Skip to main content
Log in

Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe?

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Hypoxia acts as an important regulator of physiological and pathological processes. Hypoxia inducible factors (HIFs) are the central players involved in the cellular adaptation to hypoxia and are regulated by oxygen sensing EGLN prolyl hydroxylases. Hypoxia affects many aspects of cellular growth through both redox effects and through the stabilization of HIFs. The HIF isoforms likely have differential effects on tumor growth via alteration of metabolism, growth, and self-renewal and are likely highly context-dependent. In some tumors such as renal cell carcinoma, the EGLN/HIF axis appears to drive tumorigenesis, while in many others HIF1 and HIF2 may actually have a tumor suppressive role. An emerging role of HIF biology is its effects on the tumor microenvironment. The EGLN/HIF axis plays a key role in regulating the function of the various components of the tumor microenvironment, which include cancer-associated fibroblasts, endothelial cells, immune cells, and the extracellular matrix (ECM). Here, we discuss hypoxia and the diverse roles of HIFs in the setting of tumorigenesis and the maintenance of the tumor microenvironment as well as possible future directions of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera, T.A., Rafat, M., Castellini, L., Shehade, H., Kariolis, M.S., Hui, A.B.Y., Stehr, H., von Eyben, R., Jiang, D., Ellies, L.G., Koong, A.C., Diehn, M., Rankin, E.B., Graves, E.E., and Giaccia, A.J. (2016). Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun 7, 13898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop, T., Gallagher, D., Pascual, A., Lygate, C.A., de Bono, J.P., Nicholls, L.G., Ortega-Saenz, P., Oster, H., Wijeyekoon, B., Sutherland, A.I., Grosfeld, A., Aragones, J., Schneider, M., van Geyte, K., Teixeira, D., Diez-Juan, A., Lopez-Barneo, J., Channon, K.M., Maxwell, P.H., Pugh, C.W., Davies, A.M., Carmeliet, P., and Ratcliffe, P.J. (2008). Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol Cell Biol 28, 3386–3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodi, I., Bishopric, N.H., Discher, D.J., Wu, X., and Webster, K.A. (1995). Cell-specificity and signaling pathway of endothelin-1 gene regulation by hypoxia. Cardiovasc Res 30, 975–984.

    Article  CAS  PubMed  Google Scholar 

  • Branco-Price, C., Zhang, N., Schnelle, M., Evans, C., Katschinski, D.M., Liao, D., Ellies, L., and Johnson, R.S. (2012). Endothelial cell HIF-1a and HIF-2a differentially regulate metastatic success. Cancer Cell 21, 52–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4- hydroxylases that modify HIF. Science 294, 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Casazza, A., Laoui, D., Wenes, M., Rizzolio, S., Bassani, N., Mambretti, M., Deschoemaeker, S., Van Ginderachter, J.A., Tamagnone, L., and Mazzone, M. (2013). Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709.

    Article  CAS  PubMed  Google Scholar 

  • Chan, D.A., and Giaccia, A.J. (2010). PHD2 in tumour angiogenesis. Br J Cancer 103, 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, D.A., Kawahara, T.L.A., Sutphin, P.D., Chang, H.Y., Chi, J.T., and Giaccia, A.J. (2009). Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15, 527–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Zhang, M., Xing, L., Wang, Y., Xiao, Y., and Wu, Y. (2015). HIF-1a contributes to proliferation and invasiveness of neuroblastoma cells via SHH signaling. PLoS ONE 10, e0121115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, W., Hill, H., Christie, A., Kim, M.S., Holloman, E., Pavia-Jimenez, A., Homayoun, F., Ma, Y., Patel, N., Yell, P., Hao, G., Yousuf, Q., Joyce, A., Pedrosa, I., Geiger, H., Zhang, H., Chang, J., Gardner, K.H., Bruick, R.K., Reeves, C., Hwang, T.H., Courtney, K., Frenkel, E., Sun, X., Zojwalla, N., Wong, T., Rizzi, J.P., Wallace, E.M., Josey, J.A., Xie, Y., Xie, X.J., Kapur, P., McKay, R.M., and Brugarolas, J. (2016). Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiavarina, B., Martinez-Outschoorn, U.E., Whitaker-Menezes, D., Howell, A., Tanowitz, H.B., Pestell, R.G., Sotgia, F., and Lisanti, M.P. (2012). Metabolic reprogramming and two-compartment tumor metabolism. Cell Cycle 11, 3280–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, H., Du, X., Rizzi, J.P., Liberzon, E., Chakraborty, A.A., Gao, W., Carvo, I., Signoretti, S., Bruick, R.K., Josey, J.A., Wallace, E.M., and Kaelin, W.G. (2016). On-target efficacy of a HIF-2a antagonist in preclinical kidney cancer models. Nature 539, 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clever, D., Roychoudhuri, R., Constantinides, M.G., Askenase, M.H., Sukumar, M., Klebanoff, C.A., Eil, R.L., Hickman, H.D., Yu, Z., Pan, J.H., Palmer, D.C., Phan, A.T., Goulding, J., Gattinoni, L., Goldrath, A.W., Belkaid, Y., and Restifo, N.P. (2016). Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166, 1117–1131.e14.

  • Colgan, S.P., and Taylor, C.T. (2010). Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7, 281–287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke, V.G., LeBleu, V.S., Keskin, D., Khan, Z., O’Connell, J.T., Teng, Y., Duncan, M.B., Xie, L., Maeda, G., Vong, S., Sugimoto, H., Rocha, R.M., Damascena, A., Brentani, R.R., and Kalluri, R. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21, 66–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Celis, E., Quiceno, D.G., Padhya, T., McCaffrey, T.V., McCaffrey, J.C., and Gabrilovich, D.I. (2010). HIF-1a regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207, 2439–2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, T.R., Rumney, R.M.H., Schoof, E.M., Perryman, L., Høye, A.M., Agrawal, A., Bird, D., Latif, N.A., Forrest, H., Evans, H.R., Huggins, I.D., Lang, G., Linding, R., Gartland, A., and Erler, J.T. (2015). The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer, T., Yamanishi, Y., Clausen, B.E., Förster, I., Pawlinski, R., Mackman, N., Haase, V.H., Jaenisch, R., Corr, M., Nizet, V., Firestein, G.S., Gerber, H.P., Ferrara, N., and Johnson, R.S. (2003). HIF-1a is essential for myeloid cell-mediated inflammation. Cell 112, 645–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., Luo, W., Zeller, K., Shimoda, L., Topalian, S.L., Semenza, G.L., Dang, C.V., Pardoll, D.M., and Pan, F. (2011). Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doedens, A.L., Phan, A.T., Stradner, M.H., Fujimoto, J.K., Nguyen, J.V., Yang, E., Johnson, R.S., and Goldrath, A.W. (2013). Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat Immunol 14, 1173–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doedens, A.L., Stockmann, C., Rubinstein, M.P., Liao, D., Zhang, N., DeNardo, D.G., Coussens, L.M., Karin, M., Goldrath, A.W., and Johnson, R.S. (2010). Macrophage expression of hypoxia-inducible factor- 1alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70, 7465–7475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein, A.C.R., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., Tian, Y.M., Masson, N., Hamilton, D.L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P.H., Pugh, C.W., Schofield, C.J., and Ratcliffe, P.J. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Erkan, M., Hausmann, S., Michalski, C.W., Fingerle, A.A., Dobritz, M., Kleeff, J., and Friess, H. (2012). The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9, 454–467.

    Article  CAS  PubMed  Google Scholar 

  • Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lal, P., Zhang, L., and Coukos, G. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Fraisl, P., Aragonés, J., and Carmeliet, P. (2009). Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8, 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Frantz, C., Stewart, K.M., and Weaver, V.M. (2010). The extracellular matrix at a glance. J Cell Sci 123, 4195–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvalov, B.K., Foss, F., Henze, A.T., Bethani, I., Gräf-Höchst, S., Singh, D., Filatova, A., Dopeso, H., Seidel, S., Damm, M., Acker-Palmer, A., and Acker, T. (2014). PHD3 regulates EGFR internalization and signalling in tumours. Nat Commun 5, 5577.

    Article  CAS  PubMed  Google Scholar 

  • Gilkes, D.M., Chaturvedi, P., Bajpai, S., Wong, C.C., Wei, H., Pitcairn, S., Hubbi, M.E., Wirtz, D., and Semenza, G.L. (2013). Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73, 3285–3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano, F.J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115, 500–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, N., Ryan, H.E., Khadivi, B., McNulty, W., Rickert, R.C., and Johnson, R.S. (2003). Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23, 359–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, M.A., Dunning, S.P., and Bunn, H.F. (1988). Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M.A., Glass, G.A., Cunningham, J.M., and Bunn, H.F. (1987). The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84, 7972–7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A., and Simon, M.C. (2007). HIF-2a promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11, 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, C.H., Forsdike, J., Fitzgerald, C.J., and Macdonald-Goodfellow, S. (1999). Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 80, 617–623.

    Article  CAS  PubMed  Google Scholar 

  • Hackenbeck, T., Knaup, K.X., Schietke, R., Schödel, J., Willam, C., Wu, X., Warnecke, C., Eckardt, K.U., and Wiesener, M.S. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. Cell Cycle 8, 1386–1395.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Harada, H., Inoue, M., Itasaka, S., Hirota, K., Morinibu, A., Shinomiya, K., Zeng, L., Ou, G., Zhu, Y., Yoshimura, M., McKenna, W.G., Muschel, R.J., and Hiraoka, M. (2012). Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat Commun 3, 783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heikkilä, M., Pasanen, A., Kivirikko, K.I., and Myllyharju, J. (2011). Roles of the human hypoxia-inducible factor (HIF)-3a variants in the hypoxia response. Cell Mol Life Sci 68, 3885–3901.

    Article  PubMed  CAS  Google Scholar 

  • Henze, A.T., Garvalov, B.K., Seidel, S., Cuesta, A.M., Ritter, M., Filatova, A., Foss, F., Dopeso, H., Essmann, C.L., Maxwell, P.H., Reifenberger, G., Carmeliet, P., Acker-Palmer, A., and Acker, T. (2014). Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 5, 5582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitson, K.S., McNeill, L.A., Elkins, J.M., and Schofield, C.J. (2003). The role of iron and 2-oxoglutarate oxygenases in signalling. Biochm Soc Trans 31, 510–515.

    Article  CAS  Google Scholar 

  • Huang, L.E., and Bunn, H.F. (2003). Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 278, 19575–19578.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L.E., Gu, J., Schau, M., and Bunn, H.F. (1998). Regulation of hypoxia- inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95, 7987–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imtiyaz, H.Z., Williams, E.P., Hickey, M.M., Patel, S.A., Durham, A.C., Yuan, L.J., Hammond, R., Gimotty, P.A., Keith, B., and Simon, M.C. (2010). Hypoxia-inducible factor 2a regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120, 2699–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Incio, J., Liu, H., Suboj, P., Chin, S.M., Chen, I.X., Pinter, M., Ng, M.R., Nia, H.T., Grahovac, J., Kao, S., Babykutty, S., Huang, Y., Jung, K., Rahbari, N.N., Han, X., Chauhan, V.P., Martin, J.D., Kahn, J., Huang, P., Desphande, V., Michaelson, J., Michelakos, T.P., Ferrone, C.R., Soares, R., Boucher, Y., Fukumura, D., and Jain, R.K. (2016). Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6, 852–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Targeting of HIFalpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H.L., Xu, C.X., Kim, Y.K., Arote, R., Jere, D., Lim, H.T., Cho, M.H., and Cho, C.S. (2009). The suppression of lung tumorigenesis by aerosol-delivered folate–chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway. Biomaterials 30, 5844–5852.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin, W.G. Jr (2011). Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol 76, 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin, W.G., Jr. (2017). Common pitfalls in preclinical cancer target validation. Nat Rev Cancer 17, 425–440.

    Article  CAS  PubMed  Google Scholar 

  • Kamura, T., Koepp, D.M., Conrad, M.N., Skowyra, D., Moreland, R.J., Iliopoulos, O., Lane, W.S., Kaelin Jr., W.G., Elledge, S.J., Conaway, R.C., Harper, J.W., and Conaway, J.W. (1999). Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661.

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder, S.S., and Ratan, R.R. (2012). Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? J Cereb Blood Flow Metab 32, 1347–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith, B., Johnson, R.S., and Simon M.C. (2011). HIF1a and HIF2a: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12, 9–22.

    PubMed  PubMed Central  Google Scholar 

  • Keskin, D., Kim, J., Cooke, V.G., Wu, C.C., Sugimoto, H., Gu, C., De Palma, M., Kalluri, R., and LeBleu, V.S. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep 10, 1066–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kibel, A., Iliopoulos, O., Decaprio, J.A., and Kaelin Jr., W.G. (1995). Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Evans, C., Weidemann, A., Takeda, N., Lee, Y.S., Stockmann, C., Branco-Price, C., Brandberg, F., Leone, G., Ostrowski, M.C., and Johnson, R.S. (2012). Loss of fibroblast HIF-1a accelerates tumorigenesis. Cancer Res 72, 3187–3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, W.Y., Perera, S., Zhou, B., Carretero, J., Yeh, J.J., Heathcote, S.A., Jackson, A.L., Nikolinakos, P., Ospina, B., Naumov, G., Brandstetter, K.A., Weigman, V.J., Zaghlul, S., Hayes, D.N., Padera, R.F., Heymach, J.V., Kung, A.L., Sharpless, N.E., Kaelin Jr., W.G., and Wong, K.K. (2009). HIF2a cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest 119, 2160–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koay, E.J., Truty, M.J., Cristini, V., Thomas, R.M., Chen, R., Chatterjee, D., Kang, Y., Bhosale, P.R., Tamm, E.P., Crane, C.H., Javle, M., Katz, M.H., Gottumukkala, V.N., Rozner, M.A., Shen, H., Lee, J.E., Wang, H., Chen, Y., Plunkett, W., Abbruzzese, J.L., Wolff, R.A., Varadhachary, G.R., Ferrari, M., and Fleming, J.B. (2014). Transport properties of pancreatic cancer describe gemcitabine delivery and response. J Clin Invest 124, 1525–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, K., Klco, J., Nakamura, E., Lechpammer, M., and Kaelin Jr., W.G. (2002). Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Kotch, L.E., Iyer, N.V., Laughner, E., and Semenza, G.L. (1999). Defective vascularization of HIF-1a-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209, 254–267.

    Article  CAS  PubMed  Google Scholar 

  • Kuchnio, A., Moens, S., Bruning, U., Kuchnio, K., Cruys, B., Thienpont, B., Broux, M., Ungureanu, A.A., Leite de Oliveira, R., Bruyère, F., Cuervo, H., Manderveld, A., Carton, A., Hernandez-Fernaud, J.R., Zanivan, S., Bartic, C., Foidart, J.M., Noel, A., Vinckier, S., Lambrechts, D., Dewerchin, M., Mazzone, M., and Carmeliet, P. (2015). The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep 12, 992–1005.

    Article  CAS  PubMed  Google Scholar 

  • LaGory, E.L., Wu, C., Taniguchi, C.M., Ding, C.K.C., Chi, J.T., von Eyben, R., Scott, D.A., Richardson, A.D., and Giaccia, A.J. (2015). Suppression of PGC-1a is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep 12, 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., and Bruick, R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzygme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16, 1466–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.H., Elly, C., Park, Y., and Liu, Y.C. (2015). E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1a to maintain regulatory T cell stability and suppressive capacity. Immunity 42, 1062–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K.E., Spata, M., Bayne, L.J., Buza, E.L., Durham, A.C., Allman, D., Vonderheide, R.H., and Simon, M.C. (2016). Hif1a deletion reveals proneoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6, 256–269.

    Article  CAS  PubMed  Google Scholar 

  • Liao, D., and Johnson, R.S. (2007). Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metast Rev 26, 281–290.

    Article  CAS  Google Scholar 

  • Lonergan, K.M., Iliopoulos, O., Ohh, M., Kamura, T., Conaway, R.C., Conaway, J.W., and Kaelin Jr., W.G. (1998). Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18, 732–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonser, R.R., Glenn, G.M., Walther, M.C., Chew, E.Y., Libutti, S.K., Linehan, W.M., and Oldfield, E.H. (2003). von Hippel-Lindau disease. Lancet 361, 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Mack, F.A., Rathmell, W.K., Arsham, A.M., Gnarra, J., Keith, B., and Simon, M.C. (2003). Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell 3, 75–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen, C.D., Pedersen, J.T., Venning, F.A., Singh, L.B., Moeendarbary, E., Charras, G., Cox, T.R., Sahai, E., and Erler, J.T. (2015). Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 16, 1394–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher, E.R., Yates, J.R.W., Harries, R., Benjamin, C., Harris, R., Moore, A.T., and Ferguson-Smith, M.A. (1990). Clinical features and natural history of von Hippel-Lindau disease. QJM 77, 1151–1163.

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar, J., Hickey, M.M., Pant, D.K., Durham, A.C., Sweet-Cordero, A., Vachani, A., Jacks, T., Chodosh, L.A., Kissil, J.L., Simon, M.C., and Keith, B. (2010). HIF-2a deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci USA 107, 14182–14187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill, L.A., Hewitson, K.S., Gleadle, J.M., Horsfall, L.E., Oldham, N.J., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., and Schofield, C.J. (2002). The use of dioxygen by HIF prolyl hydroxylase (PHD1). BioOrg Medicinal Chem Lett 12, 1547–1550.

    Article  CAS  Google Scholar 

  • Minamishima, Y.A., Moslehi, J., Bardeesy, N., Cullen, D., Bronson, R.T., and Kaelin, W.G. (2008). Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236–3244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moding, E.J., Castle, K.D., Perez, B.A., Oh, P., Min, H.D., Norris, H., Ma, Y., Cardona, D.M., Lee, C.L., and Kirsch, D.G. (2015). Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med 7, 278ra234.

    Article  CAS  Google Scholar 

  • Moeller, B.J., Cao, Y., Li, C.Y., and Dewhirst, M.W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors. Cancer Cell 5, 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., Shah, A.M., Zhang, H., Faber, J.E., Kinter, M.T., Szweda, L.I., Xing, C., Hu, Z., Deberardinis, R.J., Schiattarella, G., Hill, J.A., Oz, O., Lu, Z., Zhang, C.C., Kimura, W., and Sadek, H.A. (2017). Hypoxia induces heart regeneration in adult mice. Nature 541, 222–227.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa, M.S., Eisinger-Mathason, T.S.K., Sadri, N., Ochocki, J.D., Gade, T.P.F., Amin, R.K., and Simon, M.C. (2016). Epigenetic re-expression of HIF-2a suppresses soft tissue sarcoma growth. Nat Commun 7, 10539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath, B., and Szabo, G. (2012). Hypoxia and hypoxia inducible factors: Diverse roles in liver diseases. Hepatology 55, 622–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann, H.P., Eggert, H.R., Scheremet, R., Schumacher, M., Mohadjer, M., Wakhloo, A.K., Volk, B., Hettmannsperger, U., Riegler, P., and Schollmeyer, P. (1992). Central nervous system lesions in von Hippel- Lindau syndrome. J Neurology Neurosurgery Psychiatry 55, 898–901.

    Article  CAS  Google Scholar 

  • Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., and Chouaib, S. (2014). PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211, 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olenchock, B.A., Moslehi, J., Baik, A.H., Davidson, S.M., Williams, J., Gibson, W.J., Chakraborty, A.A., Pierce, K.A., Miller, C.M., Hanse, E.A., Kelekar, A., Sullivan, L.B., Wagers, A.J., Clish, C.B., Van der Heiden, M.G., and Kaelin Jr., W.G. (2016). EGLN1 inhibition and rerouting of a-ketoglutarate suffice for remote ischemic protection. Cell 164, 884–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive, K.P., Jacobetz, M.A., Davidson, C.J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M.A., Caldwell, M.E., Allard, D., Frese, K.K., Denicola, G., Feig, C., Combs, C., Winter, S.P., Ireland-Zecchini, H., Reichelt, S., Howat, W.J., Chang, A., Dhara, M., Wang, L., Rückert, F., Grützmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S.R., Huang, P., Davies, S.E., Plunkett, W., Egorin, M., Hruban, R.H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., and Tuveson, D.A. (2009). Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, S.A., and Simon, M.C. (2008). Biology of hypoxia-inducible factor-2a in development and disease. Cell Death Differ 15, 628–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattabiraman, D.R., and Weinberg, R.A. (2014). Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Dis 13, 497–512.

    Article  CAS  Google Scholar 

  • Pause, A., Lee, S., Worrell, R.A., Chen, D.Y.T., Burgess, W.H., Linehan, W.M., and Klausner, R.D. (1997). The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 94, 2156–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pause, A., Peterson, B., Schaffar, G., Stearman, R., and Klausner, R.D. (1999). Studying interactions of four proteins in the yeast two-hybrid system: Structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci USA 96, 9533–9538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh, C.W., and Ratcliffe, P.J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9, 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Rankin, E.B., Fuh, K.C., Castellini, L., Viswanathan, K., Finger, E.C., Diep, A.N., LaGory, E.L., Kariolis, M.S., Chan, A., Lindgren, D., Axelson, H., Miao, Y.R., Krieg, A.J., and Giaccia, A.J. (2014). Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA 111, 13373–13378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin, E.B., Wu, C., Khatri, R., Wilson, T.L.S., Andersen, R., Araldi, E., Rankin, A.L., Yuan, J., Kuo, C.J., Schipani, E., and Giaccia, A.J. (2012). The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149, 63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratan, R.R., Siddiq, A., Aminova, L., Lange, P.S., Langley, B., Ayoub, I., Gensert, J.A., and Chavez, J. (2004). Translation of ischemic preconditioning to the patient: prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy. Stroke 35, 2687–2689.

    Article  PubMed  Google Scholar 

  • Ratan, R.R., Siddiq, A., Smirnova, N., Karpisheva, K., Haskew-Layton, R., McConoughey, S., Langley, B., Estevez, A., Huerta, P.T., Volpe, B., Roy, S., Sen, C.K., Gazaryan, I., Cho, S., Fink, M., and LaManna, J. (2007). Harnessing hypoxic adaptation to prevent, treat, and repair stroke. J Mol Med 85, 1331–1338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reischl, S., Li, L., Walkinshaw, G., Flippin, L.A., Marti, H.H., and Kunze, R. (2014). Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic stroke. PLoS ONE 9, e84767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhim, A.D., Oberstein, P.E., Thomas, D.H., Mirek, E.T., Palermo, C.F., Sastra, S.A., Dekleva, E.N., Saunders, T., Becerra, C.P., Tattersall, I.W., Westphalen, C.B., Kitajewski, J., Fernandez-Barrena, M.G., Fernandez-Zapico, M.E., Iacobuzio-Donahue, C., Olive, K.P., and Stanger, B.Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salceda, S., and Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox- induced changes. J Biol Chem 272, 22642–22647.

    CAS  PubMed  Google Scholar 

  • Samanta, D., Gilkes, D.M., Chaturvedi, P., Xiang, L., and Semenza, G.L. (2014). Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA 111, E5429–E5438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez, R., and Zhou, M.M. (2011). The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36, 364–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönhuber, N., Seidler, B., Schuck, K., Veltkamp, C., Schachtler, C., Zukowska, M., Eser, S., Feyerabend, T.B., Paul, M.C., Eser, P., Klein, S., Lowy, A.M., Banerjee, R., Yang, F., Lee, C.L., Moding, E.J., Kirsch, D.G., Scheideler, A., Alessi, D.R., Varela, I., Bradley, A., Kind, A., Schnieke, A.E., Rodewald, H.R., Rad, R., Schmid, R.M., Schneider, G., and Saur, D. (2014). A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 20, 1340–1347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semenza, G.L. (2007). Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G.L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G.L., Roth, P.H., Fang, H.M., and Wang, G.L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269, 23757–23767.

    CAS  PubMed  Google Scholar 

  • Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.

    Article  CAS  PubMed  Google Scholar 

  • Skuli, N., Liu, L., Runge, A., Wang, T., Yuan, L., Patel, S., Iruela-Arispe, L., Simon, M.C., and Keith, B. (2009). Endothelial deletion of hypoxiainducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114, 469–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skuli, N., Majmundar, A.J., Krock, B.L., Mesquita, R.C., Mathew, L.K., Quinn, Z.L., Runge, A., Liu, L., Kim, M.N., Liang, J., Schenkel, S., Yodh, A.G., Keith, B., and Simon, M.C. (2012). Endothelial HIF-2a regulates murine pathological angiogenesis and revascularization processes. J Clin Invest 122, 1427–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiehl, D.P., Wirthner, R., Koditz, J., Spielmann, P., Camenisch, G., and Wenger, R.H. (2006). Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281, 23482–23491.

    CAS  PubMed  Google Scholar 

  • Synnestvedt, K., Furuta, G.T., Comerford, K.M., Louis, N., Karhausen, J., Eltzschig, H.K., Hansen, K.R., Thompson, L.F., and Colgan, S.P. (2002). Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110, 993–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda, K., Aguila, H.L., Parikh, N.S., Li, X., Lamothe, K., Duan, L.J., Takeda, H., Lee, F.S., and Fong, G.H. (2008). Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111, 3229–3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., and Johnson, R.S. (2004). Loss of HIF-1a in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6, 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi, C.M., Miao, Y.R., Diep, A.N., Wu, C., Rankin, E.B., Atwood, T.F., Xing, L., and Giaccia, A.J. (2014). PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci Transl Med 6, 236ra264.

    Article  CAS  Google Scholar 

  • Warfel, N.A., and El-Deiry, W.S. (2014). HIF-1 signaling in drug resistance to chemotherapy. CMC 21, 3021–3028.

    Article  CAS  Google Scholar 

  • Wei, K., Piecewicz, S.M., McGinnis, L.M., Taniguchi, C.M., Wiegand, S.J., Anderson, K., Chan, C.W.M., Mulligan, K.X., Kuo, D., Yuan, J., Vallon, M., Morton, L.C., Lefai, E., Simon, M.C., Maher, J.J., Mithieux, G., Rajas, F., Annes, J.P., McGuinness, O.P., Thurston, G., Giaccia, A.J., and Kuo, C.J. (2013). A liver Hif-2a–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat Med 19, 1331–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteside, T.L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., and Semenza, G.L. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, R., Xu, H., Chen, G., Zhao, G., Gao, Y., Liu, X., Ma, S., and Dong, L. (2015). The role of hypoxia-inducible factor-1a in radiation-induced autophagic cell death in breast cancer cells. Tumor Biol 36, 7077–7083.

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, X.D., Sun, M., Zhang, X., German, P., Bai, S., Ding, Z., Tannir, N., Wood, C.G., Matin, S.F., Karam, J.A., Tamboli, P., Sircar, K., Rao, P., Rankin, E.B., Laird, D.A., Hoang, A.G., Walker, C.L., Giaccia, A.J., and Jonasch, E. (2016). Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35, 2687–2697.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Cullen M. Taniguchi is supported by funding from Cancer Prevention & Research Institute of Texas (CPRIT, RR140012), V Foundation (V2015-2022), Sabin Family Foundation Fellowship at MD Anderson (2016-00052285) and generous support from the McNair Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cullen M. Taniguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lin, D. & Taniguchi, C.M. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe?. Sci. China Life Sci. 60, 1114–1124 (2017). https://doi.org/10.1007/s11427-017-9178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9178-y

Keywords

Navigation