Skip to main content

Advertisement

Log in

The Inflammatory Tumor Microenvironment, Epithelial Mesenchymal Transition and Lung Carcinogenesis

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The inflammatory tumor microenvironment (TME) has many roles in tumor progression and metastasis, including creation of a hypoxic environment, increased angiogenesis and invasion, changes in expression of microRNAs (miRNAs) and an increase in a stem cell phenotype. Each of these has an impact on epithelial mesenchymal transition (EMT), particularly through the downregulation of E-cadherin. Here we review seminal work and recent findings linking the role of inflammation in the TME, EMT and lung cancer initiation, progression and metastasis. Finally, we discuss the potential of targeting aspects of inflammation and EMT in cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbieri SS, Weksler BB (2007) Tobacco smoke cooperates with interleukin-1beta to alter beta-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo. FASEB J 21:1831–1843

    Article  PubMed  CAS  Google Scholar 

  2. Zienolddiny S, Ryberg D, Maggini V, Skaug V, Canzian F et al (2004) Polymorphisms of the interleukin-1 beta gene are associated with increased risk of non-small cell lung cancer. Int J Cancer 109:353–356

    Article  PubMed  CAS  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  4. Kuper H, Adami HO, Trichopoulos D (2000) Infections as a major preventable cause of human cancer. J Intern Med 248:171–183

    Article  PubMed  CAS  Google Scholar 

  5. Koehne CH, Dubois RN (2004) COX-2 inhibition and colorectal cancer. Semin Oncol 31:12–21

    Article  PubMed  CAS  Google Scholar 

  6. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP et al (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    Article  PubMed  CAS  Google Scholar 

  7. Apte RN, Krelin Y, Song X, Dotan S, Recih E et al (2006) Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur J Cancer 42:751–759

    Article  PubMed  CAS  Google Scholar 

  8. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  PubMed  CAS  Google Scholar 

  9. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  PubMed  CAS  Google Scholar 

  10. Giatromanolaki A, Sivridis E, Koukourakis MI (2007) The Pathology of Tumor Stromatogenesis. Cancer Biol Ther 6

  11. Akashi T, Minami J, Ishige Y, Eishi Y, Takizawa T et al (2005) Basement membrane matrix modifies cytokine interactions between lung cancer cells and fibroblasts. Pathobiology 72:250–259

    Article  PubMed  CAS  Google Scholar 

  12. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  13. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  14. Pokutta S, Weis WI (2007) Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23:237–261

    Article  PubMed  CAS  Google Scholar 

  15. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    Article  PubMed  CAS  Google Scholar 

  16. Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160

    Article  PubMed  CAS  Google Scholar 

  17. O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85:473–483

    Article  PubMed  Google Scholar 

  18. Kim V, Rogers TJ, Criner GJ (2008) New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 5:478–485

    Article  PubMed  CAS  Google Scholar 

  19. Samet JM (2000) Does idiopathic pulmonary fibrosis increase lung cancer risk? Am J Respir Crit Care Med 161:1–2

    PubMed  CAS  Google Scholar 

  20. Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1 - an intimate relationship. Eur J Cell Biol 87:601–615

    Article  PubMed  CAS  Google Scholar 

  21. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  PubMed  CAS  Google Scholar 

  22. Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293:L525–L534

    Article  PubMed  CAS  Google Scholar 

  23. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    Article  PubMed  CAS  Google Scholar 

  24. Adamson IY, Young L, Bowden DH (1988) Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol 130:377–383

    PubMed  CAS  Google Scholar 

  25. Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 100:8621–8623

    Article  PubMed  CAS  Google Scholar 

  26. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A 100:8430–8435

    Article  PubMed  CAS  Google Scholar 

  27. Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ (2008) Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol 38:95–104

    Article  PubMed  CAS  Google Scholar 

  28. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH et al (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174:175–183

    Article  PubMed  CAS  Google Scholar 

  29. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  PubMed  CAS  Google Scholar 

  30. Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNFalpha in pulmonary pathophysiology. Respir Res 7:125

    Article  PubMed  CAS  Google Scholar 

  31. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  PubMed  CAS  Google Scholar 

  32. Min C, Eddy SF, Sherr DH, Sonenshein GE (2008) NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104:733–744

    Article  PubMed  CAS  Google Scholar 

  33. Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT et al (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66:208–217

    Article  PubMed  Google Scholar 

  34. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS et al (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    PubMed  CAS  Google Scholar 

  35. Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E et al (2005) Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res 65:6275–6281

    Article  PubMed  CAS  Google Scholar 

  36. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K et al (1998) Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58:3761–3764

    PubMed  CAS  Google Scholar 

  37. Krysan K, Dalwadi H, Sharma S, Pold M, Dubinett S (2004) Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res 64:6359–6362

    Article  PubMed  CAS  Google Scholar 

  38. Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490

    PubMed  CAS  Google Scholar 

  39. Dohadwala M, Batra RK, Luo J, Lin Y, Krysan K et al (2002) Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. J Biol Chem 277:50828–50833

    Article  PubMed  CAS  Google Scholar 

  40. Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK et al (2006) Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res 66:5338–5345

    Article  PubMed  CAS  Google Scholar 

  41. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  42. Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    PubMed  CAS  Google Scholar 

  43. Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11:834–848

    Article  PubMed  CAS  Google Scholar 

  44. Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8:404–410

    Article  PubMed  CAS  Google Scholar 

  45. Trusolino L, Bertotti A, Comoglio PM MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11: 834–848

  46. Siegfried JM, Weissfeld LA, Luketich JD, Weyant RJ, Gubish CT et al (1998) The clinical significance of hepatocyte growth factor for non-small cell lung cancer. Ann Thorac Surg 66:1915–1918

    Article  PubMed  CAS  Google Scholar 

  47. Siegfried JM, Luketich JD, Stabile LP, Christie N, Land SR (2004) Elevated hepatocyte growth factor level correlates with poor outcome in early-stage and late-stage adenocarcinoma of the lung. Chest 125:116S–119S

    Article  PubMed  CAS  Google Scholar 

  48. Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25:3534–3545

    Article  PubMed  CAS  Google Scholar 

  49. Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K et al (2001) Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20:8125–8135

    Article  PubMed  CAS  Google Scholar 

  50. Kominsky SL, Argani P, Korz D, Evron E, Raman V et al (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22:2021–2033

    Article  PubMed  CAS  Google Scholar 

  51. Toschi L, Janne PA (2008) Single-agent and combination therapeutic strategies to inhibit hepatocyte growth factor/MET signaling in cancer. Clin Cancer Res 14:5941–5946

    Article  PubMed  CAS  Google Scholar 

  52. Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W et al (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11:8686–8698

    Article  PubMed  CAS  Google Scholar 

  53. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K et al (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66:944–950

    Article  PubMed  CAS  Google Scholar 

  54. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  55. Krysan K, Lee JM, Dohadwala M, Gardner BK, Reckamp KL et al (2008) Inflammation, epithelial to mesenchymal transition, and epidermal growth factor receptor tyrosine kinase inhibitor resistance. J Thorac Oncol 3:107–110

    Article  PubMed  Google Scholar 

  56. Apte RN, Voronov E (2002) Interleukin-1–a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 12:277–290

    Article  PubMed  CAS  Google Scholar 

  57. Colasante A, Mascetra N, Brunetti M, Lattanzio G, Diodoro M et al (1997) Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small-cell lung tumors. Am J Respir Crit Care Med 156:968–973

    PubMed  CAS  Google Scholar 

  58. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA et al (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419

    Article  PubMed  CAS  Google Scholar 

  59. Krelin Y, Voronov E, Dotan S, Elkabets M, Reich E et al (2007) Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 67:1062–1071

    Article  PubMed  CAS  Google Scholar 

  60. Giavazzi R, Garofalo A, Bani MR, Abbate M, Ghezzi P et al (1990) Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res 50:4771–4775

    PubMed  CAS  Google Scholar 

  61. Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E et al (2008) Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc 5:811–815

    Article  PubMed  Google Scholar 

  62. Lewis AM, Varghese S, Xu H, Alexander HR (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 4:48

    Article  PubMed  Google Scholar 

  63. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Article  PubMed  CAS  Google Scholar 

  64. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  65. Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  PubMed  CAS  Google Scholar 

  66. Fitzpatrick SF, Tambuwala MM, Bruning U, Schaible B, Scholz CC et al (2011) An intact canonical NF-kappaB pathway is required for inflammatory gene expression in response to hypoxia. J Immunol 186:1091–1096

    Article  PubMed  CAS  Google Scholar 

  67. Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ et al (2009) HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest 119:2160–2170

    Article  PubMed  CAS  Google Scholar 

  68. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820

    PubMed  CAS  Google Scholar 

  69. Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC et al (2006) Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66:3567–3575

    Article  PubMed  CAS  Google Scholar 

  70. Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66:2725–2731

    Article  PubMed  CAS  Google Scholar 

  71. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10:295–305

    Article  PubMed  CAS  Google Scholar 

  72. Gort EH, van Haaften G, Verlaan I, Groot AJ, Plasterk RH et al (2008) The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene 27:1501–1510

    Article  PubMed  CAS  Google Scholar 

  73. Hung JJ, Yang MH, Hsu HS, Hsu WH, Liu JS et al (2009) Prognostic significance of hypoxia-inducible factor-1alpha, TWIST1 and Snail expression in resectable non-small cell lung cancer. Thorax 64:1082–1089

    Article  PubMed  Google Scholar 

  74. Luo D, Wang J, Li J, Post M (2011) Mouse snail is a target gene for HIF. Mol Cancer Res 9:234–245

    Article  PubMed  CAS  Google Scholar 

  75. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105:6392–6397

    Article  PubMed  CAS  Google Scholar 

  76. Chen J, Imanaka N, Griffin JD (2010) Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 102:351–360

    Article  PubMed  CAS  Google Scholar 

  77. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  78. Jiang YG, Luo Y, He DL, Li X, Zhang LL et al (2007) Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol 14:1034–1039

    Article  PubMed  CAS  Google Scholar 

  79. Zhou G, Dada LA, Wu M, Kelly A, Trejo H et al (2009) Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol 297:L1120–L1130

    Article  PubMed  CAS  Google Scholar 

  80. Chen Y, Li D, Liu H, Xu H, Zheng H et al (2011) Notch-1 signaling facilitates survivin expression in human non-small cell lung cancer cells. Cancer Biol Ther 11:14–21

    Article  PubMed  CAS  Google Scholar 

  81. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  PubMed  CAS  Google Scholar 

  82. Huang CH, Yang WH, Chang SY, Tai SK, Tzeng CH et al (2009) Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 11:1371–1382

    PubMed  CAS  Google Scholar 

  83. Yoo YG, Christensen J, Huang LE (2011) HIF-1alpha confers aggressive malignant traits on human tumor cells independent of its canonical transcriptional function. Cancer Res 71:1244–1252

    Article  PubMed  CAS  Google Scholar 

  84. Albini A, Tosetti F, Benelli R, Noonan DM (2005) Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 65:10637–10641

    Article  PubMed  CAS  Google Scholar 

  85. Pold M, Zhu LX, Sharma S, Burdick MD, Lin Y et al (2004) Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res 64:1853–1860

    Article  PubMed  CAS  Google Scholar 

  86. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716

    Article  PubMed  CAS  Google Scholar 

  87. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94:3336–3340

    Article  PubMed  CAS  Google Scholar 

  88. Dohadwala M, Luo J, Zhu L, Lin Y, Dougherty GJ et al (2001) Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem 276:20809–20812

    Article  PubMed  CAS  Google Scholar 

  89. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383

    Article  PubMed  CAS  Google Scholar 

  90. Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC et al (2009) Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res 15:6820–6829

    Article  PubMed  CAS  Google Scholar 

  91. Yuan A, Yang PC, Yu CJ, Chen WJ, Lin FY et al (2000) Interleukin-8 messenger ribonucleic acid expression correlates with tumor progression, tumor angiogenesis, patient survival, and timing of relapse in non-small-cell lung cancer. Am J Respir Crit Care Med 162:1957–1963

    PubMed  CAS  Google Scholar 

  92. Strieter RM (2008) Out of the shadows: CXC chemokines in promoting aberrant lung cancer angiogenesis. Cancer Prev Res (Phila) 1:305–307

    Article  CAS  Google Scholar 

  93. Sun H, Chung WC, Ryu SH, Ju Z, Tran HT et al (2008) Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res (Phila) 1:316–328

    Article  CAS  Google Scholar 

  94. Wislez M, Fujimoto N, Izzo JG, Hanna AE, Cody DD et al (2006) High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 66:4198–4207

    Article  PubMed  CAS  Google Scholar 

  95. Framson PE, Sage EH (2004) SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92:679–690

    Article  PubMed  CAS  Google Scholar 

  96. Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P et al (2006) SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 66:7516–7523

    Article  PubMed  CAS  Google Scholar 

  97. Seno T, Harada H, Kohno S, Teraoka M, Inoue A et al (2009) Downregulation of SPARC expression inhibits cell migration and invasion in malignant gliomas. Int J Oncol 34:707–715

    Article  PubMed  CAS  Google Scholar 

  98. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312

    Article  PubMed  CAS  Google Scholar 

  99. De Wever O, Demetter P, Mareel M, Bracke M (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238

    Article  PubMed  CAS  Google Scholar 

  100. Sato N, Maehara N, Goggins M (2004) Gene expression profiling of tumor-stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Res 64:6950–6956

    Article  PubMed  CAS  Google Scholar 

  101. Rowe RG, Weiss SJ (2008) Breaching the basement membrane: who, when and how? Trends Cell Biol 18:560–574

    Article  PubMed  CAS  Google Scholar 

  102. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  PubMed  CAS  Google Scholar 

  103. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ (2005) Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280:11740–11748

    Article  PubMed  CAS  Google Scholar 

  104. Zhou BP, Deng J, Xia W, Xu J, Li YM et al (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931–940

    Article  PubMed  CAS  Google Scholar 

  105. Ota I, Li XY, Hu Y, Weiss SJ (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci U S A 106:20318–20323

    Article  PubMed  CAS  Google Scholar 

  106. Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781

    Article  PubMed  CAS  Google Scholar 

  107. Lien HC, Hsiao YH, Lin YS, Yao YT, Juan HF et al (2007) Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene 26:7859–7871

    Article  PubMed  CAS  Google Scholar 

  108. Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–827

    Article  PubMed  CAS  Google Scholar 

  109. Sasaki T, Miosge N, Timpl R (1999) Immunochemical and tissue analysis of protease generated neoepitopes of BM-40 (osteonectin, SPARC) which are correlated to a higher affinity binding to collagens. Matrix Biol 18:499–508

    Article  PubMed  CAS  Google Scholar 

  110. Tremble PM, Lane TF, Sage EH, Werb Z (1993) SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol 121:1433–1444

    Article  PubMed  CAS  Google Scholar 

  111. Ledda MF, Adris S, Bravo AI, Kairiyama C, Bover L et al (1997) Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nat Med 3:171–176

    Article  PubMed  CAS  Google Scholar 

  112. Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM et al (1998) SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res 58:5529–5536

    PubMed  CAS  Google Scholar 

  113. Koukourakis MI, Giatromanolaki A, Brekken RA, Sivridis E, Gatter KC et al (2003) Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Res 63:5376–5380

    PubMed  CAS  Google Scholar 

  114. Infante JR, Matsubayashi H, Sato N, Tonascia J, Klein AP et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25:319–325

    Article  PubMed  Google Scholar 

  115. Nomura S, Hashmi S, McVey JH, Ham J, Parker M et al (1989) Evidence for positive and negative regulatory elements in the 5′-flanking sequence of the mouse sparc (osteonectin) gene. J Biol Chem 264:12201–12207

    PubMed  CAS  Google Scholar 

  116. Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B et al (2008) Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68:9050–9059

    Article  PubMed  CAS  Google Scholar 

  117. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  118. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  119. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    Article  PubMed  CAS  Google Scholar 

  120. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    Article  PubMed  CAS  Google Scholar 

  121. Dalmay T, Edwards DR (2006) MicroRNAs and the hallmarks of cancer. Oncogene 25:6170–6175

    Article  PubMed  CAS  Google Scholar 

  122. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    Article  PubMed  CAS  Google Scholar 

  123. Oglesby IK, McElvaney NG, Greene CM (2010) MicroRNAs in inflammatory lung disease–master regulators or target practice? Respir Res 11:148

    Article  PubMed  CAS  Google Scholar 

  124. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  CAS  Google Scholar 

  125. Mu P, Han YC, Betel D, Yao E, Squatrito M et al (2009) Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23:2806–2811

    Article  PubMed  CAS  Google Scholar 

  126. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    Article  PubMed  CAS  Google Scholar 

  127. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453

    Article  PubMed  CAS  Google Scholar 

  128. Kim JW, Mori S, Nevins JR (2010) Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 70:4820–4828

    Article  PubMed  CAS  Google Scholar 

  129. Ma L, Young J, Prabhala H, Pan E, Mestdagh P et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    PubMed  CAS  Google Scholar 

  130. Mestdagh P, Fredlund E, Pattyn F, Schulte JH, Muth D et al (2009) MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29:1394–1404

    Article  PubMed  CAS  Google Scholar 

  131. Vetter G, Saumet A, Moes M, Vallar L, Le Bechec A et al (2010) miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene 29:4436–4448

    Article  PubMed  CAS  Google Scholar 

  132. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  133. Cottonham CL, Kaneko S, Xu L (2010) miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 285:35293–35302

    Article  PubMed  CAS  Google Scholar 

  134. Schramedei K, Morbt N, Pfeifer G, Lauter J, Rosolowski M, et al. (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene

  135. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  136. Ginestra A, Miceli D, Dolo V, Romano FM, Vittorelli ML (1999) Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res 19:3439–3445

    PubMed  CAS  Google Scholar 

  137. Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722

    Article  PubMed  CAS  Google Scholar 

  138. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  PubMed  CAS  Google Scholar 

  139. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  PubMed  CAS  Google Scholar 

  140. Brase JC, Wuttig D, Kuner R, Sultmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306

    Article  PubMed  CAS  Google Scholar 

  141. Gomperts BN, Spira A, Massion PP, Walser TC, Wistuba II et al (2011) Evolving concepts in lung carcinogenesis. Semin Respir Crit Care Med 32:32–43

    Article  PubMed  Google Scholar 

  142. Sullivan JP, Minna JD, Shay JW (2010) Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev 29:61–72

    Article  PubMed  Google Scholar 

  143. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  PubMed  CAS  Google Scholar 

  144. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  145. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106:13820–13825

    Article  PubMed  CAS  Google Scholar 

  146. Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ et al (2009) A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 23:1737–1742

    Article  PubMed  CAS  Google Scholar 

  147. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY et al (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12:982–992

    Article  PubMed  CAS  Google Scholar 

  148. Giannoni E, Bianchini F, Calorini L, Chiarugi P (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal.

  149. Louie E, Nik S, Chen JS, Schmidt M, Song B, et al. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12: R94

  150. Kurrey NK KA, Bapat SA (2005) Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97:155–165

    Article  PubMed  CAS  Google Scholar 

  151. Pinho AV, Rooman I, Real FX (2011) p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 10:1312–1321

    Article  PubMed  CAS  Google Scholar 

  152. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323

    Article  PubMed  CAS  Google Scholar 

  153. May R, Sureban SM, Hoang N, Riehl TE, Lightfoot SA et al (2009) Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells 27:2571–2579

    Article  PubMed  CAS  Google Scholar 

  154. Sureban SM, May R, Ramalingam S, Subramaniam D, Natarajan G et al (2009) Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a MicroRNA-dependent mechanism. Gastroenterology 137:649–659, 659 e641-642

    Article  PubMed  CAS  Google Scholar 

  155. Sureban SM, May R, Lightfoot SA, Hoskins AB, Lerner M, et al. DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism. Cancer Res 71: 2328–2338

  156. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol.

  157. Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G et al (2011) The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 30:770–782

    Article  PubMed  CAS  Google Scholar 

  158. Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL et al (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71:3087–3097

    Article  PubMed  CAS  Google Scholar 

  159. Kitamura H, Okudela K, Yazawa T, Sato H, Shimoyamada H (2009) Cancer stem cell: implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer 66:275–281

    Article  PubMed  Google Scholar 

  160. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R et al (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46

    Article  PubMed  CAS  Google Scholar 

  161. Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70:9937–9948

    Article  PubMed  CAS  Google Scholar 

  162. Soberman RJ, Christmas P (2006) Revisiting prostacyclin: new directions in pulmonary fibrosis and inflammation. Am J Physiol Lung Cell Mol Physiol 291:L142–L143

    Article  PubMed  CAS  Google Scholar 

  163. Tomaki M, Sugiura H, Koarai A, Komaki Y, Akita T et al (2007) Decreased expression of antioxidant enzymes and increased expression of chemokines in COPD lung. Pulm Pharmacol Ther 20:596–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from The Tobacco Related Disease Research Program: 18DT-0005 (ELH) and 18FT-0060 (TCW), American Thoracic Society (KK), LUNGevity Foundation (KK).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Dubinett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, E.L., Walser, T.C., Krysan, K. et al. The Inflammatory Tumor Microenvironment, Epithelial Mesenchymal Transition and Lung Carcinogenesis. Cancer Microenvironment 5, 5–18 (2012). https://doi.org/10.1007/s12307-011-0089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0089-0

Keywords

Navigation