Skip to main content

Advertisement

SpringerLink
Book cover

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

TACAS 2022: Tools and Algorithms for the Construction and Analysis of Systems pp 196–214Cite as

  1. Home
  2. Tools and Algorithms for the Construction and Analysis of Systems
  3. Conference paper
Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time

Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time

  • Simon Guilloud  ORCID: orcid.org/0000-0001-8179-754910 &
  • Viktor Kunčak  ORCID: orcid.org/0000-0001-7044-952210 
  • Conference paper
  • Open Access
  • First Online: 30 March 2022
  • 1994 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13244)

Abstract

Motivated by proof checking, we consider the problem of efficiently establishing equivalence of propositional formulas by relaxing the completeness requirements while still providing certain guarantees. We present a quasilinear time algorithm to decide the word problem on a natural algebraic structures we call orthocomplemented bisemilattices, a subtheory of Boolean algebra. The starting point for our procedure is a variation of Aho, Hopcroft, Ullman algorithm for isomorphism of trees, which we generalize to directed acyclic graphs. We combine this algorithm with a term rewriting system we introduce to decide equivalence of terms. We prove that our rewriting system is terminating and confluent, implying the existence of a normal form. We then show that our algorithm computes this normal form in log linear (and thus sub-quadratic) time. We provide pseudocode and a minimal working implementation in Scala.

We acknowledge the financial support of the Swiss National Science Foundation project 200021_197288 “A Foundational Verifier”.

©The Author(s) 2022

Download conference paper PDF

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9781139172752

  2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification. pp. 171–177. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

  3. Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered resolution. J. ACM 48(1), 70–109 (2001). https://doi.org/10.1145/363647.363681

  4. Bruns, G.: Free Ortholattices. Canadian Journal of Mathematics 28(5), 977–985 (Oct 1976). https://doi.org/10.4153/CJM-1976-095-6

  5. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, vol. 6015, pp. 150–153. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_12

  6. Brzozowski, J.: De Morgan bisemilattices. In: Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000). pp. 173–178 (May 2000). https://doi.org/10.1109/ISMVL.2000.848616

  7. Buss, S.R.: Alogtime algorithms for tree isomorphism, comparison, and canonization. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Computational Logic and Proof Theory. pp. 18–33. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

    Google Scholar 

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing. p. 151–158. STOC ’71, Association for Computing Machinery, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047

  9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (Jul 1962). https://doi.org/10.1145/368273.368557

  10. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Alur, R., Peled, D.A. (eds.) Computer Aided Verification, vol. 3114, pp. 175–188. Springer, Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_14

  11. Gentzen, G.: Untersuchungen über das logische schließen. I. Mathematische Zeitschrift 39, 176–210 (1935)

    Google Scholar 

  12. Hamza, J., Voirol, N., Kunčak, V.: System FR: Formalized foundations for the Stainless verifier. Proc. ACM Program. Lang 3 (November 2019). https://doi.org/10.1145/3360592

  13. Harrison, J.: HOL Light: An Overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics, vol. 5674, pp. 60–66. Springer, Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_4

  14. Hopcroft, J., UIIman, J., Aho, A.: The Design And Analysis Of Computer Algorithms. Addison-Wesley (1974)

    Google Scholar 

  15. Hunt, H. B., I., Rosenkrantz, D.J., Bloniarz, P.A.: On the Computational Complexity of Algebra on Lattices. SIAM Journal on Computing 16(1), 129–148 (Feb 1987). https://doi.org/10.1137/0216011

  16. Kahn, A.B.: Topological sorting of large networks. Communications of the ACM 5(11), 558–562 (Nov 1962). https://doi.org/10.1145/368996.369025

  17. Kalmbach, G.: Orthomodular Lattices. Academic Press Inc, London ; New York (Mar 1983)

    Google Scholar 

  18. Krajíček, J.: Proof Complexity. Encyclopedia of Mathematics and Its Appplications, Vol. 170, Cambridge University Press (2019)

    Google Scholar 

  19. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Springer (2016)

    Google Scholar 

  20. Kuncak, V.: Modular Data Structure Verification. Ph.D. thesis, EECS Department, Massachusetts Institute of Technology (February 2007), http://hdl.handle.net/1721.1/38533

  21. Leino, K.R.M., Polikarpova, N.: Verified calculations. In: Cohen, E., Rybalchenko, A. (eds.) Verified Software: Theories, Tools, Experiments. pp. 170–190. Springer, Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54108-7_9

  22. Lewis, D.W.: Hazard detection by a quinary simulation of logic devices with bounded propagation delays. In: Proceedings of the 9th Design Automation Workshop. pp. 157–164. DAC ’72, Association for Computing Machinery, New York, NY, USA (Jun 1972). https://doi.org/10.1145/800153.804941

  23. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing. p. 400–404. STOC ’92, Association for Computing Machinery, New York, NY, USA (1992). https://doi.org/10.1145/129712.129750

  24. McAllester, D.A.: Automatic recognition of tractability in inference relations. Journal of the ACM 40(2), 284–303 (1993). https://doi.org/10.1145/151261.151265

  25. Meinander, A.: A solution of the uniform word problem for ortholattices. Mathematical Structures in Computer Science 20(4), 625–638 (Aug 2010). https://doi.org/10.1017/S0960129510000125

  26. Merz, S., Vanzetto, H.: Automatic Verification of TLA + Proof Obligations with SMT Solvers. In: Bjørner, N., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning. pp. 289–303. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_23

  27. Naumowicz, A., Korniłowicz, A.: A brief overview of mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics. pp. 67–72. Springer, Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_5

  28. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (Apr 1981). https://doi.org/10.1145/322248.322251

  29. Pudlák, P.: The Lengths of Proofs. In: Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 547–637. Elsevier (1998). https://doi.org/10.1016/S0049-237X(98)80023-2

  30. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: Autoproof: Auto-active functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 566–580. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_53

  31. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (Jan 1987). https://doi.org/10.1145/7531.8928

  32. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Theorem Proving in Higher Order Logics. pp. 33–38. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2008). DOI: https://doi.org/10.1007/978-3-540-71067-7_7

  33. Whitman, P.M.: Free Lattices. Annals of Mathematics 42(1), 325–330 (1941). https://doi.org/10.2307/1969001

  34. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In: ACM SIGPLAN Conf. Programming Language Design and Implementation (PLDI) (2008). https://doi.org/10.1145/1375581.1375624, see also [20]

  35. Zee, K., Kuncak, V., Rinard, M.: An integrated proof language for imperative programs. In: ACM SIGPLAN Conf. Programming Language Design and Implementation (PLDI) (2009). https://doi.org/10.1145/1543135.1542514

Download references

Author information

Authors and Affiliations

  1. EPFL IC LARA, Station 14, CH-1015, Lausanne, Switzerland

    Simon Guilloud & Viktor Kunčak

Authors
  1. Simon Guilloud
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Viktor Kunčak
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Simon Guilloud .

Editor information

Editors and Affiliations

  1. Ben-Gurion University of the Negev, Be’er Sheva, Israel

    Dr. Dana Fisman

  2. University of Illinois Urbana-Champaign, Urbana, IL, USA

    Grigore Rosu

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2022 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Guilloud, S., Kunčak, V. (2022). Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time. In: Fisman, D., Rosu, G. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2022. Lecture Notes in Computer Science, vol 13244. Springer, Cham. https://doi.org/10.1007/978-3-030-99527-0_11

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-99527-0_11

  • Published: 30 March 2022

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99526-3

  • Online ISBN: 978-3-030-99527-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The European Joint Conferences on Theory and Practice of Software.

    Published in cooperation with

    http://www.etaps.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.