Skip to main content

Biopolymers from Industrial Waste

  • Chapter
  • First Online:
Biopolymers

Abstract

The problems arising due to anthropogenic activities and limited availability of resources demand sustainable and smart solution. Uncontrolled waste generation and usage of traditional non-biodegradable materials is one such critical issue. To address the waste disposal problem and to meet the need for bio-based materials, the valorization of leftover biomass residues arises as a green and sustainable approach. Technological advancements have paved the way to use biochemicals and biomass for the formation of biomaterials such as biopolymers. With this viewpoint, the chapter focuses on biopolymers-biodegradable, low cost, abundant, biocompatible, naturally occurring and microbially synthesized molecules. They comprise a wide variety of molecules like cellulose, chitin, collagen, polylactic acid and polyhydroxyalkanoates. The waste material generated from various sectors including food industries, agricultural sector, dairy industry, leather tanning processes and domestic waste is considered as a potential substrate for biopolymer synthesis. Being low cost and renewable raw material, waste biomass is extensively used for the generation of all types of biopolymers. The excellent properties of bio-based polymers make them usable in almost all areas of our daily lives. Biopolymers are widely used in medicines for tissue engineering, regenerative medicines, drug delivery and bone implants. They also possess applications in the food industry as food packaging materials and food coatings. This chapter intends to discuss the formation of various types of biopolymers from waste feedstock and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Dalo MA, Al-Rawashdeh NA, Ababneh A (2013) Evaluating the performance of sulfonated Kraft lignin agent as corrosion inhibitor for iron-based materials in water distribution systems. Desalination 313:105–114

    Google Scholar 

  2. Ahmed M, Verma AK, Patel R (2020) Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: a review. Sustain Chem Pharmacy 18:100315

    Google Scholar 

  3. Alabaraoye E, Achilonu M, Hester R (2018) Biopolymer (Chitin) from various marine seashell wastes: isolation and characterization. J Polym Environ 26(6):2207–2218

    Article  CAS  Google Scholar 

  4. Alam MN, Christopher LP (2018) Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties. ACS Sustain Chem Eng 6(7):8736–8742

    Article  CAS  Google Scholar 

  5. Allen AD, Anderson WA, Ayorinde FO, Eribo BE (2010) Biosynthesis and characterization of copolymer poly (3HB-co-3HV) from saponified Jatropha curcas oil by Pseudomonas oleovorans. J Ind Microbiol Biotechnol 37(8):849–856

    Article  CAS  PubMed  Google Scholar 

  6. Alzagameem A, El Khaldi-Hansen B, Kamm B, Schulze M (2018) Lignocellulosic biomass for energy, biofuels, biomaterials, and chemicals. In: Biomass and green chemistry. Springer, pp 95–132

    Google Scholar 

  7. Aydemir D, Gardner DJ (2020) Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohyd Poly 250:116867

    Google Scholar 

  8. Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):1–16

    Article  Google Scholar 

  9. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    Article  PubMed  Google Scholar 

  10. Banerjee S, Patti AF, Ranganathan V, Arora A (2019) Hemicellulose based biorefinery from pineapple peel waste: xylan extraction and its conversion into xylooligosaccharides. Food Bioprod Process 117:38–50

    Article  CAS  Google Scholar 

  11. Bharti S, Swetha G (2016) Need for bioplastics and role of biopolymer PHB: a short review. J Pet Environ Biotechnol 7(272):2

    Google Scholar 

  12. Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomater

    Google Scholar 

  13. Boneberg BS, Machado GD, Santos DF, Gomes F, Faria DJ, Gomes LA, Santos FA (2016) Biorefinery of lignocellulosic biopolymers. Revista Eletrônica Científica da UERGS 2(1):79–100

    Article  Google Scholar 

  14. Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169

    Article  CAS  Google Scholar 

  15. Brunner PH, Rechberger H (2015) Waste to energy–key element for sustainable waste management. Waste Manage 37:3–12

    Article  CAS  Google Scholar 

  16. Castilho LR, Mitchell DA, Freire DM (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Biores Technol 100(23):5996–6009

    Article  CAS  Google Scholar 

  17. Catalina M, Cot J, Balu AM, Serrano-Ruiz JC, Luque R (2012) Tailor-made biopolymers from leather waste valorisation. Green Chem 14(2):308–312

    Article  CAS  Google Scholar 

  18. Chang I, Im J, Prasidhi AK, Cho G-C (2015) Effects of Xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72

    Article  Google Scholar 

  19. Charoenvuttitham P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41(06):1135–1153

    Article  CAS  Google Scholar 

  20. Chatterjee S, Guha AK, Chatterjee BP (2019) Evaluation of quantity and quality of chitosan produce from Rhizopus oryzae by utilizing food product processing waste whey and molasses. J Env Manag 251:109565

    Google Scholar 

  21. Cheba BA (2011) Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global J Biotechnol Biochem 6(3):149–153

    Google Scholar 

  22. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38(8):2434–2446

    Article  CAS  PubMed  Google Scholar 

  23. Chowdhury SR, Basak RK, Sen R, Adhikari B (2011) Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate. Biores Technol 102(11):6629–6632

    Article  CAS  Google Scholar 

  24. Coma V (2013) Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polímeros 23(3):287–297

    CAS  Google Scholar 

  25. da Silva CK, Costa JAV, de Morais MG (2018) Polyhydroxybutyrate (PHB) synthesis by Spirulina sp. LEB 18 using biopolymer extraction waste. Applied Biochem Biotechnol 185(3):822–833

    Google Scholar 

  26. Dahiya S, Kumar AN, Sravan JS, Chatterjee S, Sarkar O, Mohan SV (2018) Food waste biorefinery: sustainable strategy for circular bioeconomy. Biores Technol 248:2–12

    Article  CAS  Google Scholar 

  27. Dessie W, Luo X, Wang M, Feng L, Liao Y, Wang Z, Qin Z (2020) Current advances on waste biomass transformation into value-added products. Appl Microbiol Biotechnol 104(11):4757–4770

    Article  CAS  PubMed  Google Scholar 

  28. Dhandapani B, Vishnu D, Murshid S, Sekar S (2019) Production of lactic acid from industrial waste paper sludge using Rhizopus oryzae MTCC5384 by simultaneous saccharification and fermentation. Chem Eng Commun 1–9

    Google Scholar 

  29. Elkamel A, Simon L, Tsai E, Vinayagamoorthy V, Bagshaw I, Al-Adwani S, Mahdi K (2015) Modeling the mechanical properties of biopolymers for automotive applications. In: Paper presented at the 2015 international conference on industrial engineering and operations management (IEOM)

    Google Scholar 

  30. Esa F, Tasirin SM, Abd Rahman N (2014) Overview of bacterial cellulose production and application. Agriculture Agricultural Sci Proc 2:113–119

    Google Scholar 

  31. Fabra M, López-Rubio A, Lagaron J (2014) Biopolymers for food packaging applications. Smart Poly Appl 476–509

    Google Scholar 

  32. Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohyd Polym 151:1068–1072

    Article  CAS  Google Scholar 

  33. Ferrario C, Rusconi F, Pulaj A, Macchi R, Landini P, Paroni M, Gomiero C (2020) From food waste to innovative biomaterial: sea urchin-derived collagen for applications in skin regenerative medicine. Mar Drugs 18(8):414

    Article  CAS  PubMed Central  Google Scholar 

  34. George A, Sanjay M, Srisuk R, Parameswaranpillai J, Siengchin S (2020) A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol 154:329–338

    Article  CAS  PubMed  Google Scholar 

  35. Ghorbel-Bellaaj O, Younes I, Maâlej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51(5):1196–1201

    Article  CAS  PubMed  Google Scholar 

  36. Grujić R, Vujadinović D, Savanović D (2017) Biopolymers as food packaging materials. Adv Appl Ind Biomater 139–160

    Google Scholar 

  37. Gupta G, Birbilis N, Cook AB, Khanna AS (2013) Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3. Corros Sci 67:256–267

    Article  CAS  Google Scholar 

  38. Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505

    Article  CAS  Google Scholar 

  39. Hassan MES, Bai J, Dou D-Q (2019) Biopolymers; definition, classification and applications. Egypt J Chem 62(9):1725–1737

    Google Scholar 

  40. Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26(5):2895–2911

    Article  CAS  Google Scholar 

  41. Jacob J, Haponiuk JT, Thomas S, Gopi S (2018) Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem 9:43–55

    Article  CAS  Google Scholar 

  42. Jahan F, Kumar V, Saxena RK (2018) Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Biores Technol 250:922–926

    Article  CAS  Google Scholar 

  43. Kaur S, Dhillon GS (2015) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35(1):44–61

    Article  CAS  PubMed  Google Scholar 

  44. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications

    Google Scholar 

  45. Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8(7):1988–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  47. Kogan G, Šoltés L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotech Lett 29(1):17–25

    Article  CAS  Google Scholar 

  48. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38

    Article  CAS  Google Scholar 

  49. Kongruang S (2007) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. In: Biotechnology for fuels and chemicals. Springer, pp 763–774

    Google Scholar 

  50. Kothari R, Tyagi V, Pathak A (2010) Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev 14(9):3164–3170

    Article  CAS  Google Scholar 

  51. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Garcia IL, Kookos IK, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43(8):2587–2627

    Article  CAS  PubMed  Google Scholar 

  52. Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manage 69:407–422

    Article  CAS  Google Scholar 

  53. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  54. Kumar SS (2007) Biopolymers in medical applications. Tech. Text, pp 1–15

    Google Scholar 

  55. Kumari S, Rath P, Kumar ASH, Tiwari T (2015) Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov 3:77–85

    Article  Google Scholar 

  56. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76(2):333–335

    Article  CAS  Google Scholar 

  57. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38(12):3484-3504

    Google Scholar 

  58. Lebo SE Jr, Gargulak JD, McNally TJ (2000) Lignin. Kirk Othmer Encycl Chem Technol

    Google Scholar 

  59. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22

    Article  CAS  PubMed  Google Scholar 

  60. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152

    Article  CAS  Google Scholar 

  61. Machado G, Santos F, Faria D, de Queiroz TN, de Queiroz H, Gomes F (2018) Characterization and potential evaluation of residues from the sugarcane industry of Rio Grande do Sul in biorefinery processes. Natural Res 9(5):175–187

    Article  CAS  Google Scholar 

  62. Machado G, Santos F, Lourega R, Mattia J, Faria D, Eichler P, Auler A (2020) Biopolymers from lignocellulosic biomass: feedstocks, production processes, and applications. Lignocell Biorefining Technol 125–158

    Google Scholar 

  63. Madhavan P, Ramachandran Nair K (1974) Utilization of prawn waste: isolation of chitin and its conversion to chitosan. Fish Technol 11(1):50–53

    CAS  Google Scholar 

  64. Mahmood H, Moniruzzaman M, Iqbal T, Khan MJ (2019) Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion Green Sustain Chem 20:18–24

    Article  Google Scholar 

  65. Masilamani D, Madhan B, Shanmugam G, Palanivel S, Narayan B (2016) Extraction of collagen from raw trimming wastes of tannery: a waste to wealth approach. J Clean Prod 113:338–344

    Article  CAS  Google Scholar 

  66. Mathuriya AS, Yakhmi J, Martínez L, Kharissova O, Kharisov B (2017) Polyhydroxyalkanoates: Biodegradable plastics and their applications. Handbook Ecomater 1–29

    Google Scholar 

  67. Mitura S, Sionkowska A, Jaiswal A (2020) Biopolymers for hydrogels in cosmetics. J Mater Sci Mater Med 31(6):1–14

    Article  Google Scholar 

  68. Mohapatra S, Mohanta P, Sarkar B, Daware A, Kumar C, Samantaray D (2017) Production of polyhydroxyalkanoates (PHAs) by Bacillus strain isolated from waste water and its biochemical characterization. Proc Natl Acad Sci India Sect B Biol Sci 87(2):459–466

    Article  CAS  Google Scholar 

  69. Muhammad N, Gonfa G, Rahim A, Ahmad P, Iqbal F, Sharif F, Rehman IU (2017) Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. J Mol Liq 232:258–264

    Article  CAS  Google Scholar 

  70. Munesue Y, Masui T, Fushima T (2015) The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environ Econ Policy Stud 17(1):43–77

    Article  Google Scholar 

  71. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101(22):8493–8501

    Article  Google Scholar 

  72. Nevárez LM, Casarrubias LB, Canto OS, Celzard A, Fierro V, Gómez RI, Sánchez GG (2011) Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification. Carbohyd Polym 86(2):732–741

    Article  Google Scholar 

  73. Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD (2017) Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 10(6):1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nollet L, Toldrá F, Benjakul S, Paliyath G, Hui Y (2012) Food biochemistry and food processing. Benjamin K Simpson Associate Editors 2:118–119

    Google Scholar 

  75. Noorzai S, Verbeek CJR, Lay MC, Swan J (2020) Collagen extraction from various waste bovine hide sources. Waste Biomass Valorization 11(11):5687–5698

    Article  CAS  Google Scholar 

  76. Pachapur VL, Guemiza K, Rouissi T, Sarma SJ, Brar SK (2016) Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol 91(8):2331–2339

    Article  CAS  Google Scholar 

  77. Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Proc Manuf 12:263–279

    Google Scholar 

  78. Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238(4):627–642

    Article  CAS  PubMed  Google Scholar 

  79. Petri DF (2015) Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Poly Sci 132(23)

    Google Scholar 

  80. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol Int Res Process Env clean technol 82(3):233–247

    CAS  Google Scholar 

  81. Poovaiah CR, Nageswara‐Rao M, Soneji JR, Baxter HL, Stewart CN Jr (2014) Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol J 12(9):1163–1173

    Google Scholar 

  82. Raiszadeh-Jahromi Y, Rezazadeh-Bari M, Almasi H, Amiri S (2020) Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J Food Sci Technol 57(7):2524–2533

    Google Scholar 

  83. Raj SN, Lavanya S, Sudisha J, Shetty HS (2011) Applications of biopolymers in agriculture with special reference to role of plant derived biopolymers in crop protection. In: Kalia S, Avérous L (eds) Biopolymers: biomédical and environmental applications. Wiley Publishing LLC, Hoboken, NY, pp 461–481

    Google Scholar 

  84. Rajan KP, Thomas SP, Gopanna A, Chavali M (2019) Polyhydroxybutyrate (PHB): a standout biopolymer for environmental sustainability. Handbook Ecomater 2803–2825

    Google Scholar 

  85. Rao U, Sridhar R, Sehgal PK (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20

    Article  CAS  Google Scholar 

  86. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34(1):58–69

    Article  CAS  PubMed  Google Scholar 

  87. Rebelo R, Fernandes M, Fangueiro R (2017) Biopolymers in medical implants: a brief review. Proc Eng 200:236–243

    Article  CAS  Google Scholar 

  88. Regenstein J, Zhou P (2007) Collagen and gelatin from marine by-products. In: Maximising the value of marine by-products. Elsevier, pp 279–303

    Google Scholar 

  89. Santos F, Machado G, Faria D, Lima J, Marçal N, Dutra E, Souza G (2017) Productive potential and quality of rice husk and straw for biorefineries. Biomass Conver Biorefinery 7(1):117–126

    Article  CAS  Google Scholar 

  90. Saratale GD, Saratale RG, Varjani S, Cho S-K, Ghodake GS, Kadam A, Shin HS (2020) Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind Crops Products 150:112425

    Google Scholar 

  91. Seesuriyachan P, Techapun C, Shinkawa H, Sasaki K (2010) Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes. Biosci Biotechnol Biochem 74(2):423–426

    Article  CAS  PubMed  Google Scholar 

  92. Shah S, Kumar A (2021) Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates. Brazilian J Microbiol 1–12

    Google Scholar 

  93. Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Brazilian Arch Biol Technol 59

    Google Scholar 

  94. Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Environ Policy 20(10):2157–2167

    Article  CAS  Google Scholar 

  95. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh AV (2011) Biopolymers in drug delivery: a review. Pharmacologyonline 1:666–674

    Google Scholar 

  97. Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3(33):13558–13568

    Article  CAS  Google Scholar 

  98. Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A (2017) The review of versatile application of collagen. Polym Adv Technol 28(1):4–9

    Article  CAS  Google Scholar 

  99. Sockalingam K, Abdullah H (2015) Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales. Paper presented at the AIP conference proceedings

    Google Scholar 

  100. Sriamornsak P (2011) Application of pectin in oral drug delivery. Expert Opin Drug Deliv 8(8):1009–1023

    Article  CAS  PubMed  Google Scholar 

  101. Sun R, Sun X, Tomkinson J (2004) Hemicelluloses and their derivatives

    Google Scholar 

  102. Syafiq R, Sapuan S, Zuhri M, Ilyas R, Nazrin A, Sherwani S, Khalina A (2020) Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: a review. Polymers 12(10):2403

    Article  CAS  PubMed Central  Google Scholar 

  103. Szymańska-Chargot M, Chylińska M, Gdula K, Kozioł A, Zdunek A (2017) Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers 9(10):495

    Article  PubMed Central  Google Scholar 

  104. Tang X, Kumar P, Alavi S, Sandeep K (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  CAS  PubMed  Google Scholar 

  105. Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16(7):14832–14849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21(4):433–442

    Article  Google Scholar 

  107. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1(1):1–8

    Article  Google Scholar 

  108. Vert M (2001) Biopolymers and artificial biopolymers in biomedical applications, an overview. Biorelated Poly 63–79

    Google Scholar 

  109. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  PubMed Central  Google Scholar 

  110. Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V (2019) Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Biores Bioproc 6(1):1–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinayak, A., Sharma, S., Singh, G.B. (2022). Biopolymers from Industrial Waste. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_7

Download citation

Publish with us

Policies and ethics