Islam, R., Orji, C.U., Obeng, F., Goerlandt, F.: Dynamic logistics disruption risk model for offshore supply vessel operations in Arctic waters. Marit. Transp. Res. 2, 100039 (2021). https://doi.org/10.1016/j.martra.2021.100039

    Article  Google Scholar 

  102. Yazdi, M., Golilarz, N.A., Adesina, K.A., Nedjati, A.: Probabilistic risk analysis of process systems considering epistemic and aleatory uncertainties: a comparison study. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 29, 181–207 (2021). https://doi.org/10.1142/S0218488521500098

  103. Yazdi, M., Golilarz, N.A., Nedjati, A., Adesina, K.A.: An improved lasso regression model for evaluating the efficiency of intervention actions in a system reliability analysis. Neural Comput. Appl. (2021). https://doi.org/10.1007/s00521-020-05537-8

    Article  Google Scholar 

  104. Li, Y.L., Ying, C.S., Chin, K.S., Yang, H.T., Xu, J.: Third-party reverse logistics provider selection approach based on hybrid-information MCDM and cumulative prospect theory. J. Clean. Prod. 195, 573–584 (2018). https://doi.org/10.1016/j.jclepro.2018.05.213

    Article  Google Scholar 

  105. Firouzi, S., Allahyari, M.S., Isazadeh, M., Nikkhah, A., Van Haute, S.: Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Sci. Total Environ. 770, 144449 (2021). https://doi.org/10.1016/j.scitotenv.2020.144449

    Article  Google Scholar 

  106. Wu, P., Zhou, L., Chen, H., Tao, Z.: Multi-stage optimization model for hesitant qualitative decision making with hesitant fuzzy linguistic preference relations. Appl. Intell. 50, 222–240 (2020). https://doi.org/10.1007/s10489-019-01502-8

    Article  Google Scholar 

  107. Dong, Y., Xu, Y., Yu, S.: Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Trans. Fuzzy Syst. 17, 1366–1378 (2009). https://doi.org/10.1109/TFUZZ.2009.2032172

    Article  Google Scholar 

  108. Liu, Z., Mou, X., Liu, H.C., Zhang, L.: Failure mode and effect analysis based on probabilistic linguistic preference relations and gained and lost dominance score method. IEEE Trans. Cybern. 1–12 (2021). https://doi.org/10.1109/TCYB.2021.3105742

  109. Wang, Z.-L., You, J.-X., Liu, H.-C., Wu, S.-M.: Failure mode and effect analysis using soft set theory and COPRAS method. Int. J. Comput. Intell. Syst. 10, 1002–1015 (2017). https://doi.org/10.2991/ijcis.2017.10.1.67

    Article  Google Scholar 

  110. Mi, X., Tang, M., Liao, H., Shen, W., Lev, B.: The state-of-the-art survey on integrations and applications of the best worst method in decision making: why, what, what for and what’s next? Omega 87, 205–225 (2019). https://doi.org/10.1016/j.omega.2019.01.009

    Article  Google Scholar 

  111. Rezaei, J.: Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega (United Kingdom) 64, 126–130 (2016). https://doi.org/10.1016/j.omega.2015.12.001

    Article  Google Scholar 

  112. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega (United Kingdom). 53, 49–57 (2015). https://doi.org/10.1016/j.omega.2014.11.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Yazdi, M. (2022). Developing Failure Modes and Effect Analysis on Offshore Wind Turbines Using Two-Stage Optimization Probabilistic Linguistic Preference Relations. In: Advanced Decision-Making Methods and Applications in System Safety and Reliability Problems. Studies in Systems, Decision and Control, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-07430-1_4

Download citation

Publish with us

Policies and ethics