Skip to main content

What Are the Critical Well-Drilling Blowouts Barriers? A Progressive DEMATEL-Game Theory

  • Chapter
  • First Online:
Advanced Decision-Making Methods and Applications in System Safety and Reliability Problems

Abstract

Increasing the number of oil and gas well drillings can lead to probable well drilling blowouts over time. The blowouts enface the system with extensive loss, fatalities, negative environmental impacts and diminish public trust and the system's reputation. Therefore, decision-makers must seek an advanced decision-making tool to minimize the risk of well drilling by identifying different practical barriers (essential factors) and evaluating their causality and interdependencies. Evaluating the practical well blowouts barriers seems to be still an open subject. DEMATEL (“Decision-Making Trial and Evaluation Laboratory”), as a robust multi-criteria decision-making (MCDM) tool, enables decision-makers to study the interactions and feedback among a group of essential factors. However, the DEMATEL cannot be used for prioritization purposes. Therefore, the DEMATEL method is advanced in the game-theoretic context in the present chapter. In this regard, the importance weights of essential factors are integrated within the subjectivity of decision-makers opinions and data variability distributions, where the outcomes to be much more realistic. As an application of study, selective well drilling blowouts barriers are analyzed and evaluated to show the efficiency and rationality of the progressive DEMATEL-Game theory approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khakzad, N., Khan, F., Amyotte, P.: Quantitative risk analysis of offshore drilling operations: a Bayesian approach. Saf. Sci. 57, 108–117 (2013). https://doi.org/10.1016/j.ssci.2013.01.022

    Article  Google Scholar 

  2. Abimbola, M., Khan, F., Khakzad, N., Butt, S.: Safety and risk analysis of managed pressure drilling operation using Bayesian network. Saf. Sci. 76, 133–144 (2015). https://doi.org/10.1016/j.ssci.2015.01.010

    Article  Google Scholar 

  3. Mirderikvand, H., Razavian, F., Nakhaee, A., Moradi Ghiasabadi, B., Gholamnia, R.: A barrier risk-based evaluation model for drilling blowouts. J. Loss Prev. Process Ind. 74, 104624 (2022). https://doi.org/10.1016/j.jlp.2021.104624

  4. Tamim, N., Laboureur, D.M., Mentzer, R.A., Hasan, A.R., Mannan, M.S.: A framework for developing leading indicators for offshore drillwell blowout incidents. Process Saf. Environ. Prot. 106, 256–262 (2017). https://doi.org/10.1016/j.psep.2017.01.005

    Article  Google Scholar 

  5. Rausand, M., Haugen, S.: Risk Assessment: Theory, Methods, and Applications. Wiley (2020)

    Google Scholar 

  6. Yazdi, M.: A perceptual computing–based method to prioritize intervention actions in the probabilistic risk assessment techniques. Qual. Reliab. Eng. Int. 36, 187–213 (2020). https://doi.org/10.1002/qre.2566

    Article  Google Scholar 

  7. Yazdi, M., Golilarz, N.A., Nedjati, A., Adesina, K.A.: An improved lasso regression model for evaluating the efficiency of intervention actions in a system reliability analysis. Neural Comput. Appl. (2021). https://doi.org/10.1007/s00521-020-05537-8

    Article  Google Scholar 

  8. Ghoushchi, S.J., Yousefi, S., Khazaeili, M.: An extended FMEA approach based on the Z-MOORA and fuzzy BWM for prioritization of failures. Appl. Soft Comput. 81, 105505 (2019). https://doi.org/10.1016/j.asoc.2019.105505

  9. Arunraj, N.S., Maiti, J.: Risk-based maintenance policy selection using AHP and goal programming. Saf. Sci. 48, 238–247 (2010). https://doi.org/10.1016/j.ssci.2009.09.005

    Article  Google Scholar 

  10. Pike, H., Khan, F., Amyotte, P.: Precautionary principle (PP) versus as low as reasonably practicable (ALARP): Which one to use and when. Process Saf. Environ. Prot. 137, 158–168 (2020). https://doi.org/10.1016/j.psep.2020.02.026

    Article  Google Scholar 

  11. Swuste, P., Theunissen, J., Schmitz, P., Reniers, G., Blokland, P.: Process safety indicators, a review of literature. J. Loss Prev. Process Ind. 40, 162–173 (2016). https://doi.org/10.1016/j.jlp.2015.12.020

    Article  Google Scholar 

  12. Yazdi, M.: Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. 110, 438–448 (2018). https://doi.org/10.1016/j.ssci.2018.03.005

    Article  Google Scholar 

  13. Chai, K.C., Jong, C.H., Tay, K.M., Lim, C.P.: A perceptual computing-based method to prioritize failure modes in failure mode and effect analysis and its application to edible bird nest farming. Appl. Soft Comput. J. 49, 734–747 (2016). https://doi.org/10.1016/j.asoc.2016.08.043

    Article  Google Scholar 

  14. Chitsaz, N., Azarnivand, A.: Water scarcity management in arid regions based on an extended multiple criteria technique. Water Resour. Manag. 31, 233–250 (2017). https://doi.org/10.1007/s11269-016-1521-5

    Article  Google Scholar 

  15. Chang, C.L., Liu, P.H., Wei, C.C.: Failure mode and effects analysis using grey theory. Integr. Manuf. Syst. 12, 211–216 (2001). https://doi.org/10.1108/09576060110391174

    Article  Google Scholar 

  16. Liu, H.C., Fan, X.J., Li, P., Chen, Y.Z.: Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment. Eng. Appl. Artif. Intell. 34, 168–177 (2014). https://doi.org/10.1016/j.engappai.2014.04.011

    Article  Google Scholar 

  17. Jiang, W., Xie, C., Zhuang, M., Tang, Y.: Failure mode and effects analysis based on a novel fuzzy evidential method. Appl. Soft Comput. 57, 672–683 (2017). https://doi.org/10.1016/j.asoc.2017.04.008

    Article  Google Scholar 

  18. Zhu, G.N., Hu, J., Ren, H.: A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments. Appl. Soft Comput. J. 91, 106228 (2020). https://doi.org/10.1016/j.asoc.2020.106228

    Article  Google Scholar 

  19. Duru, O., Bulut, E., Yoshida, S.: Regime switching fuzzy AHP model for choice-varying priorities problem and expert consistency prioritization: a cubic fuzzy-priority matrix design. Expert Syst. Appl. 39, 4954–4964 (2012). https://doi.org/10.1016/j.eswa.2011.10.020

    Article  Google Scholar 

  20. Ha, J.S., Seong, P.H.: A method for risk-informed safety significance categorization using the analytic hierarchy process and Bayesian belief networks. Reliab. Eng. Syst. Saf. 83, 1–15 (2004). https://doi.org/10.1016/j.ress.2003.08.002

    Article  Google Scholar 

  21. Fattahi, R., Khalilzadeh, M.: Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Saf. Sci. 102, 290–300 (2018). https://doi.org/10.1016/j.ssci.2017.10.018

    Article  Google Scholar 

  22. Yazdi, M.: Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. J. Fail. Anal. Prev. 17 (2017). https://doi.org/10.1007/s11668-017-0305-4

  23. Shojaei, P., Seyed Haeri, S.A., Mohammadi, S.: Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique. J. Air Transp. Manage. 68, 4–13 (2018). https://doi.org/10.1016/j.jairtraman.2017.05.006

  24. Akbari, R., Dabbagh, R., Ghoushchi, S.J.: HSE risk prioritization of molybdenum operation process using extended FMEA approach based on Fuzzy BWM and Z-WASPAS. J. Intell. Fuzzy Syst. 38, 5157–5173 (2020). https://doi.org/10.3233/JIFS-191749

    Article  Google Scholar 

  25. Yazdi, M., Nedjati, A., Zarei, E., Abbassi, R.: A reliable risk analysis approach using an extension of best-worst method based on democratic-autocratic decision-making style. J. Clean. Prod. 120418 (2020). https://doi.org/10.1016/j.jclepro.2020.120418

  26. Gölcük, İ, Baykasoğlu, A.: An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Syst. Appl. 46, 346–366 (2016). https://doi.org/10.1016/J.ESWA.2015.10.041

    Article  Google Scholar 

  27. Lin, C.-J., Wu, W.-W.: A causal analytical method for group decision-making under fuzzy environment. Expert Syst. Appl. 34, 205–213 (2008). https://doi.org/10.1016/j.eswa.2006.08.012

  28. Amin, W., Huang, Q., Afzal, M., Aman, A., Umer, K., Adrees, S.: A converging non-cooperative & cooperative game theory approach for stabilizing peer-to-peer electricity trading. Electr. Power Syst. Res. 183, 106278 (2020). https://doi.org/10.1016/j.epsr.2020.106278

    Article  Google Scholar 

  29. Rayati, M., Bozorg, M., Mohammad, A., Cherkaoui, R.: Balancing management of strategic aggregators using non-cooperative game theory. Electr. Power Syst. Res. 184, 106297 (2020). https://doi.org/10.1016/j.epsr.2020.106297

    Article  Google Scholar 

  30. Thandapani, P.: An energy-efficient clustering and multipath routing for mobile wireless sensor network using game theory. Int. J. Commun. Syst. 1–18 (2020). https://doi.org/10.1002/dac.4336

  31. Ali, L., Muyeen, S.M., Bizhani, H., Ghosh, A.: Optimal planning of clustered microgrid using a technique of cooperative game theory. Electr. Power Syst. Res. 183, 106262 (2020). https://doi.org/10.1016/j.epsr.2020.106262

    Article  Google Scholar 

  32. Shi, X., Emrouznejad, A., Jin, M., Yang, F.: A new parallel fuzzy data envelopment analysis model for parallel systems with two components based on Stackelberg game theory. Fuzzy Optim. Decis. Mak. (2020). https://doi.org/10.1007/s10700-020-09320-1

    Article  MathSciNet  MATH  Google Scholar 

  33. Omrani, H., Fahimi, P., Mahmoodi, A.: Socio-economic planning sciences a data envelopment analysis game theory approach for constructing composite indicator: an application to find out development degree of cities in West Azarbaijan province of Iran. Socioecon. Plann. Sci. 69, 100675 (2020). https://doi.org/10.1016/j.seps.2018.12.002

    Article  Google Scholar 

  34. Bjørnskau, T.: The Zebra crossing game—Using game theory to explain a discrepancy between road user behaviour and traffic rules. Saf. Sci. 92, 298–301 (2017). https://doi.org/10.1016/j.ssci.2015.10.007

    Article  Google Scholar 

  35. Mesmer, B.L., Bloebaum, C.L.: Modeling decision and game theory based pedestrian velocity vector decisions with interacting individuals. Saf. Sci. 87, 116–130 (2016). https://doi.org/10.1016/j.ssci.2016.03.018

    Article  Google Scholar 

  36. Liu, Q., Li, X., Hassall, M.: Evolutionary game analysis and stability control scenarios of coal mine safety inspection system in China based on system dynamics. Saf. Sci. 80, 13–22 (2015). https://doi.org/10.1016/j.ssci.2015.07.005

    Article  Google Scholar 

  37. Dong, C., Zhao, L.: Sensor network security defense strategy based on attack graph and improved binary PSO. Saf. Sci. 117, 81–87 (2019). https://doi.org/10.1016/j.ssci.2019.04.007

    Article  Google Scholar 

  38. Khanmohamadi, M., Bagheri, M., Khademi, N., Farid, S.: A security vulnerability analysis model for dangerous goods transportation by rail—case study: Chlorine transportation in Texas-Illinois. Saf. Sci. 110, 230–241 (2018). https://doi.org/10.1016/j.ssci.2018.04.026

    Article  Google Scholar 

  39. Yazdi, M., Shafie, P.: Short communication: can game-theoretic context improve the complex system safety and reliability analysis methods? ENG Trans. 2, 1–7 (2021)

    Google Scholar 

  40. Matsumura, K., Kodric, B., Okimoto, T., Hirayama, K.: Two approximation algorithms for probabilistic coalition structure generation with quality bound. Auton. Agent. Multi. Agent. Syst. 34, 1–27 (2020). https://doi.org/10.1007/s10458-020-09449-8

    Article  Google Scholar 

  41. Beling, P., Rogalski, M.: On pruning search trees of impartial games. Artif. Intell. 283, 103262 (2020). https://doi.org/10.1016/j.artint.2020.103262

    Article  MathSciNet  MATH  Google Scholar 

  42. Chan, C., Pu, W., Wang, C.: Emission regulation of conventional energy-intensive industries. Environ. Dev. Sustain. 22, 3723–3737 (2020). https://doi.org/10.1007/s10668-019-00364-x

    Article  Google Scholar 

  43. Liu, G., Xu, Y., Tian, T., Wang, T., Liu, Y.: The impacts of China’s fund policy on waste electrical and electronic equipment utilization. J. Clean. Prod. 251 (2020). https://doi.org/10.1016/j.jclepro.2019.119582.

  44. Gou, Q., Shao, J., Wang, X., Yu, L.: Co-op supply chains with a local media company: models and analysis. Transp. Res. Part E. 136, 101893 (2020). https://doi.org/10.1016/j.tre.2020.101893

    Article  Google Scholar 

  45. Hayrutdinov, S., Saeed, M.S.R., Rajapov, A.: Coordination of supply chain under blockchain system-based product lifecycle information sharing effort. J. Adv. Transp. 2020 (2020)

    Google Scholar 

  46. Huber, C.: oTree: The bubble game. J. Behav. Exp. Financ. 22, 3–6 (2019). https://doi.org/10.1016/j.jbef.2018.12.001

    Article  Google Scholar 

  47. El, A., Fairchild, R., Tkiouat, M.: A hybrid profit and loss sharing model using interest free-debt and equity financing: an application of game theory as a decision tool. North Am. J. Econ. Financ. 49, 352–360 (2019). https://doi.org/10.1016/j.najef.2019.04.017

    Article  Google Scholar 

  48. Agur, I.: Monetary and macroprudential policy coordination among multiple equilibria. J. Int. Money Financ. 96, 192–209 (2019). https://doi.org/10.1016/j.jimonfin.2019.05.007

    Article  Google Scholar 

  49. Golestani, N., Arzaghi, E., Abbassi, R., Garaniya, V., Abdussamie, N., Yang, M.: The game of Guwarra a game theory-based decision-making framework for site selection of offshore wind farms in Australia. J. Clean. Prod. 326, 129358 (2021). https://doi.org/10.1016/j.jclepro.2021.129358

  50. Fontela, E., Gabus, A.: The DEMATEL Observer. Geneva (1972)

    Google Scholar 

  51. Du, Y.W., Li, X.X.: Hierarchical DEMATEL method for complex systems. Expert Syst. Appl. 167, 113871 (2021). https://doi.org/10.1016/j.eswa.2020.113871

    Article  Google Scholar 

  52. Lin, R.J.: Using fuzzy DEMATEL to evaluate the green supply chain management practices. J. Clean. Prod. 40, 32–39 (2013). https://doi.org/10.1016/j.jclepro.2011.06.010

    Article  Google Scholar 

  53. Yazdi, M., Khan, F., Abbassi, R., Rusli, R.: Improved DEMATEL methodology for effective safety management decision-making, Saf. Sci. 127, 104705 (2020). https://doi.org/10.1016/j.ssci.2020.104705

  54. Chang, B., Chang, C.-W., Wu, C.-H.: Fuzzy DEMATEL method for developing supplier selection criteria, Expert Syst. Appl. 38, 1850–1858 (2011). https://doi.org/10.1016/j.eswa.2010.07.114

  55. Si, S.L., You, X.Y., Liu, H.C., Zhang, P.: DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/3696457

  56. Yazdi, M., Nedjati, A., Zarei, E., Abbassi, R.: A novel extension of DEMATEL approach for probabilistic safety analysis in process systems. Saf. Sci. 121 (2020). https://doi.org/10.1016/j.ssci.2019.09.006

  57. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950). https://doi.org/10.1073/pnas.36.1.48

  58. Zagare, F.C.: Limited-move equilibria in 2 × 2 games. Theory Decis. 16, 1–19 (1984). https://doi.org/10.1007/BF00141672

    Article  MathSciNet  Google Scholar 

  59. Madani, K., Hipel, K.W.: Non-cooperative stability definitions for strategic analysis of generic water resources conflicts. Water Resour. Manage. 25, 1949–1977 (2011). https://doi.org/10.1007/s11269-011-9783-4

    Article  Google Scholar 

  60. Madani, K.: Game theory and water resources. J. Hydrol. 381, 225–238 (2010). https://doi.org/10.1016/j.jhydrol.2009.11.045

    Article  Google Scholar 

  61. Madani, K., Lund, J.R.: A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty. Adv. Water Resour. 34, 607–616 (2011). https://doi.org/10.1016/j.advwatres.2011.02.009

    Article  Google Scholar 

  62. Li, H., Guo, J.-Y., Yazdi, M., Nedjati, A., Adesina, K.A.: Supportive emergency decision-making model towards sustainable development with fuzzy expert system. Neural Comput. Appl. 33, 15619–15637 (2021). https://doi.org/10.1007/s00521-021-06183-4

    Article  Google Scholar 

  63. Liu, H.C., Wu, J., Li, P.: Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method. Waste Manage. 33, 2744–2751 (2013). https://doi.org/10.1016/j.wasman.2013.08.006

    Article  Google Scholar 

  64. Boran, F.E., Genç, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009). https://doi.org/10.1016/j.eswa.2009.03.039

    Article  Google Scholar 

  65. Yazdi, M.: Improving failure mode and effect analysis ( FMEA ) with consideration of uncertainty handling as an interactive approach. Int. J. Interact. Des. Manuf. (2018). https://doi.org/10.1007/s12008-018-0496-2

    Article  Google Scholar 

  66. Yazdi, M., Golilarz, N.A., Adesina, K.A., Nedjati, A.: Probabilistic risk analysis of process systems considering epistemic and aleatory uncertainties: a comparison study. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 29, 181–207 (2021). https://doi.org/10.1142/S0218488521500098

  67. Yazdi, M., Khan, F., Abbassi, R.: Operational subsea pipeline assessment affected by multiple defects of microbiologically influenced corrosion. Process Saf. Environ. Prot. 158, 159–171 (2021). https://doi.org/10.1016/j.psep.2021.11.032

    Article  Google Scholar 

  68. Nedjati, A., Yazdi, M., Abbassi, R.: A sustainable perspective of optimal site selection of giant air ‑ purifiers in large metropolitan areas. Springer Netherlands (2021). https://doi.org/10.1007/s10668-021-01807-0

  69. Murphy, B.L.: Dealing with uncertainty in risk assessment. Hum. Ecol. Risk Assess. 4, 685–699 (1998). https://doi.org/10.1080/10807039891284569

    Article  Google Scholar 

  70. Liu, T., Deng, Y., Chan, F.: Evidential supplier selection based on DEMATEL and game theory. Int. J. Fuzzy Syst. 20, 1321–1333 (2018). https://doi.org/10.1007/s40815-017-0400-4

    Article  Google Scholar 

  71. Bari, R.A., Park, C.K.: Uncertainty characterization of data for probabilistic risk assessment. Reliab. Eng. Syst. Saf. 26, 163–172 (1989). https://doi.org/10.1016/0951-8320(89)90072-0

    Article  Google Scholar 

  72. Cooke, R.: Experts in uncertainty: opinion and subjective probability in science. Oxford University Press (1991)

    Google Scholar 

  73. Han, Z., Ma, J., Si, F., Ren, W.: Entropy complexity and stability of a nonlinear dynamic game model with two delays. Entropy 18, 1–17 (2016). https://doi.org/10.3390/e18090317

    Article  Google Scholar 

  74. Saaty, T.L.: Decision making with the analytic hierarchy process. Sci. Iran. 9, 215–229 (2002). https://doi.org/10.1504/ijssci.2008.017590

    Article  MATH  Google Scholar 

  75. Saaty, T.L.: The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Oper. Res. 61, 1101–1118 (2013). https://doi.org/10.1287/opre.2013.1197

    Article  MathSciNet  MATH  Google Scholar 

  76. Yazdi, M., Kabir, S.: A fuzzy Bayesian network approach for risk analysis in process industries. Process Saf. Environ. Prot. 111, 507–519 (2017). https://doi.org/10.1016/j.psep.2017.08.015

    Article  Google Scholar 

  77. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega (United Kingdom). 53, 49–57 (2015). https://doi.org/10.1016/j.omega.2014.11.009

    Article  Google Scholar 

  78. Rezaei, J.: Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega (United Kingdom). 64, 126–130 (2016). https://doi.org/10.1016/j.omega.2015.12.001

    Article  Google Scholar 

  79. Sun, L., Liu, Y., Zhang, B., Shang, Y., Yuan, H., Ma, Z.: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers. Energies 9 (2016). https://doi.org/10.3390/en9090697

  80. Ristić, B., Madani, K.: A game theory warning to blind drivers playing chicken with public goods. Water Resour. Res. 55, 2000–2013 (2019). https://doi.org/10.1029/2018WR023575

  81. Chen, J.-R., Yang, Y.-T.: A predictive risk index for safety performance in process industries. J. Loss Prev. Process Ind. 17, 233–242 (2004). https://doi.org/10.1016/j.jlp.2004.03.001

  82. Azadeh, A., Mokhtari, Z., Sharahi, Z.J., Zarrin, M.: An integrated experiment for identification of best decision styles and teamworks with respect to HSE and ergonomics program: the case of a large oil refinery. Accid. Anal. Prev. 85, 30–44 (2015). https://doi.org/10.1016/j.aap.2015.08.016

    Article  Google Scholar 

  83. Musharraf, M., Smith, J., Khan, F., Veitch, B., MacKinnon, S.: Assessing offshore emergency evacuation behavior in a virtual environment using a Bayesian network approach. Reliab. Eng. Syst. Saf. 152, 28–37 (2016). https://doi.org/10.1016/j.ress.2016.02.001

    Article  Google Scholar 

  84. Pasman, H., Rogers, W.: How can we use the information provided by process safety performance indicators? Possibilities and limitations. J. Loss Prev. Process Ind. 30, 197–206 (2014). https://doi.org/10.1016/j.jlp.2013.06.001

    Article  Google Scholar 

  85. Yazdi, M., Adesina, K.A., Korhan, O., Nikfar, F.: Learning from fire accident at Bouali Sina petrochemical complex plant. J. Fail. Anal. Prev. (2019). https://doi.org/10.1007/s11668-019-00769-w

    Article  Google Scholar 

  86. Khan, F., Abunada, H., John, D., Benmosbah, T.: Development of risk-based process safety indicators. Process Saf. Prog. 29, 133–143 (2010). https://doi.org/10.1002/prs.10354

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Yazdi, M. (2022). What Are the Critical Well-Drilling Blowouts Barriers? A Progressive DEMATEL-Game Theory. In: Advanced Decision-Making Methods and Applications in System Safety and Reliability Problems. Studies in Systems, Decision and Control, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-07430-1_3

Download citation

Publish with us

Policies and ethics