Skip to main content
Log in

Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Failure mode and effect analysis (FMEA) technique has been widely used for evaluating potential failures in different kinds of industries. In FMEA, failure modes are evaluated and ordered through the risk priority number (RPN), which is obtained by production of three risk factors including severity (S), occurrence (O), and detection (D) of potential failure modes. However, conventional FMEA has considerable shortages due to various reasons which uncertainty and ambiguity is the significant one. This paper proposes an interactive approach using fuzzy set theory to deal with possible uncertainties during evaluation. Analytical hierarchy process and entropy technique utilized in order to handle the subjective and objective uncertainty weight, respectively. To demonstrate the application of proposed approach, a practical example in construction period of a refinery is surveyed and potential failure modes are prioritized. Finally, a sensitivity analysis is carried out to verify the validity of risk ranking and the proposed approach. Subsequently, a comparison is conducted to illustrate the superiority of the proposed FMEA with conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stamatis, D.H.: Failure mode and effect analysis: FMEA from theory to execution. Technometrics (2003). https://doi.org/10.2307/1268911

    Google Scholar 

  2. Chen, J.K.: Utility priority number evaluation for FMEA. J. Fail. Anal. Prev. 7, 321–328 (2007). https://doi.org/10.1007/s11668-007-9060-2

    Article  Google Scholar 

  3. Sankar, N.R., Prabhu, B.S.: Modified approach for prioritization of failures in a system failure mode and effects analysis. Int. J. Qual. Reliab. Manag. 18, 324–335 (2013). https://doi.org/10.1108/MRR-09-2015-0216

    Article  Google Scholar 

  4. Markowski, A.S., Mannan, M.S.: Fuzzy risk matrix. J. Hazard. Mater. 159, 152–157 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.055

    Article  Google Scholar 

  5. Liu, H.-C., Liu, L., Liu, N.: Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Syst. Appl. 40, 828–838 (2013). https://doi.org/10.1016/j.eswa.2012.08.010

    Article  Google Scholar 

  6. Korayem, M.H., Iravani, A.: Improvement of 3P and 6R mechanical robots reliability and quality applying FMEA and QFD approaches. Robot. Comput. Integr. Manuf. 24, 472–487 (2008). https://doi.org/10.1016/j.rcim.2007.05.003

    Article  Google Scholar 

  7. Garrick, B.J.: The approach to risk analysis in three industries: nuclear power, space systems, and chemical process. Reliab. Eng. Syst. Saf. 23, 195–205 (1988). https://doi.org/10.1016/0951-8320(88)90109-3

    Article  Google Scholar 

  8. McNally, K.M., Page, M.A., Sunderland, V.B.: Failure-mode and effects analysis in improving a drug distribution system. Am. J. Health Syst. Pharm. 54, 171–177 (1997)

    Article  Google Scholar 

  9. Zhang, Y., Andrews, J., Reed, S., Karlberg, M.: Maintenance processes modelling and optimisation. Reliab. Eng. Syst. Saf. (2017). https://doi.org/10.1016/j.ress.2017.02.011

    Google Scholar 

  10. Institute of Electrical and Electronics Engineers, M. IEEE Aerospace Conference 2014.03.01-08 Big Sky, IEEE Aerospace Conference, 2014 1–8 March 2014, Yellowstone Conference Center, Big Sky, Montana, IEEE (2014)

  11. International Society for Pharmacoepidemiology: International Society of Pharmacovigilance. Pharmacoepidemiology and Drug Safety. Wiley, Hoboken (2011)

  12. Su, C.-T., Lin, H.-C., Teng, P.-W., Yang, T.: Improving the reliability of electronic paper display using FMEA and Taguchi methods: a case study. Microelectron. Reliab. 54, 1369–1377 (2014). https://doi.org/10.1016/j.microrel.2014.02.015

    Article  Google Scholar 

  13. ICRSE 1. 2015 Peking, Wang, Z., Zhang, S.: Reliability Society, International Conference on Reliability Systems Engineering 1 2015.10.21-23 Beijing, ICRSE 1 2015.10.21-23 Beijing, 2015 ICRSE 21–23 October 2015, Vision Hotel, Beijing, China: Proceedings of the 2015 First International Conference on Reliability Systems Engineering, IEEE (2015)

  14. American Society of Mechanical Engineers. Nuclear Engineering Division, Nihon Kikai Gakkai, Zhongguo he xue hui, Proceedings of the 21st International Conference on Nuclear Engineering–2013: Presented at 2013 21st International Conference on Nuclear Engineering, July 29–August 2, 2013, Chengdu, China (2014)

  15. Wu, Z., Ming, X.G., Song, W., Zhu, B., Xu, Z.: Nuclear product design knowledge system based on FMEA method in new product development. Arab. J. Sci. Eng. 39, 2191–2203 (2014). https://doi.org/10.1007/s13369-013-0726-7

    Article  Google Scholar 

  16. Joo, B., Kim, S., Kim, S., Moon, Y.H.: FMEA for the reliability of hydroformed flanged part for automotive application. J. Mech. Sci. Technol. 27, 63–67 (2013). https://doi.org/10.1007/s12206-012-1226-5

    Article  Google Scholar 

  17. de Aguiar, D.C., Salomon, V.A.P., Mello, C.H.P.: An ISO 9001 based approach for the implementation of process FMEA in the Brazilian automotive industry. Int. J. Qual. Reliab. Manag. 32, 589–602 (2015). https://doi.org/10.1108/EL-01-2014-0022

    Article  Google Scholar 

  18. Jong, C.H., Tay, K.M., Lim, C.P.: Application of the fuzzy failure mode and effect analysis methodology to edible bird nest processing. Comput. Electron. Agric. 96, 90–108 (2013). https://doi.org/10.1016/j.compag.2013.04.015

    Article  Google Scholar 

  19. Dargahi, M.D., Naderi, S., Hashemi, S.A., Aghaiepour, M., Nouri, Z., Sahneh, S.K.: Use FMEA method for environmental risk assessment in ore complex on wildlife habitats. Hum. Ecol. Risk Assess. 22, 1123–1132 (2016). https://doi.org/10.1080/10807039.2015.1106912

    Article  Google Scholar 

  20. Amirul Bin Yusof, M., Hanie, N., Abdullah, B.: Failure mode and effect analysis (FMEA) of butterfly valve in oil and gas industry. J. Eng. Sci. Technol. Spec. Issue ICE ICIE 11, 9–19 (2015)

    Google Scholar 

  21. Modarres, M., Kaminskly, M., Krivtsov, V.: Reliability Engineering and Risk Analysis. Marcel Dekker, New York (1999)

    Google Scholar 

  22. Signor, M.C.: The failure-analysis matrix: a kinder, gentler alternative to FMEA for information systems. In: Annual Reliability and Maintainability Symposium, 2002. Proceedings, pp. 173–177 (2002). https://doi.org/10.1109/rams.2002.981637

  23. McDermott, R.E., Mikulak, R.J., Beauregard, M.R.: The Basics of FMEA. CRC Press, Boca Raton (2009)

    Google Scholar 

  24. Liu, H.: FMEA Using Uncertainty Theories and MCDM Methods. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-1466-6

    Book  Google Scholar 

  25. Yazdi, M., Daneshvar, S., Setareh, H.: An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017). https://doi.org/10.1016/j.ssci.2017.06.009

    Article  Google Scholar 

  26. Helvacioglu, S., Ozen, E.: Fuzzy based failure modes and effect analysis for yacht system design. Ocean Eng. 79, 131–141 (2014). https://doi.org/10.1016/j.oceaneng.2013.12.015

    Article  Google Scholar 

  27. Lin, Q.-L., Wang, D.-J., Lin, W.-G., Liu, H.-C.: Human reliability assessment for medical devices based on failure mode and effects analysis and fuzzy linguistic theory. Saf. Sci. 62, 248–256 (2014). https://doi.org/10.1016/j.ssci.2013.08.022

    Article  Google Scholar 

  28. Hadi-Vencheh, A., Aghajani, M.: Failure mode and effects analysis: a fuzzy group MCDM approach. J. Soft Comput. Appl. 2013, 1–14 (2013). https://doi.org/10.5899/2013/jsca-00016

    Google Scholar 

  29. Sayyadi Tooranloo, H., sadat Ayatollah, A.: A model for failure mode and effects analysis based on intuitionistic fuzzy approach. Appl. Soft Comput. 49, 238–247 (2016). https://doi.org/10.1016/j.asoc.2016.07.047

    Article  Google Scholar 

  30. Liu, H.-C., You, J.-X., Li, P., Su, Q.: Failure mode and effect analysis under uncertainty: an integrated multiple criteria decision making approach. IEEE Trans. Reliab. 65, 1380–1392 (2016). https://doi.org/10.1109/TR.2016.2570567

    Article  Google Scholar 

  31. Chang, W.L., Pang, L.M., Tay, K.M.: Application of self-organizing map to failure modes and effects analysis methodology. Neurocomputing 249, 314–320 (2017). https://doi.org/10.1016/j.neucom.2016.04.073

    Article  Google Scholar 

  32. Zhou, Q., Thai, V.V.: Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction. Saf. Sci. 83, 74–79 (2016). https://doi.org/10.1016/j.ssci.2015.11.013

    Article  Google Scholar 

  33. Liu, H., Liu, L., Li, P.: Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. Int. J. Syst. Sci. (2016). https://doi.org/10.1080/00207721.2012.760669

    MATH  Google Scholar 

  34. Liu, H., Liu, L., Li, P.: Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. Int. J. Syst. Sci. 45, 2012–2030 (2014). https://doi.org/10.1080/00207721.2012.760669

    Article  MathSciNet  MATH  Google Scholar 

  35. Panchal, D., Kumar, D.: Integrated framework for behaviour analysis in a process plant. J. Loss Prev. Process Ind. 40, 147–161 (2016). https://doi.org/10.1016/j.jlp.2015.12.021

    Article  Google Scholar 

  36. Liu, H.-C., You, J.-X., Fan, X.-J., Lin, Q.-L.: Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst. Appl. 41, 4670–4679 (2014). https://doi.org/10.1016/j.eswa.2014.01.031

    Article  Google Scholar 

  37. Chang, K.H.: Generalized multi-attribute failure mode analysis. Neurocomputing 175, 90–100 (2015). https://doi.org/10.1016/j.neucom.2015.10.039

    Article  Google Scholar 

  38. Chang, K.H.: A more general risk assessment methodology using a soft set-based ranking technique. Soft. Comput. 18, 169–183 (2014). https://doi.org/10.1007/s00500-013-1045-3

    Article  Google Scholar 

  39. Ekmekçioğlu, M., CanKutlu, A.: A fuzzy hybrid approach for fuzzy process FMEA: an application to a spindle manufacturing process. Int. J. Comput. Intell. Syst. 5, 611–626 (2012). https://doi.org/10.1080/18756891.2012.718104

    Article  Google Scholar 

  40. Song, W., Ming, X., Wu, Z., Zhu, B.: Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. Int. J. Comput. Integr. Manuf. 26, 1172–1186 (2013). https://doi.org/10.1080/0951192X.2013.785027

    Article  Google Scholar 

  41. Chang, K.-H., Chang, Y.-C., Lee, Y.-T.: Integrating TOPSIS and DEMATEL methods to rank the risk of failure of FMEA. Int. J. Inf. Technol. Decis. Mak. 13, 1229–1257 (2014). https://doi.org/10.1142/S0219622014500758

    Article  Google Scholar 

  42. Montgomery, T.A., Pugh, D.R., Leedham, S.T., Twitchett, S.R.: FMEA automation for the complete design process. In: 1996 Proceedings of Annual Reliability and Maintainability Symposium, pp. 30–36 (1996). https://doi.org/10.1109/rams.1996.500638

  43. Legg, J.M.: Computerized approach for matrix-form FMEA. IEEE Trans. Reliab. 27, 254–257 (1978). https://doi.org/10.1109/tr.1978.5220355

    Article  Google Scholar 

  44. OHSAS 18001: Occupational health and safety management systems—requirements. Occupational Health (Auckland) (2007)

  45. Antunes, R., Gonzalez, V.: A production model for construction: a theoretical framework. Buildings 5, 209–228 (2015). https://doi.org/10.3390/buildings5010209

    Article  Google Scholar 

  46. Keynes, J.M.: The General Theory of Employment, Interest, and Money. John Maynard Keynes, New York (1936)

    Google Scholar 

  47. Yazdi, M.: Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17, 756–764 (2017). https://doi.org/10.1007/s11668-017-0305-4

    Article  Google Scholar 

  48. Yazdi, M., Nikfar, F., Nasrabadi, M.: Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. 8, 1177–1193 (2017). https://doi.org/10.1007/s13198-017-0583-y

    Article  Google Scholar 

  49. Markowski, A.S., Mannan, M.S., Bigoszewska, A.: Fuzzy logic for process safety analysis. J. Loss Prev. Process Ind. 22, 695–702 (2009). https://doi.org/10.1016/j.jlp.2008.11.011

    Article  Google Scholar 

  50. Yazdi, M.: The application of bow-tie method in hydrogen sulfide risk management using layer of protection analysis (LOPA). J. Fail. Anal. Prev. 17, 291–303 (2017). https://doi.org/10.1007/s11668-017-0247-x

    Article  Google Scholar 

  51. Pars Oil and Gas Company (POGC): Learning from Accident (Welding Inside the GRE Pipe). POGC, Kangan (2016). (in persian)

    Google Scholar 

  52. US Nuclear Regulatory Commission, PRA Procedures Guide: A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants (NUREG/CR-2300). US Nuclear Regulatory Commission, Washington (1983)

    Google Scholar 

  53. Mannan, S., Lees, F.P.: Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment, and Control. Elsevier Butterworth-Heinemann, Oxford (2005)

    Google Scholar 

  54. Siler, W., Buckley, J.J.: Fuzzy Expert Systems and Fuzzy Reasoning. Wiley, Hoboken (2004). https://doi.org/10.1002/0471698504

    Book  MATH  Google Scholar 

  55. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1109/2.53

    Article  MATH  Google Scholar 

  56. Gentile, M., Rogers, W.J., Mannan, M.S.: Development of a fuzzy logic-based inherent safety index. Process Saf. Environ. Prot. 81, 444–456 (2003). https://doi.org/10.1205/095758203770866610

    Article  Google Scholar 

  57. Saaty, T.L.: Creative Thinking, Problem Solving and Decision Making. RWS Publications, Pittsburgh (2010)

    Google Scholar 

  58. Guneri, A.F., Gul, M., Ozgurler, S.: A fuzzy AHP methodology for selection of risk assessment methods in occupational safety. Int. J. Risk Assess. Manag. 18, 319 (2015). https://doi.org/10.1504/IJRAM.2015.071222

    Article  Google Scholar 

  59. Yazdi, M., Kabir, S.: A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Prot. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015

    Article  Google Scholar 

  60. Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247 (1985). https://doi.org/10.1016/0165-0114(85)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  61. Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  MATH  Google Scholar 

  62. Yazdi, M., Korhan, O., Daneshvar, S.: Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in process industry. Int. J. Occup. Saf. Ergon. (2018). https://doi.org/10.1080/10803548.2018.1454636

    Google Scholar 

  63. Kabir, S., Yazdi, M., Aizpurua, J.I., Papadopoulos, Y.: Uncertainty-aware dynamic reliability analysis framework for complex systems. IEEE Access (2018). https://doi.org/10.1109/access.2018.2843166

    Google Scholar 

  64. Yazdi, M.: An extension of fuzzy improved risk graph and fuzzy analytical hierarchy process for determination of chemical complex safety integrity levels. Int. J. Occup. Saf. Ergon. (2017). https://doi.org/10.1080/10803548.2017.1419654

    Google Scholar 

  65. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64, 21–30 (1994). https://doi.org/10.1016/0165-0114(94)90003-5

    Article  MathSciNet  Google Scholar 

  66. Aqlan, F., Mustafa Ali, E.: Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. J. Loss Prev. Process Ind. 29, 39–48 (2014). https://doi.org/10.1016/j.jlp.2014.01.006

    Article  Google Scholar 

  67. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, Chichester (2009). https://doi.org/10.1002/9781119994374

    Google Scholar 

  68. Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., Mieno, H.: The max–min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 55, 241–253 (1993). https://doi.org/10.1016/0165-0114(93)90251-C

    Article  Google Scholar 

  69. Yazdi, M., Zarei, E.: Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis. J. Fail. Anal. Prev. 18, 392–404 (2018). https://doi.org/10.1007/s11668-018-0421-9

    Article  Google Scholar 

  70. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  MATH  Google Scholar 

  71. Chen, S., Leng, Y., Mao, B., Liu, S.: Integrated weight-based multi-criteria evaluation on transfer in large transport terminals: a case study of the Beijing South Railway Station. Transp. Res. Part A Policy Pract. 66, 13–26 (2014). https://doi.org/10.1016/j.tra.2014.04.015

    Article  Google Scholar 

  72. Aghajani Bazzazi, A., Osanloo, M., Karimi, B.: Deriving preference order of open pit mines equipment through MADM methods: application of modified VIKOR method. Expert Syst. Appl. 38, 2550–2556 (2011). https://doi.org/10.1016/j.eswa.2010.08.043

    Article  MATH  Google Scholar 

  73. Jing, Y.Y., Bai, H., Wang, J.J.: A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources. Energy Policy 42, 286–296 (2012). https://doi.org/10.1016/j.enpol.2011.11.085

    Article  Google Scholar 

  74. Liu, H., You, J., You, X., Shan, M.: A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. J. 28, 579–588 (2015). https://doi.org/10.1016/j.asoc.2014.11.036

    Article  Google Scholar 

  75. Yazdi, M.: Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. (2018). https://doi.org/10.1016/j.ssci.2018.03.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, M. Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int J Interact Des Manuf 13, 441–458 (2019). https://doi.org/10.1007/s12008-018-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-018-0496-2

Keywords

Navigation