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Abstract. Motivated by proof checking, we consider the problem of efficiently
establishing equivalence of propositional formulas by relaxing the completeness
requirements while still providing certain guarantees. We present a quasilinear
time algorithm to decide theword problem on a natural algebraic structures we call
orthocomplemented bisemilattices, a subtheory of Boolean algebra. The starting
point for our procedure is a variation of Aho, Hopcroft, Ullman algorithm for
isomorphism of trees, whichwe generalize to directed acyclic graphs.We combine
this algorithm with a term rewriting system we introduce to decide equivalence of
terms. We prove that our rewriting system is terminating and confluent, implying
the existence of a normal form. We then show that our algorithm computes this
normal form in log linear (and thus sub-quadratic) time. We provide pseudocode
and a minimal working implementation in Scala.

1 Introduction

Reasoning about propositional logic and its extensions is a basis of many verification
algorithms [19]. Propositional variables may correspond to, for example, sub-formulas
in first-order logic theories of SMT solvers [2,5,26], hypotheses and lemmas inside proof
assistants [13,27,32], or abstractions of sets of states. In particular, it is often of interest
to establish that two propositional formulas are equivalent. The equivalence problem
for propositional logic is coNP-complete as a negation of propositional satisfiability [8].
From proof complexity point of view [18] many known proof systems, including (non-
extended) resolution [31] and cutting planes [29] have exponential-sized shortest proofs
for certain propositional formulas. SAT and SMT solvers rely on DPLL-style algorithms
[9,10] and do not have polynomial run-time guarantees on equivalence checking, even if
formulas are syntactically close. Proof assistants implement such algorithms as tactics,
so they have similar difficulties. A consequence of this is that implemented systems may
take a very long time (or fail to acknowledge) that a large formula is equivalent to its
minor variant differing in, for example, reordering of internal conjuncts or disjuncts.
Similar situations also arise in program verifiers [12,21,30,34,35], where assertions act
as lemmas in a proof.
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It is thus natural to ask for an approximation of the propositional equivalence prob-
lem: can we find an expressive theory supporting many of the algebraic laws of Boolean
algebra but for which we can still have a complete and efficient algorithm for formula
equivalence?By efficient, we mean about as fast, up to logarithmic factors, as the simple
linear-time syntactic comparison of formula trees.

We can use such an efficient equivalence algorithm to construct more flexible proof
systems. Consider any sound proof system for propositional logic and replace the notion
of identical sub-formulas with our notion of fast equivalence. For example, the axiom
schema p→ (q → p) becomes p→ (q → p′) for all equivalent p and p′. The new system
remains sound. It accepts all the previously admissible inference steps, but also some
new ones, which makes it more flexible.

L1: x ⊔ y = y ⊔ x L1’: x ∧ y = y ∧ x
L2: x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z
L3: x ⊔ x = x L3’: x ∧ x = x
L4: x ⊔ 1 = 1 L4’: x ∧ 0 = 0
L5: x ⊔ 0 = x L5’: x ∧ 1 = x
L6: ¬¬x = x L6’: same as L6
L7: x ⊔ ¬x = 1 L7’: x ∧ ¬x = 0
L8: ¬(x ⊔ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ⊔ ¬y

Table 1. Laws of an algebraic structures (S,∧, ⊔, 0, 1,¬). Our algorithm is complete (and log-
linear time) for structures that satisfy laws L1-L8 and L1’-L8’. We call these structures orthocom-
plemented bisemilattices (OCBSL).

L9: x ⊔ (x ∧ y) = x L9’: x ∧ (x ⊔ y) = x
L10: x ⊔ (y ∧ z) = (x ⊔ y) ∧ (x ⊔ z) L10’: x ∧ (y ⊔ z) = (x ∧ y) ⊔ (x ∧ z)

Table 2. Neither the absorption law L9,L9’ nor distributivity L10,L10’ hold in OCBSL. Without
L9,L9’, the operations ∧ and ⊔ induce different partial orders. If an OCBSL satisfies L10,L10’
then it also satisfies L9,L9’ and is precisely a Boolean algebra.

1.1 Problem Statement

This paper proposes to approximate propositional formula equivalence using a new al-
gorithm that solves exactly the word problem for structures we call orthocomplemented
bisemilattices (axiomatized in Table 1), in only log-linear time. In general, the word
problem for an algebraic theory with signature S and axioms A is the problem of de-
termining, given two terms t1 and t2 in the language of S with free variables, whether
t1 = t2 is a consequence of the axioms. Our main interest in the problem is that ortho-
complemented bisemilattices (OCBSL) are a generalisation of Boolean algebra. This
structure satisfies a weaker set of axioms that omits the distributivity law as well as its
weaker variant, the absorption law (Table 2). Hence, this problem is a relaxation “up
to distributivity” of the propositional formula equivalence. A positive answer implies
formulas are equivalent in all Boolean algebras, hence also in propositional logic.
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Definition 1 (Word Problem for Orthocomplemented Bisemilattices). Consider the
signature with two binary operations ∧, ⊔, unary operation ¬ and constants, 0, 1. The
OCBSL-word problem is the problem of determining, given two terms t1 and t2 in this
signature, containing free variables, whether t1 = t2 is a consequence (in the sense
of first-order logic with equality) of the universally quantified axioms L1-L8,L1’-L8’ in
Table 1.

Contribution.We present an(n log2(n)) algorithm for the word problem of orthocom-
plemented lattices. In the process, we introduce a confluent and terminating rewriting
system for OCBSL on terms modulo commutativity. We analyze the algorithm to show
its correctness and complexity. We present its executable description and a Scala imple-
mentation at https://github.com/epfl-lara/OCBSL.

1.2 Related Work

The word problem on lattices has been studied in the past. The structure we consider
is, in general, not a lattice. Whitman [33] showed decidability of the word problem on
free lattices, essentially by showing that the natural order relation on lattices between two
words can be decided by an exhaustive search. Theword problem on orthocomplemented
lattices has been solved typically by defining a suitable sequent calculus for the order
relation with a cut rule for transitivity [4,17]. Because a cut elimination theorem can be
proved similarly to the original from Gentzen [11], the proof space is finite and a proof
search procedure can decide validity of the implication in the logic, which translates to
the original word problem.

The word problem for free lattices was shown to be in PTIME by Hunt et al. [15]
and the word problem for orthocomplemented lattices was shown to be in PTIME by
Meinander [25]. Those algorithms essentially rely on similar proof-search methods as
the previous ones, but bound the search space. These results make no mention of a spe-
cific degree of the polynomial; our analysis suggest that, as described, these algorithms
run in (n4). Related techniques of locality have been applied more broadly and also
yield polynomial bounds, with the specific exponents depending on local Horn clauses
that axiomatize the theory [3, 24].

Aside from the use in equivalence checking, the problem is additionally of indepen-
dent interest because OCBSL are a natural weakening of Boolean Algebra and ortho-
complemented lattices. They are dual to complemented lattices in the sense illustrated
by Figure 1. A slight weakening of OCBSL, called de Morgan bisemilattice, has been
used to simulate electronic circuits [6, 22]. OCBSL may be applicable in this scenario
as well. Moreover, our algorithm can also be adapted to decide, in log-linear time, the
word problem for this weaker theory.

To the best of our knowledge, no solution was presented in the past for the word
problem for orthocomplemented bisemilattices (OCBSL). Moreover, we are not aware
of previous log-linear algorithms for the related previously studied theories either.

1.3 Overview of the Algorithm

It is common to represent a term, like a Boolean formula, as an abstract syntax tree.
In such a tree, a node corresponds to either a function symbol, a constant symbol or a
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variable, and the children of a function node represent the arguments of the function. In
general, for a symbol function f , trees f (x, y) and f (y, x) are distinct; the children of a
node are stored in a specific order. Commutativity of a function symbol f corresponds to
the fact that children of a node labelled by f are instead unordered. Our algorithm thus
uses as its starting point a variation of the algorithm of Aho, Hopcroft, and Ullman [14]
for tree isomorphism, as it corresponds to deciding equality of two terms modulo com-
mutativity. However, the theory we consider contains many more axioms than merely
commutativity. Our approach is to find an equivalent set of reduction rules, themselves
understood modulo commutativity, that is suitable to compute a normal form of a given
formula with respect to those axioms using the ideas of term rewriting [1]. The interest
of tree isomorphism in our approach is two-fold: first, it helps to find application cases
of our reduction rules, and second, it compares the two terms of our word problem. In
the final algorithm, both aspects are realized simultaneously.

a ≤ b

a ⊑ b ¬b ≤ ¬a

¬b ⊑ ¬a

a ≤ b

a ⊑ b ¬b ≤ ¬a

¬b ⊑ ¬a

a ≤ b

a ⊑ b ¬b ≤ ¬a

¬b ⊑ ¬a

(a) Complemented lattice (b) Orthocomplemented bisemilattice(c) Orthocomplemented lattice
Fig. 1. Bisemilattices satisfying absorption or de Morgan laws.

2 Preliminaries

2.1 Lattices and Bisemilattices

To define and situate our problem, we present a collection of algebraic structures satis-
fying certain subsets of the laws in tables 1 and 2.

A structure (S,∧) that is associative (L1), commutative (L2) and idempotent (L3) is
a semilattice. A semilattice induces a partial order relation on S defined by a ≤ b ⟺

(a∧b) = a. Indeed, one can verify that ∃c.(b∧c) = a ⟺ (b∧a) = a, from which tran-
sitivity follows. Antisymetry is immediate. In such partially ordered set (poset) S, two
elements a and b always have a greatest lower bound, or glb, a ∧ b. Conversely, a poset
such that any two elements have a glb is always a semilattice. A structure (S,∧, 0, 1) that
satisfies L1, L2, L3, L4, and L5 is a bounded upper-semilattice. Equivalently, 1 is the
maximum element and 0 the minimum element in the corresponding poset. Similarly,
a structure (S, ⊔, 0, 1) that satisfies L1’ to L5’ is a bounded lower-semilattice. In that
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case, we write the corresponding ordering relation ⊒. Note that it points in the direc-
tion opposite to ≤, so that 1 is always the “maximum” element and 0 the “minimum”
element. A structure (S,∧, ⊔) is a bisemilattice if (S,∧) is an upper semilattice and
(S, ⊔) a lower semilattice. There are in general no specific laws relating the two semi-
lattices of a bisemilattice. They can be the same semilattice or completely different. If
the bisemilattice satisfies the absorption law (L9), then the two semilattices are related
in such a way that a ≤ b ⟺ a ⊒ b, i.e. the two orders ≤ and ⊒ are equal and the
structure is called a lattice. A bisemilattice is consistently bounded if both semilattices
are bounded and if 0∧ = 0⊔ = 0 and 1∧ = 1⊔ = 1, which will be the case in this
paper. A structure (S,∧, ⊔,¬, 0, 1) that satisfies L1 to L7 and L1’ to L7’ is called a com-
plemented bisemilattice, with complement operation ¬. A complemented bisemilattice
satisfying de Morgan’s Law (L8 and L8’) is an orthocomplemented bisemilattice and
implies ¬0 = ¬(¬1∧0) = ¬¬1⊔¬0 = 1. A structure satisfying L1-L9 and L1’-L9’ is an
orthocomplemented lattice. Both de Morgan laws (L8, L8’) and absorption laws (L9
and L9’) relate the two semilattices, in a way summarised in Figure 1. In bisemilattices,
orthocomplementation is (merely) equivalent to a ≤ b ⟺ ¬b ⊒ ¬a. Indeed, we have:

a ≤ b
def
⟺ a ∧ b = a

L8′
⟺ ¬a ⊔ ¬b = ¬a

def
⟺ ¬b ⊒ ¬a

In the presence of L1-L8,L1’-L8’, the law of absorption (L9 and L9’) is implied
by distributivity. In fact, an orthocomplemented bisemilattice with distributivity is a
lattice and even a Boolean algebra. In this sense, we can consider orthocomplemented
bisemilattices as “Boolean algebra without distributivity”.

2.2 Term Rewriting Systems

We next review basics of term rewriting systems. For a more complete treatment, see [1].

Definition 2. A term rewriting system is a list of rewriting rules of the form el = er
with the meaning that the occurence of el in a term t can be replaced by er. el and er
can contain free variables. To apply the rule, el is unified with a subterm of t, and that
subterm is replaced by er with the same unifier. If applying a rewriting rule to t1 yields
t2, we say that t1 reduces to t2 and write t1 → t2. We denote by

∗
→ the transitive closure

of → and by
∗
↔ its transitive symmetric closure.

An axiomatic system such as L1-L9, L1’-L9’ induces a term rewriting system, inter-
preting equalities from left to right. In that case t1

∗
↔ t2 coincides with the validity of

the equality t1 = t2 in the theory given by the axioms [1, Theorem 3.1.12].
Definition 3. A term rewriting system is terminating if there exists no infinite chain of
reducing terms t1 → t2 → t3 → ....

Fact 1 If there is a well-founded order < (or, in particular, a measure m) on terms such
that t1 → t2 ⟹ t2 < t1 (or, in particular m(t2) < m(t1)) then the term rewriting
system is terminating.

cak200 S. Guilloud and V. Kunˇ



Definition 4. A term rewriting system is confluent iff: for all t1, t2, t3, t1
∗
→ t2∧t1 →∗ t3

implies ∃t4.t2
∗
→ t4 ∧ t3

∗
→ t4.

Theorem 1 (Church-Rosser Property ). [1, Chapter 2] A term rewriting system is
confluent if and only if ∀t1, t2.(t1

∗
↔ t2) ⟹ (∃t3.t1

∗
→ t3 ∧ t2

∗
→ t3).

A terminating and confluent term rewriting system directly implies decidability of
the word problem for the underlying structure, as it makes it possible to compute the
normal form of two terms to check if they are equivalent. Note that commutativity is not
a terminating rewriting rule, but similar results holds if we consider the set of all terms,
as well as rewrite rules, modulo commutativity [1, Chapter 11], [28]. To efficiently ma-
nipulate terms modulo commutativity and achieve log-linear time, we will employ an
algorithm for comparing trees with unordered children.

3 Directed Acyclic Graph Equivalence

The structure of formulas with commutative nodes correspond to the usual mathematical
definition of a labelled rooted tree, i.e. an acyclic graph with one distinguished vertex
(root) where there is no order on the children of a node. For this reason, we use as our
starting point the algorithm ofHopcroft, Ullman andAho for tree isomorphism [14, Page
84, Example 3.2], which has also been studied subsequently [7, 23].

To account for structure sharing, we further generalize this representation to singly-
rooted, labeled, Directed Acyclic Graphs, whichwe simply call DAGs. Our DAGs gener-
alize rooted directed trees. AnyDAG can be transformed into a rooted tree by duplicating
subgraphs corresponding to nodes with multiple parent, as in Figure 2. This transforma-
tion in general results in an exponential blowup in the number of nodes. Dually, using
DAGs instead of trees can exponentially shrink space needed to represent certain terms.

Fig. 2. A DAG and the corresponding Tree
Fig. 3. Two equivalent DAGs with different
number of nodes.

Checking for equality between ordered trees or DAGs is easy in linear time: we
simply recursively check equality between the children of two nodes.
Definition 5. Two ordered nodes � and � with children �0, ..., �m and �0, ..., �n are
equivalent (noted � ∼ �) iff

label(�) = label(�), m = n and ∀i < n, �i ∼ �i
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For unordered trees or DAG, the equivalence checking is less trivial, as the naive al-
gorithm has exponential complexity due to the need to find the adequate permutation.

Definition 6. Two unordered nodes � and � with children �0, ..., �m and �0, ..., �n are
equivalent (noted � ∼ �) iff

label(�) = label(�), m = n and there exists a permutation p s.t. ∀i < n, �p(i) ∼ �i

For trees, note that this definition of equivalence corresponds exactly to isomor-
phism. It is known that DAG-isomorphism is GI-complete, so it is conjectured to have
complexity greater than PTIME. Fortunately, this does not prevent our solution because
our notion of equivalence on DAGs is not the same as isomorphism on DAGs. In partic-
ular, two DAGs can be equivalent without having the same number of nodes, i.e. without
being isomorphic, as Figure 3 illustrates.

Algorithm 1: Unordered DAG equivalence. The operator ++ is concatenation.
input : two unordered DAGs � and �
output: True if � and � are equivalent, False else.

1 codes ←HashMap[(String, List[Int]), Int];
2 map ←HashMap[Node, Int];
3 s� ∶ List← ReverseTopologicalOrder(�);
4 s� ∶ List← ReverseTopologicalOrder(�);
5 for (n:Node in s�++s�) do
6 ln ← [map(c) for c in children(n)];
7 rn ← (label(n), sort(ln));
8 if codes contains r then
9 map(n) ← codes(rn);

10 else
11 codes(rn) ← codes.size;
12 map(n) ← codes(rn);
13 end
14 end
15 return map(�) == map(�)

Algorithm 1 is the generalization of Hopcroft, Ullman and Aho’s algorithm. It de-
cides in log-linear time if two labelled (unordered) DAGs are equivalent according to
definition 5. The algorithm generalizes straightforwardly to DAGs with a mix of ordered
and unordered nodes: if a node is ordered, we skip the sorting operation in line 7.

The algorithm works bottom to top. We first sort the DAG in reverse topological
order using, for example, Kahn’s algorithm [16]. This way, we explore the DAG starting
from a leaf and finishing with the root. It is guaranteed that when we treat a node, all its
children have already been treated.

The algorithm recursively assigns codes to the nodes of both DAGs recursively. In
the unlabelled case:
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• The first node, necessarily a leaf, is assigned the integer 0
• The second node gets assigned 0 if it is a leaf or 1 if it is a parent of the first node
• For any node, the algorithm makes a list of the integer assigned to that node’s chil-

dren and sort it (if the node is commutative). We call this the signature of the node.
Then it checks if that list has already been seen. If yes, it assigns to the node the
number that has been given to other nodes with the same signature. Otherwise, it
assigns a new integer to that node and its signature.

Lemma 1 (Algorithm 1 Correctness). The codes assigned to any two nodes n and m
of s�++s� are equal if and only if n ∼ m.

Proof. Let n and m denote any two DAG nodes. By induction on the height of n:

– In the case where n is a leaf, we have rn = (label(n), Nil). Note that for any node
n, map(n) = codes(rn). Since every time the map codes is updated, it is with a
completely new number, codes(rn) = codes(rm) if and only if rn = rm, i.e. iff
label(m) = label(n) and m has no children (like n).

– In the case where n has children ni, again codes(rn) = codes(rm) if and only if
rm = rn, which is equivalent to (label(m) = label(n) and sort(lm) = sort(ln). Thismeans this means there is a permutation of children of n such that ∀i, codes(np(i)) =
codes(mi). By induction hypothesis, this is equivalent to ∀i, np(i) ∼ mi. Hence wefind that map(n) = map(m) if and only if both:
1. Their labels are equal
2. There exist a permutation p s.t. np(i) ∼ mi
i.e n and m have the same code if and only if n ∼ m.

Corollary 1. The algorithm returns True if and only if � ∼ �.

Time Complexity. Using Kahn’s algorithm, sorting � and � is done in linear time. Then
the loop touches every node a single time. Inside the loop, the first line takes linear time
with respect to the number of children of the node and the second line takes log-linear
timewith respect to the number of children. Sincewe useHashMaps, the last instructions
take effectively constant time (because hash code is computed from the address of the
node and not its content).

So for general DAG, the algorithm runs in time at most log-quadratic in the number
of nodes. Note however that for DAGswith bounded number of children per node as well
as for DAGs with bounded number of parents per nodes, the algorithm is log-linear. In
fact, the algorithm is log-linear with respect to the total number of edges in the graph.
For this reason, the algorithm is still only log-linear in input size. It also follows that
the algorithm is always at most log-linear with respect to the tree or formula underlying
the DAG, which may be much larger than the DAG itself. Moreover, there exists cases
where the algorithm is log-linear in the number of nodes, but the underlying tree is
exponentially larger. The full binary symmetric graph is such an example.
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4 Word Problem on Orthocomplemented Bisemilattices
We will use the previous algorithm for DAG equivalence applied to a formula in the
language of bisemilattices (S,∧, ⊔) to account for commutativity (axioms L1, L1’), but
we need to combine it with the remaining axioms. From now on we work with axioms
L1-L8, L1’-L8’ in Table 1. The plan is to express those axioms as reduction rules. Of
rules L2-L8 and L2’-L8’, all but L8 and L8’ reduce the size of the term when applied
from left to right, and hence seem suitable as rewrite rules.

It may seem that the simplest way to deal with de Morgan law is to use it (along
with double negation elimination) to transform all terms into negation normal form. It
happens, however, that doing this causes troubles when trying to detect application cases
of rule L7 (complementation). Indeed, consider the following term:

f = (a ∧ b) ⊔ ¬(a ∧ b)

Using complementation it clearly reduces to 1, but pushing into negation-normal form,
it would first be transformed to (a ∧ b) ⊔ (¬a ∨ ¬b). To detect that these two disjuncts
are actually opposite requires to recursivly verify that ¬(a ∧ b) = (¬a ∨ ¬b).

It is actually simpler to apply de Morgan law the following way:
x ∧ y = ¬(¬x ⊔ ¬y)

Instead of removing negations from the formula, we remove one of the binary semilattice
operators. (Which one we keep is arbitrary; we chose to keep ⊔.) Now, when we look if
rule L7 can be applied to a disjunction node (i.e. two children y and z such that y = ¬z),
there are two cases: if x is not itself a negation, i.e. it starts with ⊔, we compute ¬x code
from the code of x in constant time. If x = ¬x′ then ¬x ∼ x′ so the code of ¬x is simply
the code of x′, in constant time as well. Hence we obtain the code of all children and
their negation and we can sort those codes to look for collisions, all of it in time linear
in the number of children.

We now restate the axioms L1-L8 ,L1’-L8’ in this updated language in Table 3.

A1 ∶
⨆

(..., xi, xj , ...) =
⨆

(..., xj , xi, ...) A1′ ∶ ¬
⨆

(¬x,¬y) = ¬
⨆

(¬y,¬x)
A2 ∶

⨆

(x⃗,
⨆

(y⃗)) =
⨆

(x⃗, y⃗) A2′ ∶ ¬
⨆

(¬x⃗,¬¬
⨆

(¬y⃗)) = ¬
⨆

(¬x⃗,¬y⃗)
⨆

(x) = x
A3 ∶

⨆

(x, x, y⃗) =
⨆

(x, y⃗) A3′ ∶ ¬
⨆

(¬x,¬x,¬y⃗) = ¬
⨆

(¬x,¬y⃗)
A4 ∶

⨆

(1, x⃗) = 1 A4′ ∶ ¬
⨆

(¬0,¬y⃗) = 0
A5 ∶

⨆

(0, x⃗) =
⨆

(x⃗) A5′ ∶ ¬
⨆

(¬1,¬x⃗) = ¬
⨆

(¬x⃗)
A6 ∶ ¬¬x = x
A7 ∶

⨆

(x,¬x, y⃗) = 1 A7′ ∶ ¬
⨆

(¬x,¬¬x,¬y⃗) = 0
A8 ∶ ¬

⨆

(x1, ...xi) = ¬
⨆

(¬¬x1, ...¬¬xi) A8′ ∶ ¬¬
⨆

(¬x1, ...¬xi) =
⨆

(¬x1, ...¬xi)

Table 3. Laws of algebraic structures (S, ⊔, 0, 1,¬), equivalent to L1-L8, L1-L8’ under deMorgan
transformation.

It is straightforward and not surprising that axiom A8 as well as A1’-A8’ all follow
from axioms A1-A7, so A1-A7 are actually complete for our theory.
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4.1 Confluence of the Rewriting System

In our equivalence algorithm, A1 is taken care of by the arbitrary but consistent ordering
of the nodes. Axioms A2-A7 form a term rewriting system. Since all those rules reduce
the size of the term, the system is terminating in a number of steps linear in the size of
the term. We will next show that it is confluent. We will thus obtain the existence of
a normal form for every term, and will finally show how our algorithm computes that
normal form.

Definition 7. Consider a pair of reduction rules l0 → r0 and l1 → r1 with disjoint sets
of free variables such that l0 =D[s], s is not a variable and � is the most general unifier
of �s = �l1. Then (�r0, (�D)[�r2]) is called a critical pair.

Informally, a critical pair is a most general pair of term (with respect to unification)
(t1, t2) such that for some t0, t0 → t1 and t0 → t2 via two “overlapping” rules. They arefound by matching the left-hand side of a rule with a non-variable subterm of the same
or another rule.
Example 1 (Critical Pairs).

1. Matching left-hand side of A6 with the subterm ¬x of rule A7, we obtain the pair
(1,

⨆

(¬x, x, y⃗))

which arises from reducing the term t0 =
⨆

(¬x,¬¬x, y⃗) in two different ways.
2. Matching left-hand sides of A2 and A7 gives

(
⨆

(x⃗, y⃗,¬
⨆

(y⃗)), 1)

which arise from reducing⨆(x⃗,
⨆

(y⃗),¬
⨆

(y⃗)) using A2 or A7.
3. Matching left-hand sides of A5 and A7 gives

(¬0, 1)

which arise from reducing 0 ⊔ ¬0 in two different ways.

Proposition 1 ( [1, Chapter 6]). A terminating term rewriting system is confluent if and
only if all critical pairs (t1, t2) are joinable i.e. ∃t3. t1

∗
→ t3 ∧ t2

∗
→ t3.

In the first of the previous examples, the pair is clearly joinable by commutativity and
a single application of rule A7 itself. The second example is more interesting. Observe
that ⨆(x⃗, y⃗,¬

⨆

(y⃗)) = 1 is a consequence of our axiom, but the left part cannot be
reduced to 1 in general in our system. To solve this problem we need to add the rule A9:
⨆

(x⃗, y⃗,¬
⨆

(y⃗)) = 1. Similarly, the third example forces us to add A10: ¬0 = 1 to our
set of rules. From A10 and A6 we then find the expected critical pair A11: ¬1 = 0.
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A1 ∶
⨆

(..., xi, xj , ...) =
⨆

(..., xj , xi, ...)
A2 ∶

⨆

(x⃗,
⨆

(y⃗)) =
⨆

(x⃗, y⃗)
⨆

(x) = x
A3 ∶

⨆

(x, x, y⃗) =
⨆

(x, y⃗)
A4 ∶

⨆

(1, x⃗) = 1
A5 ∶

⨆

(0, x⃗) =
⨆

(x⃗)
A6 ∶ ¬¬x = x
A7 ∶

⨆

(x,¬x, y⃗) = 1
A9 ∶

⨆

(x⃗, y⃗,¬
⨆

(y⃗)) = 1
A10 ∶ ¬0 = 1
A11 ∶ ¬1 = 0

Table 4. Terminating and confluent set of rewrite rules equivalent to L1-L8, L1’-L8’

4.2 Complete Terminating Confluent Rewrite System

The analysis of all possible pairs of rules to find all critical pairs is straightforward. It
turns out that the A9, A10 and A11 are the only rules we need to add to our system to
obtain confluence. We have checked the complete list of critical pairs for rules A2-A11
(we omit the details due to lack of space). All those pairs are joinable, i.e. reduce to the
same term, which implies, by Proposition 1, that the system is confluent. Table 4 shows
the complete set of reduction rules (as well as commutativity).

Since the system A2-A11 considered over the language (S,⨆,¬, 0, 1)modulo com-
mutativity of ⨆ is terminating and confluent, it implies the existence of a normal form
reduction. For any term t, we note its normal form t↓. In particular, for any two terms
t1 and t2, we have t1 = t2 in our theory iff t1

∗
↔ t2 iff t1↓ and t2↓ are equivalent terms

modulo commutativity. We finally reach our conclusion: an algorithm that computes
the normal form (modulo commutativity) of any term gives a decision procedure for the
word problem for orthocomplemented bisemilattices.

5 Algorithm and Complexity

The rewriting system readily gives us a quadratic algorithm. Indeed, using our base
algorithm for DAG equivalence, we can check, in linear time, for application cases of
any one of rewriting rules A2-A11 of Table 4 modulo commutativity. Since a term can
only be reduced up to n times, the total time spent before finding the normal form of a
term is at most quadratic. It is however possible to find the normal form of a term in a
single pass of our equivalence algorithm, resulting in a more efficient algorithm.

5.1 Combining Rewrite Rules and Tree Isomorphism

We give an overview on how to combine rules A2-A7, A9, A10, A11 within the tree
isomorphism algorithm, which we present using Scala-like 1 pseudo code in Figure 7.
1 https://www.scala-lang.org/
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For conciseness, we omit the dynamic programming optimizations allowed by struc-
ture sharing in DAGs (which would store the normal form and additionally check if a
node was already processed.) For each rule, we indicate the most relevant lines of the
algorithm in Figure 7.
A2 (Associativity, Lines 10, 20, 32, 42) When analysing a ⨆ node, after the recursive
call, find all children that are ⨆ themselves and replace them by their own children.
This is simple enough to implement but there is actually a caveat with this in term of
complexity. We will come back to it in section 5.
A3 (Idempotence, Lines 8, 31, 35 ) This corresponds to the fact that we eliminate du-
plicate children in disjunctions. When reaching a ⨆ node, after having sorted the code
of its children, remove all duplicates before computing its own code.
A4, A5 (Bounds, Lines 8, 31, 35, 11, 36) To account for those axioms, we reserve a
special code for the nodes 1 and 0. For A4, when we reach some ⨆ node, if it has 1 as
one of its children, we accordingly replace the whole node by 1. For A5, we just remove
nodes with the same codes as 0 from the parent node before computing its own code.
A6 (Involution, Lines 17, 22) When reaching a negation node, if its child is itself a
negation node, replace the parent node by its grandchildren before assigning it a code.
A7 (Complement, Lines 11, 36) As explained earlier, our representation of nodes let us
do the following to detect cases of A7: First remember that we already applied double
negation elimination, so that two “opposite” nodes cannot both start with a negation.
Then we can simply separate the children between negated and non-negated (after the
recursive call), sort them using their assigned code and look for collisions.
A9 (Also Complement, Lines 11, 36) This rule is slightly more tricky to apply. When
analysing a⨆ node x, after computing the code of all children of x, find all children of
the form ¬

⨆. For every such node, take the set of its own children and verify if it is
a subset of the set of all children of x. If yes, then rule A9 applies. Said otherwise, we
look for collisions between grandchildren (through a negation) and children of every⨆
node.
A10, A11 (Identities, Lines 17, 26) These rules are simple. In a ¬ node, if its child has
the same code as 0 (resp 1), assign code 1 (resp 0) to the negated node.

5.2 Case of Quadratic Runtime for the Basic Algorithm

All the rules we introduced in the previous section into Algorithm 1 take time (log)linear
in the number of children of a node to apply, which is not more than the time we spent in
the DAG/tree isomorphism algorithm. For A3, checking for duplicates is done in linear
time in an ordered data structure. A4 and A5 (Bounds) consist in searching for specific
values, which take logarithmic time in the size of the list. A6 (Involution) takes constant
time. A7 (Complement) is detected by finding a collision between two separate ordered
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lists, also easily done in (log) linear time. A9 (Also complement) consists in verifying
if grandchildren of a node are also children, and since children are sorted this takes log-
linear time in the number of grandchildren. Since a node is the grandchild of only one
other node, the same computation as in the original algorithm holds. A10 and A11 take
constant time. Hence, the total time complexity is (n log(n)), as in the algorithm for
tree isomorphism.

As stated in Section 3 regarding the algorithm for DAG equivalence whose com-
plexity we aim to preserve, the time complexity analysis crucially relies on the fact that
in a tree, a node is never the child (or grandchild) of more than one node during the
execution. However, this is generally not true in the presence of associativity. Indeed
consider the term represented in Figure 4. The 5th ⨆ has 2 children, but after applying

⨆ ⨆ ⨆ ⨆ ⨆

x1 x2 x3 x4

x5

x6

Fig. 4. A term with quadratic runtime

A2, the 4th has 3 children, the 3rd has 4 children and so on. On the generalization of
such an example, since an xi is the child of all higher⨆, our key property does not hold
and the algorithm runtime would be quadratic. Of course, such a simple counterexam-
ple is easily solved by applying a leading pass of associativity reduction before actually
running the whole algorithm. It turns out however that it is not sufficient, since cases of
associativity can appear after the application of the other A-rules.

In fact, there is only one rule that can creates case of rule A2, and this rule is A6
(Involution). The remaining rules whose right-hand side can start with a ⨆ have their
left-hand side already starting with⨆. It may seem simple enough to also apply double
negation elimination in a leading pass, but unfortunately, cases of A6 can also be created
from other rules. It is easy to see, for similar reasons, that only the application of A2b
(⨆(x) = x) can create such cases. And unfortunately, such cases of A2b can arise from
rules A3 and A5 which can only be detected using the full algorithm. To summarize,
the typical problematic case is depicted in Figure 5. This term is clearly equivalent to
⨆

(x1, x2, x3, x4), but to detect it we must first find that z1 and z2 are equivalent to 0, sowe cannot simply solve it with an early pass.

5.3 Final Log-Linear Time Algorithm

Fortunately, we can solve this problem at a logarithmic-only price. Observe that if we
are able to detect early nodes which would cancel to 0, the problem would not exist:
When analysing a node, we would first call the algorithm on all subnodes equivalent to
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⨆ ¬ ⨆ ¬ ⨆ ¬ ⨆ ¬ ⨆

x1 z1∼0 x2 z2∼0

x3

x4

Fig. 5. A non-trivial term with quadratic runtime

⨆ ¬ ⨆ ¬ ⨆

x1
x2 z2∼0

x3

x4

Fig. 6. the term of Figure 5 during the algorithm’s execution

0, remove them and then when there is a single children left, remove the trivial disjunct,
the double negation and the successive disjunction (as in Figure 5) before doing the
recursive call on the unique nontrivial child. However, we of course cannot know in
advance which child will be equivalent to 0.

Moreover note (still using Figure 5) that if the z-child is as large as the non-trivial
node, then even if we do the “useless” work, we at least obtain that the size a tree is
divided by two, and hence the potential depth of the tree as well. By standard complexity
analysis, the time penalty would only be a logarithmic factor.

The previous analysis suggests the following solution, reflected in Figure 7 lines
28-29. When analysing a node, make recursive calls on children in order of their size,
starting with the smallest up to the second biggest. If any of those children are non-zero,
proceed as normal. If all (but possibly the last) children are equivalent to zero, then
replace the current node by its biggest (and at this point non-analyzed) child, i.e. apply
second half of rule A2 (associativity). If applicable, apply double negation elimination
and associativity as well before continuing the recursive call.

We illustrate this on the example of Figure 5. Consider the algorithm when reaching
the second ⨆ node. There are two cases:
1. Suppose z1 is a smaller tree than the non-trivial child. In this case the algorithm

will compute a code for z1, find that it is 0 and delete it. Then the non trivial node
is a single child so the whole disjunction is removed. Hence, the double negation
can be removed and the two consecutive disjunction of x1 and x2 merged, obtaining
the term illustrated in Figure 6. In particular we did not compute a code for the two
deleted ⨆ nodes, which is exactly what we wanted for our initial analysis.

2. Suppose z1 is larger tree than the non-trivial child. In this case, we would first re-
cursively compute the code of the non-trivial child and then detect that z1 ∼ 0. We
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indeed computed the code of the disjunction that contains x2 when it was unnec-
essary since we apply associativity anyway. This “useless” work consists in sorting
and applying axioms to the true children of the node (in this case x2, x3 and x4) andtakes time quasilinear in the number of such children. In particular, it is bounded by
the size of the subtree itself and we know it is the smallest of the two.
Analogous situation can arise from the use of rule A3 (idempotence), but here triv-

ially the two subtrees must have the same number of (real) subnodes, so that the same
reasoning holds.

Denote by |n| the size of a node, i.e. the number of descendants of n. We compute
the penalty of useless work we incur by computing children of a node n in the wrong
order, i.e. by computing a non-0 child nw when all other are 0. nw cannot be the largest
child of n for otherwise we would have found that all other children are 0 before needing
to compute nw. Hence |nw| ≤ |n|∕2. It follows that the total amount of useless work is
bounded by log(|n|) ⋅W (n), where

W (n) ≤ |n|∕2 +
∑

i
W (ni) for ∑

i
|ni| < |n|.

It is clear thatW (n) is maximized when n has exactly two children of equal size:
W (n) ≤ |n|∕2 + 2 ⋅W (n∕2)

By observing that we can divide n by 2 only log(n) times,

W (n) ≤
log(n)
∑

m=1
2m ⋅ |n|∕2m

so we obtainW (n) = (|n| log(|n|)) and hence the total runtime is (n(log n)2).

6 Conclusion

We have described a decision procedure with log-linear time complexity for the word
problem on orthocomplemented bisemilattices. This algorithm can also be simplified
to apply to weaker theories. Dually, we believe it can be generalized to decide some
stronger theories (still weaker than Boolean algebras) efficiently. While the word prob-
lem for orthocomplemented lattices was known to be in PTIME [15] and as such the
membership of orthocomplemented bisemilattices in PTIME may not come as a sur-
prise, this is, to the best of our knowledge, the first time that this result has been ex-
plicitly stated, and the first time that an algorithm with such low log-linear complexity
was proposed for this or a related problem. The algorithm has not only low complexity
but, according to our experience, is easy to implement. It can be used as an approxi-
mation for Boolean algebra equivalence, and we plan to use it as the basis of a kernel
for a proof assistant. We also envision possible uses of the algorithm in SMT and SAT
solvers. The algorithm is able to detect many natural and non-trivial cases of equiva-
lence even on formulas that may be too large for existing solvers to deal with, so it may
also complement an existing repertoire of subroutines used in more complex reasoning
tasks. For a minimal working implementation in Scala closely following Figure 7, see
https://github.com/epfl-lara/OCBSL.
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1 def equivalentTrees(tau: Term, pi: Term): Boolean =
2 val codesSig: HashMap[(String, List[Int]), Int] = Empty
3 codesSig.update(("zero", Nil), 0); codesSig.update(("one", Nil), 1)
4 val codesNodes: HashMap[Term, Int] = Empty
5 def updateCodes(sig: (String, List[Int]), n: Node): Unit = ... // codesSig, codesNodes
6 def bool2const(b:Boolean): String = if b then "one" else "zero"
7 def rootCode(n: Term): Int =
8 val L = pDisj(n, Nil).map(codesNodes).sorted.filter(_≠ 0).distinct
9 if L.isEmpty then ("zero", Nil), n)
10 else if L.length == 1 then codesNodes.update(n, L.head)
11 else if L.contains(1) or checkForContradiction(L) then updateCodes(("one", Nil), n)
12 else updateCodes(("or", L), n)
13 codesNodes(n)
14 def pDisj(n:Node, acc:List[Node]): List[Node] = n match
15 case Variable(id)⇒ updateCodes((id.toString, Nil), n); return n :: acc
16 case Literal(b)⇒ updateCodes((bool2const(b), Nil), n); return n :: acc
17 case Negation(child)⇒ pNeg(child, n, acc)
18 case Disjunction(children)⇒ children.foldleft(acc)(pDisj)
19 def pNeg(n:Node, parent:Node, acc:List[Node]): List[Node] = n match // under negation
20 case Negation(child)⇒ pDisj(child, acc)
21 case Variable(id)⇒ updateCodes((id.toString, Nil), n)
22 updateCodes(("neg", List(codesNodes(n))), parent)
23 List(parent)::acc
24 case Literal(b)⇒ updateCodes((bool2const(b), Nil), n)
25 updateCodes((bool2const(!b), Nil), parent)
26 List(parent)::acc
27 case Disjunction(children)⇒
28 val r0 = orderBySize(children)
29 val r1 = r0.tail.foldLeft(Nil)(pDisj)
30 val r2 = r1.map(codesNodes).sorted.filter(_≠ 0).distinct
31 if isEmpty(r2) then pNeg(r0.head, parent, acc)
32 else val s1 = pDisj(r0.head, r1)
33 val s2 = s1 zip (s1 map codesNodes)
34 val s3 = s2.sorted.filter(_≠ 0).distinct // all wrt. 2nd element
35 if s3.contains(1) or checkForContradiction(s3)
36 then updateCodes(("one", Nil), n); updateCodes(("zero", Nil), parent)
37 List(parent)::acc
38 else if isEmpty(s3) then updateCodes(("zero", Nil), n)
39 updateCodes(("one", Nil), parent)
40 List(parent)::acc
41 else if s3.length == 1 then pNeg(s3.head._1, parent, acc)
42 else updateCodes(("or", s3 map (_._2)), n)
43 updateCodes(("neg", List(n)), parent)
44 List(parent)::acc
45 return rootCode(tau) == rootCode(pi)

Fig. 7. Final algorithm. distinctBy runs in log-linear time. checkForContradiction detects appli-
cation cases of A7 and A9 (Complement). Maintenance of size field used by orderBySize elided.
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

cak214 S. Guilloud and V. Kunˇ

http://creativecommons.org/licenses/by/4.0/

	Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear Time
	1 Introduction
	1.1 Problem Statement
	1.2 Related Work
	1.3 Overview of the Algorithm

	2 Preliminaries
	2.1 Lattices and Bisemilattices
	2.2 Term Rewriting Systems

	3 Directed Acyclic Graph Equivalence
	4 Word Problem on Orthocomplemented Bisemilattices
	4.1 Confluence of the Rewriting System
	4.2 Complete Terminating Confluent Rewrite System

	5 Algorithm and Complexity
	5.1 Combining Rewrite Rules and Tree Isomorphism
	5.2 Case of Quadratic Runtime for the Basic Algorithm
	5.3 Final Log-Linear Time Algorithm

	6 Conclusion
	References


