Skip to main content

The Role of Inflammatory Cells in Tumor Angiogenesis

  • Chapter
  • First Online:
The Extracellular Matrix and the Tumor Microenvironment

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 11))

  • 439 Accesses

Abstract

Tumor growth depends on angiogenesis. The complex tissue environment surrounding tumor cells, which is composed of a variety of resident and infiltrating host cells, secreted factors and extracellular matrix proteins, influences tumor angiogenesis and progression. Moreover, the tumor microenvironment contributes to determining therapeutic responses and resistance to therapy. The ability to block tumor resistance is related to the understanding of the cellular and molecular pathways activated in the tumor microenvironment. Novel emerging targeted therapeutic strategies are based on the combination of different antitumor approaches with the aim of resolving refractory tumors and improving cancer treatment efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann M, Tsuda A, Secomb TW, Mentzer SJ, Konerding MA (2013) Intussusceptive remodeling of vascular branch angles in chemically-induced murine colitis. Microvasc Res 87:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Akwii RG, Sajib MS, Zahra FT, Mikelis CM (2019) Role of angiopoietin-2 in vascular physiology and pathophysiology. Cell 8(5):471

    Article  CAS  Google Scholar 

  • Aprile G, Rijavec E, Fontanella C, Rihawi K, Grossi F (2014) Ramucirumab: preclinical research and clinical development. Onco Targets Ther 7:1997–2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1(7):1356–1370

    Article  CAS  PubMed  Google Scholar 

  • Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19(5):329–337

    Article  CAS  PubMed  Google Scholar 

  • Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L (2019) Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel) 11(4):461

    Article  CAS  Google Scholar 

  • Beatty G, Paterson Y (2001) IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol 166(4):2276–2282

    Article  CAS  PubMed  Google Scholar 

  • Berra E, Roux D, Richard DE, Pouyssegur J (2001) Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep 2(7):615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F (2017) Bridging bio-Nano science and cancer nanomedicine. ACS Nano 11(10):9594–9613

    Article  CAS  PubMed  Google Scholar 

  • Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M (1994) T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci U S A 91(8):2890–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brindle NP, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98(8):1014–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno A, Bassani B, D’Urso DG, Pitaku I, Cassinotti E, Pelosi G et al (2018) Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 32(10):5365–5377

    Article  CAS  PubMed  Google Scholar 

  • Cabrero-de Las Heras S, Martinez-Balibrea E (2018) CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J Gastroenterol 24(42):4738–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Wang D, Zhang G, Guo X (2019) The role of PD-1/PD-L1 axis in Treg development and function: implications for cancer immunotherapy. Onco Targets Ther 12:8437–8445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Xue L (2004) Angiostatin. Semin Thromb Hemost 30(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carus A, Ladekarl M, Hager H, Nedergaard BS, Donskov F (2013) Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer. Br J Cancer 108(10):2116–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121(4):1313–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerecedo D, Martinez-Vieyra I, Lopez-Villegas EO, Hernandez-Cruz A, Loza-Huerta ADC (2021) Heterogeneity of neutrophils in arterial hypertension. Exp Cell Res 402(2):112577

    Article  CAS  PubMed  Google Scholar 

  • Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6(3):1670–1690

    Article  Google Scholar 

  • Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X et al (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 17(23):7230–7239

    Article  CAS  PubMed  Google Scholar 

  • Chiron M, Bagley RG, Pollard J, Mankoo PK, Henry C, Vincent L et al (2014) Differential antitumor activity of aflibercept and bevacizumab in patient-derived xenograft models of colorectal cancer. Mol Cancer Ther 13(6):1636–1644

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Gyamfi J, Jang H, Koo JS (2018) The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol 33(2):133–145

    CAS  PubMed  Google Scholar 

  • Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruiter EJ, Ooft ML, Devriese LA, Willems SM (2017) The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Onco Targets Ther 6(11):e1356148

    Google Scholar 

  • Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM et al (2018) Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): a review. Biosens Bioelectron 110:23–37

    Article  CAS  PubMed  Google Scholar 

  • Dell’Eva R, Pfeffer U, Indraccolo S, Albini A, Noonan D (2002) Inhibition of tumor angiogenesis by angiostatin: from recombinant protein to gene therapy. Endothelium 9(1):3–10

    Article  PubMed  Google Scholar 

  • DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Liu W, He T, Hong Z, Yi F, Wei Y et al (2019) Comparative efficacy, safety, and costs of sorafenib vs. sunitinib as first-line therapy for metastatic renal cell carcinoma: a systematic review and meta-analysis. Front Oncol. 9:479

    Article  PubMed  PubMed Central  Google Scholar 

  • Depner C, Zum Buttel H, Bogurcu N, Cuesta AM, Aburto MR, Seidel S et al (2016) EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat Commun 7:12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 44-46:94–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eklund L, Kangas J, Saharinen P (2017) Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond) 131(1):87–103

    Article  CAS  Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson L, Li H, Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15(4):197–204

    Article  CAS  PubMed  Google Scholar 

  • Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E et al (2016) Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 22(11):1294–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Daquinag AC, Su F, Snyder B, Kolonin MG (2018) PDGFRalpha/PDGFRbeta signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 145(1):dev155861

    PubMed  PubMed Central  Google Scholar 

  • Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343

    Article  CAS  PubMed  Google Scholar 

  • Goede V, Coutelle O, Neuneier J, Reinacher-Schick A, Schnell R, Koslowsky TC et al (2010) Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br J Cancer 103(9):1407–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granot Z (2019) Neutrophils as a therapeutic target in cancer. Front Immunol 10:1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601

    Article  CAS  PubMed  Google Scholar 

  • Groth C, Arpinati L, Shaul ME, Winkler N, Diester K, Gengenbacher N et al (2021) Blocking migration of polymorphonuclear myeloid-derived suppressor cells inhibits mouse melanoma progression. Cancers (Basel) 13(4):726

    Article  CAS  Google Scholar 

  • Guidolin D, Tamma R, Annese T, Tortorella C, Ingravallo G, Gaudio F et al (2021) Different spatial distribution of inflammatory cells in the tumor microenvironment of ABC and GBC subgroups of diffuse large B cell lymphoma. Clin Exp Med 21(4):573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65(8):3437–3446

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhai L, Xue R, Shi J, Zeng Q, Gao C (2016) Mast cell Tryptase contributes to pancreatic cancer growth through promoting angiogenesis via activation of angiopoietin-1. Int J Mol Sci 17(6):834

    Article  PubMed Central  CAS  Google Scholar 

  • Gyanchandani R, Ortega Alves MV, Myers JN, Kim S (2013) A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma. Mol Cancer Res 11(12):1585–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham IH, Lee D, Hur H (2019) Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol 2019:6270784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamberg P, Verweij J, Sleijfer S (2010) (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor. Oncologist 15(6):539–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hang TC, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM et al (2013) Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics 12(12):3704–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich EL, Walser TC, Krysan K, Liclican EL, Grant JL, Rodriguez NL et al (2012) The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron 5(1):5–18

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo M, Martinez-Garcia M, Le Tourneau C, Massard C, Garralda E, Boni V et al (2018) First-in-human phase I study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin Cancer Res 24(7):1536–1545

    Article  CAS  PubMed  Google Scholar 

  • Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H et al (2019) Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Investig 99(6):777–792

    Article  CAS  PubMed  Google Scholar 

  • Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99(17):11393–11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE et al (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16(2):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu BE, Shen Y, Siegel PM (2020) Neutrophils: orchestrators of the malignant phenotype. Front Immunol 11:1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZQ, Zhao WH, Shimamura T (2007) Regulation of mast cell development by inflammatory factors. Curr Med Chem 14(28):3044–3050

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Lin D, Taniguchi CM (2017) Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci China Life Sci 60(10):1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HJ, Kim BJ, Kim JH, Kim HS (2017) The addition of bevacizumab in the first-line treatment for metastatic colorectal cancer: an updated meta-analysis of randomized trials. Oncotarget 8(42):73009–73016

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES (2019) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512

    Article  PubMed  Google Scholar 

  • Jeronimo A, Rodrigues G, Vilas-Boas F, Martins GG, Bagulho A, Real C (2017) Hydrogen peroxide regulates angiogenesis-related factors in tumor cells. Biochem Cell Biol 95(6):679–685

    Article  CAS  PubMed  Google Scholar 

  • Ji WR, Castellino FJ, Chang Y, Deford ME, Gray H, Villarreal X et al (1998) Characterization of Kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J 12(15):1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Jia YH, Dong XS, Wang XS (2004) Effects of endostatin on expression of vascular endothelial growth factor and its receptors and neovascularization in colonic carcinoma implanted in nude mice. World J Gastroenterol 10(22):3361–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL, Jackson CL, Angelini GD, George SJ (1998) Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 18(11):1707–1715

    Article  CAS  PubMed  Google Scholar 

  • Joshi S (2020) Targeting the tumor microenvironment in neuroblastoma: recent advances and future directions. Cancers (Basel) 12(8):2057

    Article  CAS  Google Scholar 

  • Kanbe N, Tanaka A, Kanbe M, Itakura A, Kurosawa M, Matsuda H (1999) Human mast cells produce matrix metalloproteinase 9. Eur J Immunol 29(8):2645–2649

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Mittal S, McGee K, Alfaro-Munoz KD, Majd N, Balasubramaniyan V et al (2020) Role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance. Int J Mol Sci 21(6):1954

    Article  CAS  PubMed Central  Google Scholar 

  • Kim YM, Jang JW, Lee OH, Yeon J, Choi EY, Kim KW et al (2000) Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60(19):5410–5413

    CAS  PubMed  Google Scholar 

  • Komi DEA, Redegeld FA (2020) Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol 58(3):313–325

    Article  CAS  PubMed  Google Scholar 

  • Koustoulidou S, Hoorens MWH, Dalm SU, Mahajan S, Debets R, Seimbille Y et al (2021) Cancer-associated fibroblasts as players in cancer development and progression and their role in targeted radionuclide imaging and therapy. Cancers (Basel) 13(5):1100

    Article  CAS  Google Scholar 

  • Krystel-Whittemore M, Dileepan KN, Wood JG (2015) Mast cell: a multi-functional master cell. Front Immunol 6:620

    PubMed  Google Scholar 

  • Kubouchi Y, Yurugi Y, Wakahara M, Sakabe T, Haruki T, Nosaka K et al (2018) Podoplanin expression in cancer-associated fibroblasts predicts unfavourable prognosis in patients with pathological stage IA lung adenocarcinoma. Histopathology 72(3):490–499

    Article  PubMed  Google Scholar 

  • Kuczynski EA, Yin M, Bar-Zion A, Lee CR, Butz H, Man S et al (2016) Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J Natl Cancer Inst 108(8):djw030

    Article  PubMed Central  CAS  Google Scholar 

  • Laddaga FE, Ingravallo G, Mestice A, Tamma R, Perrone T, Maiorano E et al (2021) Correlation between circulating blood and microenvironment T lymphocytes in diffuse large B-cell lymphomas. J Clin Pathol. https://doi.org/10.1136/jclinpath-2020-207048

  • Lan HR, Du WL, Liu Y, Mao CS, Jin KT, Yang X (2021) Role of immune regulatory cells in breast cancer: foe or friend? Int Immunopharmacol 96:107627

    Article  CAS  PubMed  Google Scholar 

  • Larsen SK, Gao Y, Basse PH (2014) NK cells in the tumor microenvironment. Crit Rev Oncog 19(1–2):91–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawler J (2002) Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2(5):a006627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee HJ, Cho CH, Hwang SJ, Choi HH, Kim KT, Ahn SY et al (2004) Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J 18(11):1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612

    Article  CAS  PubMed  Google Scholar 

  • Li Y, He Y, Butler W, Xu L, Chang Y, Lei K et al (2019) Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Sci Transl Med 11(521):eaax0428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Lu M, Shi J, Hua L, Gong Z, Li Q et al (2020a) Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status. Nat Commun 11(1):4387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Jiang P, Wei S, Xu X, Wang J (2020b) Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 19(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang J, Piao Y, Holmes L, Fuller GN, Henry V, Tiao N et al (2014) Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res 20(1):187–198

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Ni Y, He R, Liu W, Du J (2013) Clinical implications of fibroblast activation protein-alpha in non-small cell lung cancer after curative resection: a new predictor for prognosis. J Cancer Res Clin Oncol 139(9):1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Chen YS, Yao YD, Chen JQ, Chen JN, Huang SY et al (2015) CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget 6(33):34758–34773

    Article  PubMed  PubMed Central  Google Scholar 

  • Linares J, Marin-Jimenez JA, Badia-Ramentol J, Calon A (2020) Determinants and functions of CAFs secretome during cancer progression and therapy. Front Cell Dev Biol 8:621070

    Article  PubMed  Google Scholar 

  • Liu T, Zhou L, Li D, Andl T, Zhang Y (2019) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yang Z, Lu W, Chen Z, Chen L, Han S et al (2020) Chemokines and chemokine receptors: a new strategy for breast cancer therapy. Cancer Med 9(11):3786–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logue OC, McGowan JW, George EM, Bidwell GL 3rd. (2016) Therapeutic angiogenesis by vascular endothelial growth factor supplementation for treatment of renal disease. Curr Opin Nephrol Hypertens 25(5):404–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciel TT, Moura IC, Hermine O (2015) The role of mast cells in cancers. F1000Prime Rep 7:09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 88(20):9267–9271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimela NR, Liu S, Zhang Y (2019) Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 17:1–13

    Article  CAS  PubMed  Google Scholar 

  • Malech HL, Deleo FR, Quinn MT (2014) The role of neutrophils in the immune system: an overview. Methods Mol Biol 1124:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew G, Hannan A, Hertzler-Schaefer K, Wang F, Feng GS, Zhong J et al (2016) Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor. Proc Natl Acad Sci U S A 113(46):13156–13161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer AM, Zhou B, Han ZC (2006) Roles of platelet factor 4 in hematopoiesis and angiogenesis. Growth Factors 24(4):242–252

    Article  CAS  PubMed  Google Scholar 

  • Medbury HJ, James V, Ngo J, Hitos K, Wang Y, Harris DC et al (2013) Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol 32(1):74–84

    CAS  PubMed  Google Scholar 

  • Melincovici CS, Bosca AB, Susman S, Marginean M, Mihu C, Istrate M et al (2018) Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Romanian J Morphol Embryol 59(2):455–467

    Google Scholar 

  • Montemagno C, Pages G (2020) Resistance to anti-angiogenic therapies: a mechanism depending on the time of exposure to the drugs. Front Cell Dev Biol 8:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Motomura K, Hagiwara A, Komi-Kuramochi A, Hanyu Y, Honda E, Suzuki M et al (2008) An FGF1:FGF2 chimeric growth factor exhibits universal FGF receptor specificity, enhanced stability and augmented activity useful for epithelial proliferation and radioprotection. Biochim Biophys Acta 1780(12):1432–1440

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ, Bukowski RM (2006) Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol 24(35):5601–5608

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Funauchi Y, Hayakawa K, Tanizawa T, Ae K, Matsumoto S et al (2019) Relative dose intensity of induction-phase pazopanib treatment of soft tissue sarcoma: its relationship with prognoses of pazopanib responders. J Clin Med 8(1):60

    Article  CAS  PubMed Central  Google Scholar 

  • Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norden AD, Schiff D, Ahluwalia MS, Lesser GJ, Nayak L, Lee EQ et al (2015) Phase II trial of triple tyrosine kinase receptor inhibitor nintedanib in recurrent high-grade gliomas. J Neuro-Oncol 121(2):297–302

    Article  CAS  Google Scholar 

  • Norrby K (2002) Mast cells and angiogenesis. APMIS 110(5):355–371

    Article  CAS  PubMed  Google Scholar 

  • Olson LE, Soriano P (2011) PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20(6):815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  CAS  PubMed  Google Scholar 

  • Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  • Paijens ST, Vledder A, de Bruyn M, Nijman HW (2021) Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 18(4):842–859

    Article  CAS  PubMed  Google Scholar 

  • Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patan S (1998) TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Philips GK, Atkins MB (2014) New agents and new targets for renal cell carcinoma. Am Soc Clin Oncol Educ Book:e222–e227

    Google Scholar 

  • Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14(11):1379–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99(9):1375–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA (2000) Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A 97(5):2202–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL et al (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7):1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F, Liu X, Chen J, Huang S, Wei W, Zou Y et al (2020) Anti-TGF-beta attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer. J Cancer 11(9):2580–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Moreno IG, Ibarra-Sanchez A, Castillo-Arellano JI, Blank U, Gonzalez-Espinosa C (2020) Mast cells localize in hypoxic zones of tumors and secrete CCL-2 under hypoxia through activation of L-type calcium channels. J Immunol 204(4):1056–1068

    Article  CAS  PubMed  Google Scholar 

  • Rauniyar K, Jha SK, Jeltsch M (2018) Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front Bioeng Biotechnol 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Redlitz A, Daum G, Sage EH (1999) Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res 36(1):28–34

    Article  CAS  PubMed  Google Scholar 

  • Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21(1):44–52

    Article  CAS  PubMed  Google Scholar 

  • Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C et al (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44

    Article  CAS  PubMed  Google Scholar 

  • Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4):840

    Article  CAS  PubMed Central  Google Scholar 

  • Rong X, Huang B, Qiu S, Li X, He L, Peng Y (2016) Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget 7(51):83976–83986

    Article  PubMed  PubMed Central  Google Scholar 

  • Semrad TJ, Kim EJ, Tanaka MS, Sands J, Roberts C, Burich RA et al (2017) Phase II study of Dovitinib in patients progressing on anti-vascular endothelial growth factor therapy. Cancer Treat Res Commun 10:21–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V et al (2012) Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2(3):270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serova M, Tijeras-Raballand A, Dos Santos C, Martinet M, Neuzillet C, Lopez A et al (2016) Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib. Oncotarget 7(25):38467–38486

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi YH, Fang WG (2004) Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol 10(8):1082–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25(8):911–920

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 105(7):2640–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 106(16):6742–6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha S, Noh JM, Kim SY, Ham HY, Kim YJ, Yun YJ et al (2016) Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. Onco Targets Ther 5(1):e1067744

    Google Scholar 

  • Singh AD, Parmar S (2015) Ramucirumab (Cyramza): a breakthrough treatment for gastric cancer. P T 40(7):430–468

    PubMed  PubMed Central  Google Scholar 

  • Stacker SA, Achen MG (2018) Emerging roles for VEGF-D in human disease. Biomol Ther 8(1):1

    Google Scholar 

  • Storkebaum E, Carmeliet P (2004) VEGF: a critical player in neurodegeneration. J Clin Invest 113(1):14–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuttfeld E, Ballmer-Hofer K (2009) Structure and function of VEGF receptors. IUBMB Life 61(9):915–922

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Zhang S, Zhao X, Zhang W, Hao X (2004) Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol 25(6):1609–1614

    PubMed  Google Scholar 

  • Sun H, Zhang D, Yao Z, Lin X, Liu J, Gu Q et al (2017) Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. Cancer Biol Ther 18(4):205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suyama K, Iwase H (2018) Lenvatinib: a promising molecular targeted agent for multiple cancers. Cancer Control 25(1):1073274818789361

    Article  PubMed  PubMed Central  Google Scholar 

  • Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamma R, Annese T, Ruggieri S, Brunetti O, Longo V, Cascardi E et al (2019a) Inflammatory cells infiltrate and angiogenesis in locally advanced and metastatic cholangiocarcinoma. Eur J Clin Investig 49(5):e13087

    Article  CAS  Google Scholar 

  • Tamma R, Ingravallo G, Albano F, Gaudio F, Annese T, Ruggieri S et al (2019b) STAT-3 RNAscope determination in human diffuse large B-cell lymphoma. Transl Oncol 12(3):545–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamma R, Ingravallo G, Gaudio F, Annese T, Albano F, Ruggieri S et al (2020) STAT3, tumor microenvironment, and microvessel density in diffuse large B cell lymphomas. Leuk Lymphoma 61(3):567–574

    Article  CAS  PubMed  Google Scholar 

  • Tamma R, Ingravallo G, Annese T, Giorgis MDE, DI Giovanni F, Gaudio F et al (2021) Tumor cell microenvironment and microvessel density analysis in MALT type lymphoma. Anticancer Res 41(3):1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C et al (2021) Pivotal role for Cxcr2 in regulating tumor-associated neutrophil in breast cancer. Cancers (Basel) 13(11):2584

    Article  CAS  Google Scholar 

  • Tysnes BB, Bjerkvig R (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775(2):283–297

    CAS  PubMed  Google Scholar 

  • Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175

    Article  PubMed  Google Scholar 

  • Virchow R (1989) Cellular pathology. As based upon physiological and pathological histology. Lecture XVI--Atheromatous affection of arteries. 1858. Nutr Rev 47(1):23–25

    Article  CAS  PubMed  Google Scholar 

  • Voronov E, Carmi Y, Apte RN (2014) The role IL-1 in tumor-mediated angiogenesis. Front Physiol 5:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Lu J, You Q, Huang H, Chen Y, Liu K (2016) The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget 7(33):53269–53276

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li D, Cang H, Guo B (2019a) Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med 8(10):4709–4721

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Rojas-Quintero J, Wilder J, Tesfaigzi Y, Zhang D, Owen CA (2019b) Tissue inhibitor of metalloproteinase-1 promotes polymorphonuclear neutrophil (PMN) pericellular proteolysis by anchoring matrix metalloproteinase-8 and -9 to PMN surfaces. J Immunol 202(11):3267–3281

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Liu W, Ly D, Xu H, Qu L, Zhang L (2019c) Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol 16(1):6–18

    Article  CAS  PubMed  Google Scholar 

  • Warren BA, Shubik P (1966) The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab Investig 15(2):464–478

    CAS  PubMed  Google Scholar 

  • Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welker P, Grabbe J, Zuberbier T, Guhl S, Henz BM (2000) Mast cell and myeloid marker expression during early in vitro mast cell differentiation from human peripheral blood mononuclear cells. J Invest Dermatol 114(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Wellman TL, Jenkins J, Penar PL, Tranmer B, Zahr R, Lounsbury KM (2004) Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries. FASEB J 18(2):379–381

    Article  CAS  PubMed  Google Scholar 

  • Wenzel D, Schmidt A, Reimann K, Hescheler J, Pfitzer G, Bloch W et al (2006) Endostatin, the proteolytic fragment of collagen XVIII, induces vasorelaxation. Circ Res 98(9):1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Wickstrom SA, Alitalo K, Keski-Oja J (2005) Endostatin signaling and regulation of endothelial cell-matrix interactions. Adv Cancer Res 94:197–229

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li Q, Li XY, Yang QY, Xu WW, Liu GL (2012) Short-term anti-vascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res 31:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan N (2019) Tumour-associated macrophages (TAMs) in colon cancer and how to reeducate them. J Immunol Res 2019:2368249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W et al (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 8(5):e64159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lu Y, Lin YY, Zheng ZY, Fang JH, He S et al (2016a) Vascular mimicry formation is promoted by paracrine TGF-beta and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett 383(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W et al (2016b) FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res 76(14):4124–4135

    Article  CAS  PubMed  Google Scholar 

  • Yang SB, Gao KD, Jiang T, Cheng SJ, Li WB (2017) Bevacizumab combined with chemotherapy for glioblastoma: a meta-analysis of randomized controlled trials. Oncotarget 8(34):57337–57344

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JG, Wang LL, Ma DC (2018a) Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol 180(3):321–334

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kumar A, Vilgelm AE, Chen SC, Ayers GD, Novitskiy SV et al (2018b) Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms. Cancer Immunol Res 6(10):1186–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Blokhuis B, Derks Y, Kumari S, Garssen J, Redegeld F (2018) Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models. Onco Targets Ther 7(11):e1504729

    Google Scholar 

  • Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H et al (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zatterstrom UK, Felbor U, Fukai N, Olsen BR (2000) Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct Funct 25(2):97–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX et al (2010) Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 16(13):3420–3430

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E et al (2020) Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab 31(6):1136–53 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  • Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S et al (2010) Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 70(1):299–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione “Il Sorriso di Antonio,” Corato, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamma, R., Annese, T., Ribatti, D. (2022). The Role of Inflammatory Cells in Tumor Angiogenesis. In: Kovalszky, I., Franchi, M., Alaniz, L.D. (eds) The Extracellular Matrix and the Tumor Microenvironment. Biology of Extracellular Matrix, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-99708-3_14

Download citation

Publish with us

Policies and ethics