Skip to main content

Flexible Sensors for Energy-Harvesting Applications

  • Book
  • © 2022

Overview

  • Describes the development and implementation of flexible sensors for energy-harvesting applications
  • Examines the impact of nanotechnology of the quality of the flexible sensors
  • Provides cutting-edge information on smart sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation (SSMI, volume 42)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

This book investigates the fabrication of different types of flexible sensors and their subsequent implementation for energy-harvesting applications. A range of techniques, including 3D printing, soft lithography, laser ablation, micro-contract printing, screen-printing, inkjet printing and others have been used to form the flexible sensors with varied characteristics. These sensors have been used for biomedical, environmental and healthcare applications on the basis of their performances. The quality of these flexible sensors has depended on certain types of nanomaterials that have been used to synthesize the conductive parts of the prototypes. These nanomaterials have been based on different sizes and shapes, whose quality varied on the basis of certain factors like crystallinity, shapes and sizes. One of the primary utilization of these nanotechnology-based flexible sensors has been the harvesting of energy where nano-generators and nano-harvesters have been formed to generate and store energy, respectively, on small and moderate magnitudes. Mechanical and thermal energies have been harvested on the basis of the piezoelectric, pyroelectric and triboelectric effects created by the formed prototypes. The work highlights the amalgamation of these sectors to spotlight the essence of these types of sensors and their intended application.  

Editors and Affiliations

  • Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany

    Anindya Nag

  • School of Engineering, Macquarie University, Sydney, Australia

    Subhas Chandra Mukhopadhyay

Bibliographic Information

Publish with us