Skip to main content

Self-Powered Implantable Energy Harvesters for Medical Electronics

  • Chapter
  • First Online:
Flexible Sensors for Energy-Harvesting Applications

Abstract

Implantable energy harvesters (IEHs) are the essential and required component for self-powered medical devices. IEHs is employed as the primary power source of implantable medical electronics by harvesting the energy from living organisms such as respiration, heartbeat, and chemical energy from the redox reaction of glucose. In this chapter, IEHs and self-powered implantable medical electronics (SIMEs) are summarized. The typical IEHs are based on ultrasonic or optical energy such as biofuel cells, nanogenerators, electromagnetic generators, and transcutaneous energy harvesting devices. A benefit from these in vivo energy harvesting technologies, SIMEs emerged, including nerve/muscle stimulators, cardiac pacemakers, and physiological sensors. The challenges and potential solutions related to IEHs and SIMEs are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Gibney, The inside story on wearable electronics. Nat. News 528(7580), 26 (2015)

    Article  CAS  Google Scholar 

  2. Y. Zhang et al., Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. 116(43), 21427–21437 (2019)

    Article  CAS  Google Scholar 

  3. R. Hinchet, S.-W. Kim, Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 9(8), 7742–7745 (2015)

    Article  CAS  Google Scholar 

  4. C. Dagdeviren, Z. Li, Z.L. Wang, Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 19, 85–108 (2017)

    Article  CAS  Google Scholar 

  5. M. Parvez Mahmud, N. Huda, S. H. Farjana, M. Asadnia, C. Lang, Recent advances in nanogenerator‐driven self‐powered implantable biomedical devices Adv. Energy Mater. 8(2), 1701210 (2018)

    Google Scholar 

  6. X. Xiao et al., Tackling the challenges of enzymatic (bio) fuel cells. Chem. Rev. 119(16), 9509–9558 (2019)

    Article  CAS  Google Scholar 

  7. C. Steiger, A. Abramson, P. Nadeau, A.P. Chandrakasan, R. Langer, G. Traverso, Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4(2), 83–98 (2019)

    Article  CAS  Google Scholar 

  8. M. Zhou, M.S.H. Al-Furjan, J. Zou, W. Liu, A review on heat and mechanical energy harvesting from human–principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 82, 3582–3609 (2018)

    Article  Google Scholar 

  9. B. Shi, Z. Li, Y. Fan, Implantable energy-harvesting devices. Adv. Mater. 30(44), 1801511 (2018)

    Article  CAS  Google Scholar 

  10. V. Parsonnet, G.H. Myers, R.I. Zucker, H. Lotman, M.M. Asa, A cardiac pacemaker using biologic energy sources. ASAIO J. 9(1), 174–177 (1963)

    Google Scholar 

  11. P. Cinquin et al., A glucose biofuel cell implanted in rats. PloS One 5(5), e10476 (2010)

    Google Scholar 

  12. Q. Zheng et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851–5856 (2014)

    Article  CAS  Google Scholar 

  13. H. Basaeri, D.B. Christensen, S. Roundy, A review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 25(12), 123001 (2016)

    Google Scholar 

  14. Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang, Z. Li, Wearable and implantable triboelectric nanogenerators. Adv. Func. Mater. 29(20), 1808820 (2019)

    Article  CAS  Google Scholar 

  15. J. Wang, T. He, C. Lee, Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 65, 104039 (2019)

    Google Scholar 

  16. D. Jiang et al., A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Mater. Today Energy 16, 100386 (2020)

    Google Scholar 

  17. L. Zhao, H. Li, J. Meng, Z. Li, The recent advances in self-powered medical information sensors. InfoMat 2(1), 212–234 (2020)

    Article  CAS  Google Scholar 

  18. S. Cosnier, A. Le Goff, M. Holzinger, Towards glucose biofuel cells implanted in human body for powering artificial organs. Electrochem. Commun. 38, 19–23 (2014)

    Article  CAS  Google Scholar 

  19. D. Jiang et al., A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics. InfoMat 2(6), 1191–1200 (2020)

    Article  CAS  Google Scholar 

  20. P. Tan et al., A battery-like self-charge universal module for motional energy harvest. Adv. Energy Mater. 9(36), 1901875 (2019)

    Article  CAS  Google Scholar 

  21. C. Zhao et al., Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Func. Mater. 29(41), 1808640 (2019)

    Article  CAS  Google Scholar 

  22. Y. Zou et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  23. Q. Zhang et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Func. Mater. 28(1), 1703801 (2018)

    Article  CAS  Google Scholar 

  24. Y. Long et al., Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. Nano Energy 57, 558–565 (2019)

    Article  CAS  Google Scholar 

  25. H. Liu, J. Zhong, C. Lee, S.-W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018)

    Google Scholar 

  26. R. Yang, Y. Qin, L. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)

    Article  CAS  Google Scholar 

  27. H. Feng, C. Zhao, P. Tan, R. Liu, X. Chen, Z. Li, Nanogenerator for biomedical applications. Adv. Healthcare Mater. 7(10), 1701298 (2018)

    Article  CAS  Google Scholar 

  28. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  CAS  Google Scholar 

  29. Z. Li, G. Zhu, R. Yang, A.C. Wang, Z.L. Wang, Muscle-driven in vivo nanogenerator. Adv. Mater. 22(23), 2534–2537 (2010)

    Article  CAS  Google Scholar 

  30. C. Dagdeviren et al., Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. 111(5), 1927–1932 (2014)

    Article  CAS  Google Scholar 

  31. X. Cheng et al., Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: simulated, in vitro and in vivo studies. Nano Energy 22, 453–460 (2016)

    Article  CAS  Google Scholar 

  32. C. K. Jeong et al., Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. Apl Mater. 5(7), 074102 (2017)

    Google Scholar 

  33. A. Wang et al., Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 43, 63–71 (2018)

    Article  CAS  Google Scholar 

  34. W. Zhang et al., Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 10(2), 1–11 (2018)

    Article  Google Scholar 

  35. S.H. Kondapalli, Y. Alazzawi, M. Malinowski, T. Timek, S. Chakrabartty, Feasibility of self-powering and energy harvesting using cardiac valvular perturbations. IEEE Trans. Biomed. Circ. Syst. 12(6), 1392–1400 (2018)

    Article  Google Scholar 

  36. M. Han et al., Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2(1), 26–35 (2019)

    Article  Google Scholar 

  37. D.H. Kim et al., In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Func. Mater. 27(25), 1700341 (2017)

    Article  CAS  Google Scholar 

  38. D. Jiang, B. Shi, H. Ouyang, Y. Fan, Z.L. Wang, Z. Li, Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14(6), 6436–6448 (2020)

    Article  CAS  Google Scholar 

  39. Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017)

    Article  Google Scholar 

  40. Q. Zhang et al., Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy 55, 151–163 (2019)

    Article  CAS  Google Scholar 

  41. Q. Zhang et al., Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 29(17), 1606703 (2017)

    Article  CAS  Google Scholar 

  42. F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012)

    Article  CAS  Google Scholar 

  43. Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019)

    Article  CAS  Google Scholar 

  44. H. Ouyang et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  45. C.K. Jeong et al., Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14(12), 7031–7038 (2014)

    Article  CAS  Google Scholar 

  46. L. Zhao et al., A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28, 172–178 (2016)

    Article  CAS  Google Scholar 

  47. B. Shi et al., Body-integrated self-powered system for wearable and implantable applications. ACS Nano 13(5), 6017–6024 (2019)

    Article  CAS  Google Scholar 

  48. Q. Zheng et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016)

    Google Scholar 

  49. E.J. Curry et al., Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. 115(5), 909–914 (2018)

    Article  CAS  Google Scholar 

  50. W. Jiang et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30(32), 1801895 (2018)

    Article  CAS  Google Scholar 

  51. Z. Li et al., Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 54, 390–399 (2018)

    Article  CAS  Google Scholar 

  52. H. Goto, T. Sugiura, Y. Harada, T. Kazui, Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Compu. 37(3), 377–380 (1999)

    Article  CAS  Google Scholar 

  53. A. Zurbuchen et al., Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41(1), 131–141 (2013)

    Article  CAS  Google Scholar 

  54. A.D. Mickle et al., A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565(7739), 361–365 (2019)

    Article  CAS  Google Scholar 

  55. R. Hinchet et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452), 491–494 (2019)

    Article  CAS  Google Scholar 

  56. H. Kawanabe, T. Katane, H. Saotome, O. Saito, K. Kobayashi, Power and information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 40(5S), 3865 (2001)

    Article  CAS  Google Scholar 

  57. M. Alam et al., Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury. J. Neuroeng. Rehabil. 16(1), 1–14 (2019)

    Article  Google Scholar 

  58. A. Kim et al., An Implantable Ultrasonically-powered Micro-Light-source (µLight) for photodynamic therapy. Sci. Rep. 9(1), 1–9 (2019)

    Google Scholar 

  59. C. Kang et al., Long-term in vivo performance of novel ultrasound powered implantable devices, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 2985–2988. IEEE

    Google Scholar 

  60. S.K. Mulpuru, M. Madhavan, C.J. McLeod, Y.-M. Cha, P.A. Friedman, Cardiac pacemakers: function, troubleshooting, and management: part 1 of a 2-part series. J. Am. Coll. Cardiol. 69(2), 189–210 (2017)

    Article  Google Scholar 

  61. M. Madhavan, S.K. Mulpuru, C.J. McLeod, Y.-M. Cha, P.A. Friedman, Advances and future directions in cardiac pacemakers: part 2 of a 2-part series. J. Am. Coll. Cardiol. 69(2), 211–235 (2017)

    Article  Google Scholar 

  62. A. Pfenniger, M. Jonsson, A. Zurbuchen, V.M. Koch, R. Vogel, Energy harvesting from the cardiovascular system, or how to get a little help from yourself. Ann. Biomed. Eng. 41(11), 2248–2263 (2013)

    Article  Google Scholar 

  63. Q. Zheng et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016)

    Article  CAS  Google Scholar 

  64. G. Zhu, A.C. Wang, Y. Liu, Y. Zhou, Z.L. Wang, Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12(6), 3086–3090 (2012)

    Article  CAS  Google Scholar 

  65. G.-T. Hwang et al., Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8(9), 2677–2684 (2015)

    Article  CAS  Google Scholar 

  66. G. Yao et al., Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 1–10 (2018)

    Article  CAS  Google Scholar 

  67. J. Wang, H. Wang, T. He, B. He, N.V. Thakor, C. Lee, Investigation of low-current direct stimulation for rehabilitation treatment related to muscle function loss using self-powered TENG system. Adv. Sci. 6(14), 1900149 (2019)

    Article  Google Scholar 

  68. H. Wang, J. Wang, T. He, Z. Li, C. Lee, Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs). Nano Energy 63, 103844 (2019)

    Google Scholar 

  69. Z. Liu et al., Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Func. Mater. 29(3), 1807560 (2019)

    Article  CAS  Google Scholar 

  70. Y. Ma et al., Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 16(10), 6042–6051 (2016)

    Article  CAS  Google Scholar 

  71. H. Yuk et al., Dry double-sided tape for adhesion of wet tissues and devices. Nature 575(7781), 169–174 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Fund (61950410613) from the National Science Foundation of China (NSFC) and CAS President International Fellowship Initiative (2019PT0008) from the Chinese Academy of Sciences. It was also funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany's Excellence Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence "Centre for Tactile Internet with Human-in-the-Loop" (CeTI) of Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Nag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alahi, M.E.E., Nag, A., Mukhopadhyay, S.C. (2022). Self-Powered Implantable Energy Harvesters for Medical Electronics. In: Nag, A., Mukhopadhyay, S.C. (eds) Flexible Sensors for Energy-Harvesting Applications. Smart Sensors, Measurement and Instrumentation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-99600-0_8

Download citation

Publish with us

Policies and ethics