Skip to main content

Biomechanical Evaluation—Criteria of Overload

  • Chapter
  • First Online:
The Dortmund Lumbar Load Atlas
  • 163 Accesses

Abstract

For assessing the lumbar load resulting from manual materials handling, various biomechanical overload criteria with regard to moments of force as well as compressive and shear forces on lumbar elements such as vertebrae or intervertebral discs are explained. For short-term exposures, such as single handling operations, the overload criteria are based on expert estimates or are derived from mechanical strength tests on autopsy material due to the destructive nature of direct quantification. On the basis of cumulative lumbar load quantifications for the entire working life in combination with the occurrence of diseases, criteria for lumbar load-bearing capacity for long-term physical exposures were derived. Innovative, biomechanically justified daily exposure limits provide sufficient protection against the development of degenerative diseases of the lower back.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At this point, I would like to express my very special thanks to the colleagues of the EPILIFT study (U. Bolm-Audorff, D. Ditchen, R. Ellegast, G. Elsner, O. Geiß, J. Grifka, J. Haerting, F. Hofmann, O. Linhardt, K. Lukaszewski, A. Luttmann, M. Michaelis, M. Nübling, G. Petereit-Haack, B. Schumann, J. Voß, A. Seidler)—and in particular to the study chair (U.B.-A.)—, without whose intensive commitment the manifold results could not have been compiled.

  2. 2.

    At this point, I would like to express my very special thanks to the colleagues of the EPILIFT2 study (A. Seidler, A. Bergmann, U. Bolm-Audorff, D. Ditchen, R. Ellegast, U. Euler, J. Haerting, E. Haufe, S. Jähnichen, C. Jordan, N. Kersten, O. Kuss, N. Lundershausen, A. Luttmann, P. Morfeld, G. Petereit-Haack, K. Schäfer, J. Voß)—and in particular to the study chair (A.S.)—, without whose intensive commitment the manifold results could not have been compiled.

References

  • Adams MA, Hutton WC (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7:184–191

    Article  Google Scholar 

  • Adams MA, McNally DS, Chinn H, Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14

    Article  Google Scholar 

  • Adams MA, Bogduk N, Burton K, Dolan P (2002) The biomechanics of back pain. Churchill Livingstone, Edinburgh UK

    Google Scholar 

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley & Sons, New York NY, USA

    Book  MATH  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd International Symposium on Information Theory. Akademiai Kiado, Budapest, Hungary

    Google Scholar 

  • Andersson GBJ (1991) The epidemiology of spinal disorders. In: Frymoyer JW, Ducker TB, Hadler HM, Kostuik JP, Weinstein JN, Whitecloud TS (eds) The adult spine, principles and practice. Raven Press, New York NY, USA, pp 107–146

    Google Scholar 

  • Andresen R, Werner HJ, Schober HC (1998) Contribution of the cortical shell of vertebrae to mechanical behaviour of the lumbar vertebrae with implications for predicting fracture risk. Br J Radiol 71:759–765

    Article  Google Scholar 

  • Bartelink DL (1957) The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs. J Bone Joint Surg 39B:718–725

    Article  Google Scholar 

  • Bartley MH, Arnold JS, Haslam RK, Jee WSS (1966) The relationship of bone strength and bone quantity in health, disease, and aging. J Gerontol 21:517–521

    Article  Google Scholar 

  • Bashkuev M, Vergroesen P-PA, Dreischarf M, Schilling C, van der Veen AJ, Schmidt H, Kingma I (2016) Intradiscal pressure measurements: a challenge or a routine? J Biomech 49:864–868

    Article  Google Scholar 

  • Battevi N, Pandolfi M, Cortinovis I (2016) Variable lifting index for manual-lifting risk assessment: a preliminary validation study. Hum Factors 58:712–725

    Article  Google Scholar 

  • BAuA (2019) MEGAPHYS—Multilevel hazard analysis of physical exposures at work, vol 1. Federal Institute for Occupational Safety and Health (ed) [in German: MEGAPHYS – Mehrstufige Gefährdungsanalyse physischer Belastungen am Arbeitsplatz, Band 1. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Hrsg)]. Dortmund, Germany

    Google Scholar 

  • Bell GH, Dunbar O, Beck JS, Gibb A (1967) Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tiss Res 1:75–86

    Article  Google Scholar 

  • Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast R, Grifka J, Haerting J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Meisel HJ, Michaelis M, Petereit-Haack G, Schumann B, Seidler A (2017) Do occupational risks for low back pain differ from risks for specific lumbar disc diseases? Spine 42:E1204-1211

    Article  Google Scholar 

  • Bergmann A, Schumann B, Haerting J, Fischer S, Bolm-Audorff U, Ditchen D, Ellegast R, Elsner G, Grifka J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Seidler A (2007) Association between occupational exposure to whole-body vibration and disc-related diseases of the lumbar spine—Evaluations within the German Spine Study [in German: Zusammenhang zwischen beruflicher Exposition durch Ganzkörpervibration und bandscheibenbedingten Erkrankungen der Lendenwirbelsäule – Auswertungen innerhalb der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 57:317–327

    Article  Google Scholar 

  • Bernard BP (1997) Musculoskeletal disorders and workplace factors: a criticial review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and Low Back. National Institute for Occupational Safety and Health, Publ No 97–141. Dept Health Hum Services, Cincinnati OH, USA

    Google Scholar 

  • Bjarnason K, Hassager C, Svendsen OL, Stang H, Christiansen C (1996) Anteroposterior and lateral spinal DXA for the assessment of vertebral body strength: Comparison with hip and forearm measurement. Osteoporosis Int 6:37–42

    Article  Google Scholar 

  • BMA (1992) Federal Minister for Labour and Social Affairs (ed), Second Regulation amending the Regulation on occupational diseases [in German: Bundesminister für Arbeit und Sozialordnung (Hrsg) Zweite Verordnung zur Änderung der Berufskrankheiten-Verordnung]. BGBl I, Nr 59:2343–2344

    Google Scholar 

  • BMA (1993) Federal Minister for Labour and Social Affairs (ed) Code of practice for the medical examination for No. 2108 [in German: Bundesminister für Arbeit und Sozialordnung (Hrsg) Merkblatt für die ärztliche Untersuchung zu Nr. 2108]. BArbBl 3:50–53

    Google Scholar 

  • BMAS (2006) Federal Ministry for Labour and Social Affairs (ed) Code of practice for occupational disease No. 2108 [in German: Bundesministerium für Arbeit und Soziales (Hrsg) Merkblatt zu der Berufskrankheit Nr. 2108]. BArbBl 10:30–35

    Google Scholar 

  • BMAS (2020) Federal Ministry for Labour and Social Affairs (ed) Seventh Act amending the Fourth Book of the Social Code and other laws, Article 7 [in German. Siebtes Gesetz zur Änderung des Vierten Buches Sozialgesetzbuch und anderer Gesetze, Artikel 7]. BGBl I, Nr 28:1265–1269

    Google Scholar 

  • Bolm-Audorff U, Ditchen D, Ellegast R, Elsner G, Geiß O, Grifka J, Haerting J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Michaelis M, Nübling M, Petereit-Haack G, Schumann B, Seidler A (2007a) Epidemiological case-control study to investigate dose-response relationships in occupational disease 2108 (German Spine Study); Federation of Institutions for Statutory Accident Insurance and Prevention (ed) [in German: Epidemiologische Fall-Kontroll-Studie zur Untersuchung von Dosis-Wirkungs-Beziehungen bei der Berufskrankheit 2108 (Deutsche Wirbelsäulenstudie). Hauptverband der gewerblichen Berufsgenossenschaften HVBG (Hrsg)]. Sankt Augustin, Germany

    Google Scholar 

  • Bolm-Audorff U, Bergmann A, Ditchen D, Ellegast R, Elsner G, Grifka J, Haerting J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Seidler A (2007b) Relationship between manual materials handling and lumbar chondrosis—Results of the German Spine Study [in German: Zusammenhang zwischen manueller Lastenhandhabung und lumbaler Chondrose – Ergebnisse der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 57:304–316

    Article  Google Scholar 

  • Brinckmann P, Horst M (1983) The influence of vertebral body fracture, intradiscal and partial discectomy on the radial bulge and height of human lumbar discs. Rep Dept Biomech, Orthop Univ Clin [in German: Mitt Abt Biomech, Orthop Univ-Klinik]. Münster, Germany

    Google Scholar 

  • Brinckmann P, Johannleweling N, Hilweg D, Biggemann M (1986) Fatigue fracture of human lumbar vertebrae. Rep Dept Biomech, Orthop Univ Clin [in German: Mitt Abt Biomech, Orthop Univ-Klinik]. Münster, Germany

    Google Scholar 

  • Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech 3(Suppl):1

    Google Scholar 

  • Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech 4(Suppl):2

    Google Scholar 

  • Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, Halabi S, Turner JA, Avins AL, James K, Wald JT, Kallmes DF, Jarvik JG (2015a) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. Am J Neuroradiol 36:811–816

    Article  Google Scholar 

  • Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH, Luetmer PH (2015b) MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. Am J Neuroradiol 36:2394–2399

    Article  Google Scholar 

  • Brown T, Hansen RJ, Yorra AJ (1957) Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs. J Bone Joint Surg 39A:1135–1164

    Article  Google Scholar 

  • Bürklein D, Lochmüller EM, Kuhn V, Grimm J, Barkmann R, Müller R, Eckstein F (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. J Biomech 35:579–587

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York USA

    MATH  Google Scholar 

  • Chan OY, Tan KA (1979) Study of lumbar disk pathology among a group of dockworkers. Ann Acad Med 8:81–85

    Google Scholar 

  • Ciriello VM, Snook SH, Buck AC, Wilkinson PL (1990) The effects of task duration on psychophysically-determined maximum acceptable weights and forces. Ergonomics 33:187–200

    Article  Google Scholar 

  • Cheng XG, Nicholson PHF, Boonen S, Lowet G, Brys P, Aerssens J, van der Perre G, Dequeker J (1997) Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res 12:1721–1728

    Article  Google Scholar 

  • Crone-Münzebrock W, Spielmann RP, Meenen NM (1989) Relationships between computed tomographically determined mineral content and fracture behaviour of healthy and metastatic vertebral bodies [in German: Beziehungen zwischen dem computertomographisch bestimmten Mineralgehalt und dem Frakturverhalten von gesunden und metastatischen Wirbelkörpern]. Fortschr Röntgenstr 151:326–330

    Article  Google Scholar 

  • Cyron BM, Hutton WC (1978) The fatigue strength of the neural arch in spondylolysis. J Bone Joint Surg 60B:234–238

    Article  Google Scholar 

  • da Costa BR, Vieira ER (2010) Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies. Am J Ind Med 53:285–323

    Google Scholar 

  • Damlund M, Goth S, Hasle B, Jeune B, Munk K (1982) The incidence of disability pensions and mortality among semi-skilled construction workers in Copenhagen. Scand J Soc Med 10:43–47

    Article  Google Scholar 

  • Decoulx P, Rieunau G (1958) Les fractures du rachis dorsolombaire sans troubles nerveux. Rev Chir Orthop (Paris) 44:254–322

    Google Scholar 

  • Deuretzbacher G, Rehder U, Kempendorf O, Michaelis H, Molatta S (1997) Spinal loading during patient transfer [in German: Wirbelsäulenbelastung beim Patiententransfer]. Inst Clin Biomech, Univ Hosp Hamburg-Eppendorf UKE, Hamburg, Germany

    Google Scholar 

  • DGUV (2020) MEGAPHYS—Multilevel hazard analysis of physical exposures at work, vol 2. German Social Accident Insurance (Ed) [in German: MEGAPHYS – Mehrstufige Gefährdungsanalyse physischer Belastungen am Arbeitsplatz, Band 2. Deutsche Gesetzliche Unfallversicherung DGUV (Hrsg)]. Berlin, Germany

    Google Scholar 

  • Eie N (1966) Load capacity of the low back. J Oslo City Hospitals 16:73–98

    Google Scholar 

  • Ellegast R, Ditchen D, Bergmann A, Bolm-Audorff U, Elsner G, Grifka J, Haerting J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Seidler A (2007) Survey on work-related spinal exposures by technical experts of the German accident insurance institutions within the German Spine Study [in German: Erhebungen zur beruflichen Wirbelsäulenexposition durch die Technischen Aufsichtsdienste der Unfallversicherungsträger im Rahmen der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 57:251–263

    Article  Google Scholar 

  • Eriksson SAV, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    Article  Google Scholar 

  • Estryn-Behar M, Kaminski M, Peigne E, Maillard MF, Pelletier A, Berthier C, Delaports MF, Paoli MC, Leroux JM (1990) Strenuous working conditions and musculoskeletal disorders among female hospital workers. Int Arch Occup Environ Health 62:47–67

    Article  Google Scholar 

  • Evans FG, Lissner HR (1959) Biomechanical studies on the lumbar spine and pelvis. J Bone Joint Surg 41A:278–290

    Article  Google Scholar 

  • Farfan HF (1973) Mechanical disorders of the low back. Lea & Febiger, Philadephia PA, USA

    Google Scholar 

  • Fischbeck M (2006) Mechanical competence and bone density of thoracolumbar vertebral bodies in older people [in German: Mechanische Kompetenz und Knochendichte thorakolumbaler Wirbelkörper beim älteren Menschen]. MD Thesis, Med Faculty, Ludwig-Maximilian Univ, Munich, Germany

    Google Scholar 

  • Forster MR (2000) Key concepts in model selection: Performance and generalizability. J Mathem Psych 44:205–231

    Article  MATH  Google Scholar 

  • Fox RR, Lu ML, Occhipinti E, Jaeger M (2019) Understanding Outcome Metrics of the Revised NIOSH Lifting Equation. Appl Ergon 81:102897

    Article  Google Scholar 

  • Gallagher S, Marras WS (2012) Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clin Biomech 27:973–978

    Article  Google Scholar 

  • Garg A, Owen B, Beller B, Banaag J (1991) A biomechanical and ergonomic evaluation of patient transferring tasks: bed to wheelchair and wheelchair to bed. Ergonomics 34:289–312

    Article  Google Scholar 

  • Garg A, Boda S, Hegmann KT, Moore JS, Kappellusch JM, Bhoyar P, Thiese MS, Merryweather A, Deckow-Schaefer G, Bloswick D, Malloy EJ (2014a) The NIOSH lifting equation and low-back pain, part 1: association with low-back pain in the backworks prospective cohort study. Hum Factors 56:6–28

    Article  Google Scholar 

  • Garg A, Boda S, Hegmann KT, Moore JS, Kappellusch JM, Bhoyar P, Thiese MS, Merryweather A, Deckow-Schaefer G, Bloswick D, Malloy EJ (2014b) The NIOSH lifting equation and low-back pain, part 2: association with seeking care in the backworks prospective cohort study. Hum Factors 56:44–57

    Article  Google Scholar 

  • Göcke C (1928) Contributions to the compressive strength of cancellous bone [in German: Beiträge zur Druckfestigkeit des spongiösen Knochens]. Bruns Beitr Klin Chir 143:539–566

    Google Scholar 

  • Gozulov SA, Korzheniyantz VA, Skrypnik VG, Sushkov N, Sushkov Y (1966) A study of compression strength of vertebrae in man. Arch Anat Gisto Embryol 9:13–18

    Google Scholar 

  • Granhed H, Jonson R, Hansson T (1989) Mineral content and strength of lumbar vertebrae (A cadaver study). Acta Orthop Scand 60:105–109

    Article  Google Scholar 

  • Haidekker MA, Andresen R, Werner HJ (1999) Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests. Osteoporosis Int 9:433–440

    Article  Google Scholar 

  • Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Article  Google Scholar 

  • Hartmann B, Klußmann A, Serafin P (2018) Physical performance, age and sex—Assessing health risks in physically challenging activities: part 1: Introduction, methodology, data on the physique and load capacity of the skeletal system [in German: Physische Leistungsfähigkeit, Alter und Geschlecht – Zur Beurteilung gesundheitlicher Risiken bei körperlich belastenden Tätigkeiten. Teil 1: Einführung, Methoden, Daten zum Körperbau und zur Belastbarkeit des Skelett-Systems]. Zbl Arbeitsmed 68:309–316

    Article  Google Scholar 

  • Hartung E, Schäfer K, Jäger M, Luttmann A, Bolm-Audorff U, Kuhn S, Paul R, Francks H-P (1999) The Mainz-Dortmund Dose Model (MDD) for assessing the load on the lumbar spine caused by lifting or carrying heavy objects or by work in extreme trunk-bending postures in suspicion of occupational disease no. 2108, part 2: suggestion for the assessment of work-related prerequisites in occupational disease evaluation [in German: Mainz-Dortmunder Dosismodell (MDD) zur Beurteilung der Belastung der Lendenwirbelsäule durch Heben oder Tragen schwerer Lasten oder durch Tätigkeiten in extremer Rumpfbeugehaltung bei Verdacht auf Berufskrankheit Nr. 2108, Teil 2: Vorschlag zur Beurteilung der arbeitstechnischen Voraussetzungen im Berufskrankheiten-Feststellungsverfahren]. Arbeitsmed Sozialmed Umweltrned 34:112–122

    Google Scholar 

  • Hartung E, Schäfer K, Jäger M, Luttmann A, Bolm-Audorff U, Kuhn S, Paul R, Francks H-P (2000) Method for a uniform assessment of the occupational prerequisites of OD 2108 according to the Mainz-Dortmund Dose Model MDD. In: Konietzko J, Dupuis H (eds) Handbook of occupational medicine—occupational physiology, occupational pathology, prevention [in German: Methode zur einheitlichen Beurteilung der arbeitstechnischen Voraussetzungen der BK 2108 nach dem Mainz-Dortmunder Dosismodell MDD. In: Konietzko J, Dupuis H (Hrsg) Handbuch der Arbeitsmedizin]. Chap IV.7.8.3.1.2., pp 1–24. Ecomed Verlagsgesellschaft, 25. Erg-Lfg, Landsberg/Lech, Germany

    Google Scholar 

  • Häublein H-G (1979) Occupational load and musculoskeletal system [in German: Berufsbelastung und Bewegungsapparat]. VEB Volk und Gesundheit, Berlin, Germany

    Google Scholar 

  • Havelka J (1980) Vergleich der Ergebnisse der Morbiditätsanalyse mit denen aus der arbeitsmedizinischen Tauglichkeits-Screening-Untersuchung bei ausgewählten Tätigkeiten. Z Ges Hyg 26:181–187

    Google Scholar 

  • Hayes WC, Bouxsein ML (1997) Biomechanics of cortical and trabecular bone: Implications for assessment of fracture risk. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics, 2nd edn. Lippincott-Raven, New York NY, USA, pp 69–111

    Google Scholar 

  • Heliövaara M (1987) Occupation and risk of herniated lumbar intervertebral disk or sciatica leading to hospitalization. J Chron Dis 40:259–264

    Article  Google Scholar 

  • Hofmann F, Michaelis M, Stößel U, Siegel A (1995) Occupational exposure and lumbar spine complaints in health care workers. In: Pangert R (ed) Lifting and carrying loads—improved worker protection through implementing the European Directive 90/269/EWG. State Office for Social Affairs and Family, Suhl (Germany) and The Thuringian Ministry of Social Affairs and Health, Erfurt, Germany (Publ) [in German: Belastungsexposition und Lendenwirbelsäulenbeschwerden bei Beschäftigten im Gesundheitsdienst. In: Pangert R (Red) Heben und Tragen von Lasten – Verbesserter Arbeitnehmerschutz durch Umsetzung der Europa-Richtlinie 90/269/EWG. Landesamt für Soziales und Familie, Suhl, und Thüringer Ministerium für Soziales und Gesundheit, Erfurt (Hrsg)], pp 67–77. Suhl, Erfurt, Germany

    Google Scholar 

  • Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine 7:586–590

    Article  Google Scholar 

  • Hutton WC, Cyron BM, Stott JRR (1979) The compressive strength of lumbar vertebrae. J Anat 129:753–758

    Google Scholar 

  • ISO 11228-1, International Organization for Standardization (2003) Ergonomics—manual handling, part 1: lifting and carrying. First edition 2003–05–15

    Google Scholar 

  • ISO 11228-1, International Organization for Standardization (2021) Ergonomics—Manual handling, part 1: lifting, lowering and carrying. Second edition 2021–10

    Google Scholar 

  • ISO 11228-2, International Organization for Standardization (2007) Ergonomics—Manual handling, part 2: pushing and pulling. First edition 2007–04–01

    Google Scholar 

  • Jäger M (1986) Biomechanical model of the human body for the analysis and assessment of the load on the spine when handling objects [in German: Biomechanisches Modell des Menschen zur Analyse und Beurteilung der Belastung der Wirbelsäule bei der Handhabung von Lasten]. PhD Thesis, Fac Mech Eng, Univ Dortmund, Germany. Printed 1987: Fortschritt-Berichte VDI, Reihe 17, Nr. 33. VDI-Verlag. Düsseldorf, Germany

    Google Scholar 

  • Jäger M (1996) Biomechanical aspects concerning the assessment of lumbar load during heavy work and uncomfortable postures with special emphasis to the justification of NIOSH's biomechanical criterion. In: Problems and Progress in Assessing Physical Load and Musculoskeletal Disorders, pp 49–72. Publ Series, Fed Inst Occup Health (ed), Conf Rep 10. Berlin, Germany [in German: Schriftenreihe der Bundesanstalt für Arbeitsmedizin, Berlin (Hrsg), Tagungsbericht 10]. Wirtschaftverlag NW, Bremerhaven, Germany

    Google Scholar 

  • Jäger M (2000) Load on and load-bearing capacity of the lumbar spine in everyday working life—an interdisciplinary approach for ergonomic work design [in German: Belastung und Belastbarkeit der Lendenwirbelsäule im Berufsalltag – ein interdisziplinärer Ansatz für eine ergonomische Arbeitsgestaltung]. Habil Thesis, Fac Mech Eng, Univ Dortmund, Germany. Printed 2001: Fortschritt-Berichte VDI, Reihe 17, Nr. 208, VDI-Verlag. Düsseldorf, Germany

    Google Scholar 

  • Jäger M (2018) Extended compilation of autopsy-material measurements on lumbar ultimate compressive strength for deriving reference values in ergonomic work design: The Revised Dortmund Recommendations. EXCLI J 17:362–385

    Google Scholar 

  • Jäger M, Luttmann A (1989) Biomechanical analysis and assessment of lumbar stress during load lifting using a dynamic 19-segment biomechanical human model. Ergonomics 32:93–112

    Article  Google Scholar 

  • Jäger M, Luttmann A (1991) Compressive strength of lumbar spine elements related to age, gender, and other influencing factors. In: Anderson PA, Hobart DJ, Danoff JV (eds) Electromyograph Kinesiol. Elsevier Science Publ BV, Amsterdam, The Netherlands, pp 291–294

    Google Scholar 

  • Jäger M, Luttmann A (1992) The load on the lumbar spine during asymmetrical bi-manual materials handling. Ergonomics 35:783–805

    Article  Google Scholar 

  • Jäger M, Luttmann A (1994) Biomechanical assessment of the load on the spine while object handling [in German: Biomechanische Beurteilung der Belastung der Wirbelsäule beim Handhaben von Lasten]. Med Sach 90:160–164

    Google Scholar 

  • Jäger M, Luttmann A (1996) Extended compilation of measurements on cadaver-related lumbar ultimate compressive strength. In: Mital A, Krueger H, Kumar S, Menozzi M, Fernandez JE (eds) Adv Occup Ergon Safety I, vol 1. Int Soc Occup Ergon Safety, Cincinnati OH, USA, pp 297–302

    Google Scholar 

  • Jäger M, Luttmann A (1999) Critical survey on the biomechanical criterion in the NIOSH method for the design and evaluation of manual lifting tasks. Int J Indust Ergon 23:331–337

    Article  Google Scholar 

  • Jäger M, Seidler A (2014) The EPILIFT Exposure Criteria Study. In-depth reanalysis of the German Spine Study EPILIFT [in German: DWS-Richtwertestudie. Vertiefende Reanalyse der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 64:149–150

    Article  Google Scholar 

  • Jäger M, Luttmann A, Laurig W (1990) Compressive strength of the lumbar spine related to age and gender. In: Anderson PA, Hobart DJ, Danoff JV (eds) 8th International Congress of International Society of Electrophysiol Kinesiol, Program and Abstract Book, p 111. Univ of Maryland, Baltimore MD, USA (see also Jäger & Luttmann 1991)

    Google Scholar 

  • Jäger M, Luttmann A, Laurig W (1991) Lumbar load during one-handed bricklaying. Int J Indust Ergon 8:261–277

    Article  Google Scholar 

  • Jäger M, Luttmann A, Bolm-Audorff U, Schäfer K, Hartung E, Kuhn S, Paul R, Francks H-P (1999) The Mainz-Dortmund Dose Model (MDD) for assessing the load on the lumbar spine caused by lifting or carrying heavy objects or by work in extreme trunk-bending postures in suspicion of occupational disease no. 2108, Part 1: Retrospective load estimation for risky jobs [in German: Mainz-Dortmunder Dosismodell (MDD) zur Beurteilung der Belastung der Lendenwirbelsäule durch Heben oder Tragen schwerer Lasten oder durch Tätigkeiten in extremer Rumpfbeugehaltung bei Verdacht auf Berufskrankheit Nr. 2108, Teil 1: Retrospektive Belastungsermittlung für risikobehaftete Tätigkeitsfelder]. Arbeitsmed Sozialmed Umweltmed 34:101–111

    Google Scholar 

  • Jäger M, Jordan C, Luttmann A, Laurig W, DOLLY Group (2000) Evaluation and assessment of lumbar load during total shifts for occupational manual materials handling jobs within the Dortmund Lumbar Load Study – DOLLY. Int J Indust Ergon 25:553–571

    Google Scholar 

  • Jäger M, Luttmann A, Göllner R (2001a) Analysis of lumbar ultimate compressive strength for deriving recommended lumbar-load limits. In: Müller R, Gerber H, Stacoff A (eds) XVIIIth congress of International Society Biomechanics: Book of Abstracts. Zürich, Switzerland, pp 263–264

    Google Scholar 

  • Jäger M, Luttmann A, Göllner R (2001b) Load-bearing capacity of the lumbar spine for manual materials handling—derivation of the “Dortmund Recommendations” based on the lumbar compressive strength [in German: Belastbarkeit der Lendenwirbelsäule bei manueller Lastenhandhabung – Ableitung der „Dortmunder Richtwerte“ auf Basis der lumbalen Kompressionsfestigkeit]. Zbl Arbeitsmed 51:354–372

    Google Scholar 

  • Jäger M, Geiß O, Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast R, Elsner G, Grifka J, Haerting J, Hofmann F, Linhardt O, Michaelis M, Petereit-Haack G, Seidler A, Luttmann A (2007) Biomechanical analyses on lumbar load within the German Spine Study [in German: Biomechanische Analysen zur Belastung der Lendenwirbelsäule innerhalb der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 45:264–276

    Article  Google Scholar 

  • Jäger M, Bergmann A, Bolm-Audorff U, Ellegast R, Grifka J, Hofmann F, Michaelis M, Seidler A, Voß J, Luttmann A (2011) Occupational low-back exposure of persons with or without lumbar disc-related diseases—selected results of the German Spine Study EPILIFT. In: Grieshaber R, Stadeler M, Scholle H-C (eds) Prevention of work-related health hazards and diseases—17th Erfurt Days [in German: Prävention von arbeitsbedingten Gesundheitsgefahren und Erkrankungen – 17. Erfurter Tage]. Bussert & Stadeler, Jena, Germany, pp 341–365

    Google Scholar 

  • Jäger M, Jordan C, Voß J, Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast R, Haerting J, Haufe E, Kuß O, Morfeld P, Schäfer K, Seidler A, Luttmann A (2014) Extended evaluation of the German Spine Study. Background and methodology of the EPILIFT Exposure Criteria Study [in German: Erweiterte Auswertung der Deutschen Wirbelsäulenstudie. Hintergrund und Vorgehensweise der DWS-Richtwertestudie]. Zbl Arbeitsmed 64:151–168

    Article  Google Scholar 

  • Jäger M, Bolm-Audorff U, Ellegast R, Grifka J, Haerting J, Hofmann F, Morfeld P, Schäfer K, Seidler A (2018) Results of the German Spine Studies: Associations between cumulative occupational lumbar load and lumbar disc-related diseases. Presented at 20th Congr Int Ergon Association (IEA), Florence, Italy

    Google Scholar 

  • Jayson MIV, Herbert CM, Barks JS (1973) Intervertebral discs: Nuclear morphology and bursting pressures. Ann Rheum Dis 32:308–315

    Article  Google Scholar 

  • Junghanns H (1979) The spine in occupational medicine. I: Biomechanical and biochemical problems of spinal loading. The spine in research and practice, vol 78 [in German: Die Wirbelsäule in der Arbeitsmedizin. I: Biomechanische und biochemische Probleme der Wirbelsäulenbelastung. Die Wirbelsäule in Forschung und Praxis, Bd. 78]. Hippokrates, Stuttgart, Germany

    Google Scholar 

  • Kaplan RM, Deyo RA (1988) Back pain in health care workers. Occup Med State Art Rev 3:61–73

    Google Scholar 

  • Kappellusch JM, Garg A, Boda S, Hegmann K, Moore JS, Thiese M, Merryweather A, Tomich S, Foster J, Bloswick D, Malloy E (2014) Association between lifting and use of medication for low back pain. J Occup Environ Med 56:867–877

    Article  Google Scholar 

  • Krämer J (2000) Disc-related diseases—causes, diagnosis, treatment, prevention, evaluation [in German: Bandscheibenbedingte Erkrankungen – Ursachen, Diagnose, Behandlung, Vorbeugung, Begutachtung], 4th edn. Thieme, Stuttgart, Germany

    Google Scholar 

  • Kuiper J, Burdorf A, Verbeek JHAM, Frings-Dresen MHW, van der Beek AJ, Viikari-Juntura ERA (1999) Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review. Int J Indust Ergon 24:389–404

    Article  Google Scholar 

  • Kumar S (1990) Cumulative load as a risk factor for back pain. Spine 15:1311–1316

    Article  Google Scholar 

  • Lange C (1902) Studies on elasticity relations in the human dorsal vertebrae with remarks on the pathogenesis of the deformities [in German: Untersuchungen über Elastizitätsverhältnisse in den menschlichen Rückenwirbeln mit Bemerkungen über die Pathogenese der Deformitäten]. Z Orthop Chir 10:47–110

    Google Scholar 

  • Lawrence JS (1955) Rheumatism in coal miners. Part III: occupational factors. Brit J Ind Med 12:249–260

    Google Scholar 

  • Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Joint Surg 60A:41–55

    Article  Google Scholar 

  • Linhardt O, Bolm-Audorff U, Bergmann A, Ditchen D, Ellegast R, Elsner G, Haerting J, Hofmann F, Jäger M, Luttmann A, Michaelis M, Petereit-Haack G, Seidler A, Grifka J (2007a) Study design of the German spine study [in German: Studiendesign der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 57:243–250

    Article  Google Scholar 

  • Linhardt O, Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast RP, Hering-von Diepenbroik V, Hofmann F, Jäger M, Luttmann A, Michaelis M, Schumann B, Seidler A, Grifka J (2007b) Radiological diagnosis of lumbar prolaps with quantitative and morphological criteria [in German: Die radiologische Befundung des lumbalen Bandscheibenvorfalls nach quantitativen und morphologischen Kriterien]. Z Orthop Unfall 145:643–648

    Article  Google Scholar 

  • Lochmüller EM, Eckstein F, Kaiser D, Zeller JB, Landgraf J, Putz R, Steldinger R (1998) Prediction of vertebral failure loads from spinal and femoral dual-energy x-ray absorptiometry and calcaneal ultrasound: an in situ analysis with intact soft tissues. Bone 23:417–424

    Article  Google Scholar 

  • Lu M, Waters R, Krieg E, Werren D (2014) Efficacy of the revised NIOSH lifting equation to predict risk of low-back pain associated with manual lifting: a one-year prospective study. Hum Factors 56:73–85

    Article  Google Scholar 

  • Luttmann A, Jäger M, Laurig W, Schlegel KF (1988) Orthopaedic diseases among transport workers. Int Arch Occup Environ Health 61:197–205

    Article  Google Scholar 

  • Mach J, Heitner H, Ziller R (1976) The relevance of occupational load for the development of degenerative spinal changes [in German: Die Bedeutung der beruflichen Belastung für die Entstehung degenerativer Wirbelsäulenveränderungen]. Z Ges Hyg 22:352–354

    Google Scholar 

  • McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA III (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67A:1206–1214

    Article  Google Scholar 

  • Messerer O (1880) About the elasticity and strength of human bones [in German: Über Elastizität und Festigkeit der menschlichen Knochen]. Verlag Cotta’sche Buchhandlung, Stuttgart, Germany

    Google Scholar 

  • Michaelis M, Hofmann F, Bolm-Audorff U, Bergmann A, Ditchen D, Ellegast R, Elsner G, Grifka J, Haerting J, Jäger M, Linhardt O, Luttmann A, Nübling M, Petereit-Haack G, Seidler A (2007) Economic sectors and occupations at risk for the development of lumbar spine diseases—Results of the German Spine Study [in German: Risikobranchen und -berufe für die Entwicklung bandscheibenbedingter Erkrankungen der Lendenwirbelsäule – Ergebnisse der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 45:277–286

    Article  Google Scholar 

  • Mital A (1984a) Maximum weights of lift acceptable to male and female industrial workers for extended workshifts. Ergonomics 27:1115–1126

    Article  Google Scholar 

  • Mital A (1984b) Comprehensive maximum acceptable weight of lift database for regular 8-hour workshifts. Ergonomics 27:1127–1138

    Article  Google Scholar 

  • Mital A (1992) Psychophysical capacity of industrial workers for lifting symmetrical and asymmetrical loads symmetrically and asymmetrically for 8-hour work shifts. Ergonomics 35:745–754

    Article  Google Scholar 

  • Mital A, Nicholson AS, Ayoub MM (1997) A guide to manual materials handling, 2nd edn. Taylor & Francis, London, UK

    Google Scholar 

  • Morfeld P (2013) Applied methods of EPILIFT II. Extended evaluation of the German Spine Study EPILIFT with the aim of deriving appropriate reference values (EPILIFT reference value derivation). In: Wolf U, Wittke M (edit office) German statutory accident insurance (ed) Documentation—Expert discussion “German Spine Study (EPILIFT) II” [in German: Angewandte Methoden der DWS II. Erweiterte Auswertung der Deutschen Wirbelsäulenstudie mit dem Ziel der Ableitung geeigneter Richtwerte (DWS-Richtwerteableitung). In: Wolf U, Wittke M (Red) Deutsche Gesetzliche Unfallversicherung, DGUV (Hrsg) Dokumentation – Fachgespräch „Deutsche Wirbelsäulen-Studie (DWS) II“]. Berlin, Germany, pp 97–121

    Google Scholar 

  • Morfeld P, Ellegast R, Ditchen D, Kuß O, Schäfer K, Kersten N, Haufe E, Luttmann A, Jäger M (2014) Estimation of cumulative dose models to analyse effects of physical exposure. Methodology of multimodel analysis within the EPILIFT Exposure Criteria Study [in German: Ableitung kumulativer Dosismodelle zur Auswertung physischer Belastungen. Methodik der Multi-Modell-Analyse innerhalb der DWS-Richtwertestudie]. Zbl Arbeitsmed 64:169–182

    Article  Google Scholar 

  • Morlock M, Hansen I, Bonin V (1997) Statistical investigation of selected aspects of the assessment for OD 2108 and biomechanical review of the EBO 2108 data entry sheet of the technical supervision service [in German: Statistische Untersuchung ausgewählter Aspekte der Begutachtung für BK 2108 und biomechanische Überprüfung des Erfassungsbogens EBO 2108 des technischen Aufsichtsdienstes]. Inst Biomech, Tech Univ Hamburg-Harburg, Germany

    Google Scholar 

  • Morris JM (1973) Biomechanics of the spine. Arch Surg 107:418–423

    Article  Google Scholar 

  • Münchinger R (1964) The mechanical forces acting on the spine. In: Belart W (ed) The Dysfunctions of the Spine, Rheumatism in Research and Practice, vol 2 [in German: Die auf die Wirbelsäule wirkenden mechanischen Kräfte. In: Belart W (Hrsg) Die Funktionsstörungen der Wirbelsäule, Rheumatismus in Forschung und Praxis, Bd 2]. Huber, Bern, Switzerland, pp 136–147

    Google Scholar 

  • Myers BS, Arbogast KB, Lobaugh B, Harper KD, Richardson WJ, Drezner MK (1994) Improved assessment of lumbar vertebral body strength using supine lateral dual-energy x-ray absorptiometry. J Bone Miner Res 9:687–693

    Article  Google Scholar 

  • Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. J Bone Joint Surg 46A:1077–1092

    Article  Google Scholar 

  • Nagel K, Klein A, Püschel K, Morlock M, Huber G (2013) Dependence of spinal segment mechanics on load direction, age and gender. Fed Inst Occup Safety Health (ed) [in German: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin]. Res Proj F2059, Dortmund, Germany

    Google Scholar 

  • NIOSH, National Institute for Occupational Safety and Health (1981) Work practices guide for manual lifting, No. 81–122. Department Health and Human Services, Cincinnati OH, USA

    Google Scholar 

  • Norman R, Wells R, Neumann P, Frank J, Shannon H, Kerr M, Ontario Universities Back Pain Study (OUBPS) Group (1998) A comparison of peak vs. cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clin Biomech 13:561–573

    Google Scholar 

  • OD 70 (1981) Occupational Disease No. 70: Wear diseases of the spine (intervertebral discs, vertebral end plates, vertebral processes, ligaments, facet joints) due to many years of mechanical overloading [in German: Verschleißkrankheiten der Wirbelsäule (Bandscheiben, Wirbelkörperabschlußplatten, Wirbelfortsätze, Bänder, kleine Wirbelgelenke) durch langjährige mechanische Überbelastungen]. GBl der DDR, Part 1, No 12

    Google Scholar 

  • OD 2108 (1992) Occupational Disease No 2108: Intervertebral disc-related diseases of the lumbar spine caused by lifting or carrying heavy objects over many years or caused by activities in extreme trunk-bending postures over many years that have forced the person to discontinue all activities which have caused or could have caused the onset, the worsening or the recurrence of the disease [in German: Berufskrankheit Nr 2108: Bandscheibenbedingte Erkrankungen der Lendenwirbelsäule durch langjähriges Heben oder Tragen schwerer Lasten oder durch langjährige Tätigkeiten in extremer Rumpfbeugehaltung, die zur Unterlassung aller Tätigkeiten gezwungen haben, die für die Entstehung, die Verschlimmerung oder das Wiederaufleben der Krankheit ursächlich waren oder sein können]. BGBl I, Nr 59:2343–2344

    Google Scholar 

  • OD 2109 (1992) Occupational Disease No 2109: Intervertebral disc-related diseases of the cervical spine caused by carrying heavy objects on the shoulder over many years that have forced the person to discontinue all activities which have caused or could have caused the onset, the worsening or the recurrence of the disease [in German: Bandscheibenbedingte Erkrankungen der Halswirbelsäule durch langjähriges Tragen schwerer Lasten auf der Schulter, die zur Unterlassung aller Tätigkeiten gezwungen haben, die für die Entstehung, die Verschlimmerung oder das Wiederaufleben der Krankheit ursächlich waren oder sein können]. BGBl I, Nr 59:2343–2344

    Google Scholar 

  • OD 2110 (1992) Occupational Disease No 2110: Intervertebral disc-related diseases of the lumbar spine caused by predominantly vertical exposure of whole-body vibrations while seated over many years that have forced the person to discontinue all activities which have caused or could have caused the onset, the worsening or the recurrence of the disease [in German: Berufskrankheit Nr. 2110: Bandscheibenbedingte Erkrankungen der Lendenwirbelsäule durch langjährige, vorwiegend vertikale Einwirkung von Ganzkörper-Schwingungen im Sitzen, die zur Unterlassung aller Tätigkeiten gezwungen haben, die für die Entstehung, die Verschlimmerung oder das Wiederaufleben der Krankheit ursächlich waren oder sein können]. BGBl I, Nr 59:2343–2344

    Google Scholar 

  • Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine. An experimental biomechanical investigation. Acta Orthop Scand Suppl 25

    Google Scholar 

  • Petereit-Haack G, Bolm-Audorff U, Bergmann A, Ditchen D, Ellegast R, Elsner G, Grifka J, Haerting J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Michaelis M, Seidler A (2007) Association between occupational psychosocial strain and disc diseases of the lumbar spine—Results of the German Spine Study [in German: Zusammenhang zwischen bandscheibenbedingten Erkrankungen der Lendenwirbelsäule und beruflichen psychosozialen Belastungen – Ergebnisse der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 57:328–336

    Article  Google Scholar 

  • Porter RW, Adams MA, Hutton WC (1989) Physical activity and the strength of the lumbar spine. Spine 14:201–203

    Article  Google Scholar 

  • Riihimäki H (1985) Back pain and heavy physical work: a comparative study of concrete reinforcement workers and maintenance house painters. Brit J Ind Med 42:226–232

    Google Scholar 

  • Riihimäki H, Wickström G, Hänninen K, Mattson T, Waris P, Zitting A (1989) Radiographically detectable lumbar degenerative changes as risk indicators of back pain, a cross-sectional epidemiologic study of concrete reinforcement workers and house painters. Scand J Work Environ Health 15:280–285

    Article  Google Scholar 

  • Ranu HS (1990) Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading. Proc Inst Mech Eng. Part h. J Eng Med 204:141–146

    Article  Google Scholar 

  • Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Joint Surg 42B:810–823

    Article  Google Scholar 

  • Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24:2468–2474

    Article  Google Scholar 

  • Schröter G, Rademacher W (1971) The importance of load and exceptional posture for the development of wear damage of the cervical spine, illustrated on a collective of meat carriers [in German: Die Bedeutung von Belastung und außergewöhnlicher Haltung für das Entstehen von Verschleißschäden der HWS, dargestellt an einem Kollektiv von Fleischabträgern]. Z Ges Hyg 17:831–843

    Google Scholar 

  • Seidler A, Bergmann A, Ditchen D, Ellegast R, Elsner G, Grifka J, Haerting J, Hofmann F, Jäger M, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Bolm-Audorff U (2007) Relationship between cumulative spinal load due to materials handling and lumbar disc herniation—Results of the German Spine Study [in German: Zusammenhang zwischen lumbalen Prolapserkrankungen und der kumulativen Wirbelsäulenbelastung durch Lastenhandhabungen und Tätigkeiten in Rumpfbeugehaltung – Ergebnisse der Deutschen Wirbelsäulenstudie]. Zbl Arbeitsmed 57:290–303

    Article  Google Scholar 

  • Seidler A, Bergmann A, Jäger M, Ellegast R, Ditchen D, Elsner G, Grifka J, Haerting J, Hofmann F, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Schumann B, Bolm-Audorff U (2009) Cumulative occupational lumbar load and lumbar disc disease—results of a German multi-center case-control study (EPILIFT). BMC Musculoskel Disord 10:48–60

    Article  Google Scholar 

  • Seidler A, Euler U, Bolm-Audorff U, Ellegast R, Grifka J, Haerting J, Jäger M, Michaelis M, Kuss O (2011) Physical workload and accelerated occurrence of lumbar spine diseases: risk and rate advancement periods in a German multicenter case-control study. Scand J Work Environ Health 37:30–36

    Article  Google Scholar 

  • Seidler A, Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast R, Euler U, Haerting J, Haufe E, Jähnichen S, Jordan C, Kersten N, Kuss O, Lundershausen N, Luttmann A, Morfeld P, Petereit-Haack G, Schäfer K, Voß J, Jäger M (2012) Extended evaluation of the German Spine Study with the aim of deriving appropriate reference values, final report. German Statutory Accident Insurance (ed) [in German: Erweiterte Auswertung der Deutschen Wirbelsäulenstudie mit dem Ziel der Ableitung geeigneter Richtwerte, Abschlussbericht]. Deutsche Gesetzliche Unfallversicherung (DGUV), Sankt Augustin, Germany

    Google Scholar 

  • Seidler A, Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast R, Euler U, Haerting J, Haufe E, Jordan C, Kersten N, Kuß O, Luttmann A, Morfeld P, Schäfer K, Jäger M (2014a) Dose-response relationship between physical exposure and lumbar spine disease—Results of the EPILIFT Exposure Criteria Study [in German: Dosis-Wirkung-Zusammenhang zwischen physischen Belastungen und lumbalen Bandscheibenerkrankungen – Ergebnisse der DWS-Richtwertestudie]. Zbl Arbeitsmed 64:239–257

    Article  Google Scholar 

  • Seidler A, Bergmann A, Bolm-Audorff U, Ditchen D, Ellegast R, Euler U, Haerting J, Haufe E, Jordan C, Kersten N, Kuss O, Luttmann A, Morfeld P, Schäfer K, Jäger M (2014b) The EPILIFT Exposure Criteria Study: Development of dose models for the quantitative description of the cumulative load on the spine due to physical exposures in the sense of occupational disease OD 2108. In: Grosser V, Schiltenwolf M, Thomann K-D (eds) Occupational disease “Intervertebral disc-related diseases of the lumbar spine” (OD 2108) [in German: DWS-Richtwertestudie: Entwicklung von Dosismodellen zur quantitativen Beschreibung der kumulativen Belastung der Wirbelsäule durch physische Belastungen im Sinne der BK 2108. In: Grosser V, Schiltenwolf M, Thomann K-D (Hrsg) Berufskrankheit „Bandscheibenbedingte Erkrankungen der Lendenwirbelsäule“ (BK 2108)]. Referenz-Verlag, Frankfurt aM, Germany, pp 105–133

    Google Scholar 

  • Shirado O, Kaneda K, Tadano S, Ishikawa H, McAfee PC, Warden KE (1992) Influence of disc degeneration on mechanism of thoracolumbar burst fractures. Spine 17:286–292

    Article  Google Scholar 

  • Sonoda T (1962) Studies on the strength for compression, tension, and torsion of the human vertebral column. J Kyoto Pref Univ Med 71:659–702

    Google Scholar 

  • Snook SH (1978) The design of manual handling tasks. Ergonomics 21:963–985

    Article  Google Scholar 

  • Snook SH, Ciriello VM (1991) The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics 34:1197–1213

    Article  Google Scholar 

  • Tichauer ER (1978) The biomechanical basis of ergonomics. Wiley, New York NY, USA

    Google Scholar 

  • Ulm K (1991) A statistical method for assessing a threshold in epidemiologic studies. Stat Med 10:341–349

    Article  Google Scholar 

  • Venning PJ, Walter SO, Stitt LW (1987) Personal and job-related factors as determinants of incidence of back injuries among nursing personnel. J Occup Med 29:820–825

    Google Scholar 

  • Vergroesen P-PA, van der Veen AJ, van Royen BJ, Kingma I, Smit TH (2014) Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Europ Spine J 23:2359–2368

    Article  Google Scholar 

  • Videmann T, Nurminen T, Tola S, Kuorinka I, Vanharanta H, Troup JDG (1984) Low-back pain in nurses and some loading factors of work. Spine 9:400–404

    Article  Google Scholar 

  • Waters ThR, Putz-Anderson V, Garg A, Fine LJ (1993) Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36:749–776

    Article  Google Scholar 

  • Waters TR, Putz-Anderson V, Garg A (1994) Application manual for the revised NIOSH lifting equation. National Institute for Occupational Safety and Health, Department Health and Human Services, No. 94–110. Cincinnati OH, USA

    Google Scholar 

  • Waters TR, Lu M-L, Piacitelli LA, Werren D, Deddens JA (2011) Efficacy of the revised NIOSH lifting equation to predict risk of low back pain due to manual lifting: expanded cross-sectional analysis. J Occup Environ Med 9:1061–1067

    Article  Google Scholar 

  • Werner HJ (1996) The non-invasive determination of stiffness and failure load of human vertebral bodies [in German: Die nichtinvasive Ermittlung von Steifigkeit und Versagenslast humaner Wirbelkörper]. Shaker, Aachen, Germany

    Google Scholar 

  • White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia PA, USA

    Google Scholar 

  • Wickström G, Niskanen T, Riihimäki H (1985) Strain on the back in concrete reinforcement work. Brit J Industr Med 42:233–239

    Google Scholar 

  • Wilke H-J, Neef P, Caimi M, Hoogland T, Claes E (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    Article  Google Scholar 

  • Wyss T, Ulrich SP (1954) Strength tests and directed extension treatment of the lumbar spine in consideration of the herniated disc. Quaterly of the Nature Research Society in Zurich, vol 99, Suppl No 3/4 [in German: Festigkeitsuntersuchungen und gezielte Extensionsbehandlung der Lendenwirbelsäule unter Berücksichtigung des Bandscheibenvorfalles. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, Jg 99, Beiheft Nr. 3/4]. Gebr Fretz AG, Zürich, Switzerland

    Google Scholar 

  • Yoshida T, Goto M, Nagira T, Ono A, Fujita I, Goda S, Bando M (1971) Studies in low back pain among workers in small scale construction companies. Jap J Industr Health 13:37–43

    Google Scholar 

  • Zweiling K (1996) A concept for determining and documenting spinal loads in the work process [in German: Ein Konzept zur Bestimmung und Dokumentation von Wirbelsäulenbelastungen im Arbeitsprozeß]. Die BG:414–417

    Google Scholar 

Download references

Acknowledgements

The following two studies were supported by grants from the the German Social Accident Insurance (DGUV), Sankt Augustin, Germany:

The German Spine Study EPILIFT—Epidemiological case–control study to investigate dose–response relationships in occupational disease 2108;

The German Spine Study 2 (EPILIFT2)—Extended evaluation of the German Spine Study with the aim of deriving appropriate reference values.

The MEGAPHYS joint project—Multilevel hazard analysis of physical exposures at work—was supported by grants from the Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany, and from the German Social Accident Insurance (DGUV), Sankt Augustin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jäger .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jäger, M. (2023). Biomechanical Evaluation—Criteria of Overload. In: The Dortmund Lumbar Load Atlas. Springer, Cham. https://doi.org/10.1007/978-3-031-06349-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06349-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06348-0

  • Online ISBN: 978-3-031-06349-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics