Skip to main content

Use of Musculoskeletal Ultrasound and Regenerative Therapies in Sports

  • Chapter
  • First Online:
Musculoskeletal Ultrasound-Guided Regenerative Medicine
  • 969 Accesses

Abstract

Ultrasound is a very useful tool in both diagnostic and interventional procedures in sports events. Ultrasound can provide a quick evaluation of a particular area affected during a sports injury which would then help the sports physician decide on what to do in an injury, Its portability can guide a physician decide whether to let the athlete return to play or refer him to the hospital for a more thorough evaluation of the injured site. A well-trained, qualified, and competent physician-sonologist acquainted with common sports injuries can make a lot of difference in making sure the imaging device provides relevant information as to the defects seen if there is any, and subsequently make the necessary decisions in the treatment process. Ultrasound complements a thorough history taking and physical examination. Despite its usefulness in the sidelines of sports activities, ultrasound has its own inherent limitations where critical injuries may not be diagnosed at the time of injury. This is where advance imaging modalities such as magnetic resonance imaging (MRI) or CT scan may be needed to make definitive diagnosis. Findings from these imaging modalities provide the key in deciding appropriate therapies such as between conservative therapies or surgical intervention. Depending on the degree and severity of injuries, conservative therapies play an important role during the acute phase of an injury. The use of PRICE principle is important as an initial conservative intervention during the acute phase of an injury. Regenerative injection therapy is becoming popular as an effective intervention during the acute phase of an injury and has the potential to heal injured tissues in a conservative way. It also has the capacity to establish and restore the functionality of the injured athlete in the short term. With the aid of ultrasound imaging both in diagnosing and guided intervention, regenerative injection therapy could be an immediate and effective intervention in helping athletes recover from an injury faster and thus shorten the time for the return to play. With its potential to provide effective results, caution is needed in selecting patients/athletes who would most positively respond to this regenerative treatment and not as an all inclusive treatment for all sports injuries. It is in this sense that this chapter was written in order to provide sound and scientifically-based evidences to guide practitioners not only to make timely use of ultrasound both as a diagnostic and interventional tool, but also to examine the role of regenerative intervention therapy procedures in sports injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robotti G, Draghi F, Bortolotto C, Canepa M. Ultrasound of sports injuries of the musculoskeletal system: gender differences. J Ultrasound. 2020;23:279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Healy J. The value of ultrasound in sports medicine. Hosp Med. 2002;63(10):593–7.

    Article  CAS  PubMed  Google Scholar 

  3. Jiménez Díaz J, Alvarez Rey G, Balius Matas R, Berral De La Rosa F, Padilla E, Villa Vicente J. New technologies applied to ultrasound diagnosis of sports injuries. Adv Ther. 2008;25(12):1315–30.

    Article  PubMed  Google Scholar 

  4. Strobel K, Zanetti M, Nagy L, Hodler J. Suspected rotator cuff lesions: tissue harmonic imaging versus conventional US of the shoulder. Radiology. 2004;230:243–9.

    Article  PubMed  Google Scholar 

  5. Oktar SO, Yucel C, Ozdemir H, Uluturk A, Isik S. Comparison of conventional sonography, real-time compound sonography, tissue harmonic sonography, and tissue harmonic compound sonography of abdominal and pelvic lesions. Am J Roentgenol. 2003;181:1341–7.

    Article  Google Scholar 

  6. Weng L, Tirumalai AP. Method and apparatus for generating large compound ultrasound images. U.S. Patent 5575286; 1996. Available at: www.freepatentsonline.com/5575286.html.

  7. Afandi R, Astawa P. The use of elastography-ultrasound in diagnosing tendinopathy related sport injury: a 10 years trend systematic review. Orthop J Sports Med. 2019;7(11_suppl6):1.

    Article  Google Scholar 

  8. Van Hooren B, Teratsias P, Hodson-Tole E. Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges. J Appl Physiol. 2020;128(4):978–99.

    Article  PubMed  Google Scholar 

  9. Alvarez C, Hattori S, Kato Y, Takazawa S, Adachi T, Yamada S, Ohuchi H. Dynamic high-resolution ultrasound in the diagnosis of calcaneofibular ligament injury in chronic lateral ankle injury: a comparison with three-dimensional magnetic resonance imaging. J Med Ultrason. 2020;47(2):313–7.

    Article  Google Scholar 

  10. Angelopoulou K, McReynolds K. Use of dynamic ultrasound imaging for assessment of the fibular collateral ligament of the knee. J Orthop Sports Phys Ther. 2020;49(3):210.

    Article  Google Scholar 

  11. Martin K, Wake J, Van Buren JP. Ultrasound evaluation of the peroneal tendons in an asymptomatic elite military population: a prospective cohort study. Mil Med. 2020;185(Supplement_1):420–2.

    Article  PubMed  Google Scholar 

  12. Murray T, Roberts D, Rattan B, Murphy D, Cresswell M. Dynamic ultrasound-guided trochanteric bursal injection. Skeletal Radiol. 2020;49:1155–8.

    Article  PubMed  Google Scholar 

  13. Kunz P, Mick P, Gross S, Schmidmaier G, Zeifang F, Weber M, Fischer C. Contrast-Enhanced Ultrasound (CEUS) as predictor for early retear and functional outcome after supraspinatus tendon repair. J Orthop Res. 2020;38(5):1150–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wengert G, Schmutzer M, Bickel H, Sora M, Polanec S, Weber M, Schueller-Weidekamm C. Reliability of high-resolution ultrasound and magnetic resonance arthrography of the shoulder in patients with sports-related shoulder injuries. PLoS One. 2019;14(9):1–12.

    Article  CAS  Google Scholar 

  15. Ottenheim RP, Cals JW, Weijers R, Vanderdood K, de Bie RA, Dinant GJ. Ultrasound imaging for tailored treatment of patients with acute shoulder pain. Ann Fam Med. 2015;13(1):53–5.

    Article  Google Scholar 

  16. Chauhan NS, Ahluwalia A, Sharma YP, Thakur L. A prospective comparative study of high- resolution ultrasound and MRI in the diagnosis of rotator cuff tears in a tertiary hospital of North India. Pol J Radiol. 2016;81:491–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Draghi F, Lomoro P, Bortolotto C, Mastrogirolamo L, Calliada F. Comparison between a new ultrasound probe with a capacitive micromachined transducer (CMUT) and a traditional one in musculoskeletal pathology. Acta Radiol. 2020;1:1–7.

    Google Scholar 

  18. Wong-On M, Til-Pérez L, Balius R. Evaluation of MRI-US fusion technology in sports-related musculoskeletal injuries. Adv Ther. 2015;32(6):580–94.

    Article  PubMed  Google Scholar 

  19. Rodeo S, Nguyen J, Cavanaugh J, Patel Y, Adler R. Clinical and ultrasonographic evaluations of the shoulders of elite swimmers. Am J Sports Med. 2016;44(12):3214–21.

    Article  PubMed  Google Scholar 

  20. Draghi F, Scudeller L, Draghi AG, Bortolotto C. Prevalence of subacromial-subdeltoid bursitis in shoulder pain: an ultrasonographic study. J Ultrasound. 2015;18:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kennedy JC, Hawkins RJ. Swimmer’s shoulder. Phys Sportsmed. 1974;2:34–8.

    Google Scholar 

  22. Dischler J, Baumer T, Finkelstein E, Siegal D, Bey M. Association between years of competition and shoulder function in collegiate swimmers. Sports Health. 2017;10(2):113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Galluccio F, Bellucci E, Porta F, Tofani L, De Paulis A, Bianchedi D, Barskova T, Matucci-Cerinic M. The waterpolo shoulder paradigm: results of ultrasound surveillance at poolside. BMJ Open Sport Exerc Med. 2017;3(1):1–4.

    Article  Google Scholar 

  24. AKT answer relating to shoulder injuries. InnovAiT. 2020;13(1):e12–2.

    Google Scholar 

  25. Fischer C, Gross S, Zeifang F, Schmidmaier G, Weber M, Kunz P. Contrast-enhanced ultrasound determines supraspinatus muscle atrophy after cuff repair and correlates to functional shoulder outcome. Am J Sports Med. 2018;46(11):2735–42.

    Article  PubMed  Google Scholar 

  26. Splittgerber LE, Ihm JM. Significance of asymptomatic tendon pathology in athletes. Curr Sports Med Rep. 2019;18(6):192–200.

    Article  PubMed  Google Scholar 

  27. Popchak A, Hogaboom N, Vyas D, Abt J, Delitto A, Irrgang J, Boninger M. Acute response of the infraspinatus and biceps tendons to pitching in youth baseball. Med Sci Sports Exerc. 2017;49(6):1168–75.

    Article  PubMed  Google Scholar 

  28. Corpus KT, Camp CL, Dines DM, et al. Evaluation and treatment of internal impingement of the shoulder in overhead athletes. World J Orthop. 2016;7:776–84.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Connor PM, Banks DM, Tyson AB, et al. Magnetic resonance imaging of the asymptomatic shoulder of overhead athletes: a 5- year follow-up study. Am J Sports Med. 2003;31:724–7.

    Article  PubMed  Google Scholar 

  30. Lesniak BP, Baraga MG, Jose J, et al. Glenohumeral findings on magnetic resonance imaging correlate with innings pitched in asymptomatic pitchers. Am J Sports Med. 2013;41:2022–7.

    Article  PubMed  Google Scholar 

  31. Schar MO, Dellenbach S, Pfirrmann CW, et al. Many shoulder MRI findings in elite professional throwing athletes resolve after retirement: a clinical and radiographic study. Clin Orthop Relat Res. 2018;476:620–31.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yamaguchi K, Tetro AM, Blam O, et al. Natural history of asymptomatic rotator cuff tears: a longitudinal analysis of asymptomatic tears detected sonographically. J Shoulder Elb Surg. 2001;10:199–203.

    Article  CAS  Google Scholar 

  33. Yamaguchi K, Ditsios K, Middleton WD, et al. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am. 2006;88:1699–704.

    Article  PubMed  Google Scholar 

  34. Takenaga T, Sugimoto K, Goto H, Nozaki M, Fukuyoshi M, Tsuchiya A, Murase A, Ono T, Otsuka T. Posterior shoulder capsules are thicker and stiffer in the throwing shoulders of healthy college baseball players. Am J Sports Med. 2015;43(12):2935–42.

    Article  PubMed  Google Scholar 

  35. Noonan T, Shanley E, Bailey L, Wyland D, Kissenberth M, Hawkins R, Thigpen C. Professional pitchers with Glenohumeral Internal Rotation Deficit (GIRD) display greater humeral retrotorsion than pitchers without GIRD. Am J Sports Med. 2015;43(6):1448–54.

    Article  PubMed  Google Scholar 

  36. Greenberg E, Lawrence J, Fernandez-Fernandez A, McClure P. Humeral retrotorsion and glenohumeral motion in youth baseball players compared with age-matched nonthrowing athletes. Am J Sports Med. 2017;45(2):454–61.

    Article  PubMed  Google Scholar 

  37. Chin B, Ramji M, Farrokhyar F, Bain JR. Efficient imaging: examining the value of ultrasound in the diagnosis of traumatic adult brachial plexus injuries, a systematic review. Neurosurgery. 2018;83(3):323–32. https://doi.org/10.1093/neuros/nyx483.

    Article  PubMed  Google Scholar 

  38. Igielska-Bela B, Baczkowski B, Flisikowski K. Shoulder ultrasound in the diagnosis of the suprascapular neuropathy in athletes. Open Med (Wars). 2020;15(1):147–51.

    Article  Google Scholar 

  39. Provencher CDRMT, Handfield K, Boniquit MT, Reiff SN, Sekiya JK, Romeo AA. Injuries to the pectoralis major muscle: diagnosis and management. Am J Sports Med. 2010;38(8):1693–705.

    Article  PubMed  Google Scholar 

  40. Doods SD, Wolfe SW. Injuries to the pectoralis major. Sports Med. 2002;32(14):945–52.

    Article  Google Scholar 

  41. Liem B, Olafsen N. Pectoralis major injuries: return to play potential. Curr Phys Med Rehabil Rep. 2017;5(2):91–7.

    Article  Google Scholar 

  42. Sachdeva R, Farthing J, Kim S. Evaluation of supraspinatus strengthening exercises based on fiber bundle architectural changes. Scand J Med Sci Sports. 2017;27(7):736–45.

    Article  CAS  PubMed  Google Scholar 

  43. Goodman M, Schmitt R, Petron D, Gee C, Mallin M. The effect of bedside ultrasound on diagnosis and management of patients presenting to a sports medicine clinic with undifferentiated shoulder pain. J Diagn Med Sonogr. 2015;31(2):82–5.

    Article  Google Scholar 

  44. Randelli P, Menon A, Nocerino E, Aliprandi A, Feroldi F, Mazzoleni M, Boveri S, Ambrogi F, Cucchi D. Long-term results of arthroscopic rotator cuff repair: initial tear size matters: a prospective study on clinical and radiological results at a minimum follow-up of 10 years. Am J Sports Med. 2019;47(11):2659–69.

    Article  PubMed  Google Scholar 

  45. Yeo D, Walton J, Lam P, Murrell G. The relationship between intraoperative tear dimensions and postoperative pain in 1624 consecutive arthroscopic rotator cuff repairs. Am J Sports Med. 2017;45(4):788–93.

    Article  PubMed  Google Scholar 

  46. Schwitzguebel A, Kolo F, Tirefort J, Kourhani A, Nowak A, Gremeaux V, Saffarini M, Lädermann A. Efficacy of platelet-rich plasma for the treatment of interstitial supraspinatus tears: a double-blinded, randomized controlled trial. Am J Sports Med. 2019;47(8):1885–92.

    Article  PubMed  Google Scholar 

  47. Flores C, Balius R, Álvarez G, Buil M, Varela L, Cano C, Casariego J. Efficacy and tolerability of peritendinous hyaluronic acid in patients with supraspinatus tendinopathy: a multicenter, randomized, controlled trial. Sports Med Open. 2017;3(1):1–8.

    Article  Google Scholar 

  48. Cai Y, Sun Z, Liao B, Song Z, Xiao T, Zhu P. Sodium hyaluronate and platelet-rich plasma for partial-thickness rotator cuff tears. Med Sci Sports Exerc. 2019;51(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  49. Ebert J, Wang A, Smith A, Nairn R, Breidahl W, Zheng M, Ackland T. A midterm evaluation of postoperative platelet-rich plasma injections on arthroscopic supraspinatus repair: a randomized controlled trial. Am J Sports Med. 2017;45(13):2965–74.

    Article  PubMed  Google Scholar 

  50. Wang A, McCann P, Colliver J, Koh E, Ackland T, Joss B, Zheng M, Breidahl B. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? Am J Sports Med. 2015;43(6):1430–7.

    Article  PubMed  Google Scholar 

  51. Shiri R, Viikari-Juntura E, Varonen H, Heliovaara M. Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol. 2006;154(11):1065–74.

    Article  Google Scholar 

  52. Clarke A, Ahmad M, Curtis M, Connell D. Lateral elbow tendinopathy. Am J Sports Med. 2010;38(6):1209–14.

    Article  PubMed  Google Scholar 

  53. Noh K, Moon Y, Jacir A, Kim K, Gorthi V. Sonographic probe induced tenderness for lateral epicondylitis: an accurate technique to confirm the location of the lesion. Knee Surg Sports Traumatol Arthrosc. 2010;18(6):836–9.

    Article  PubMed  Google Scholar 

  54. Seng C, Mohan P, Koh S, Howe T, Lim Y, Lee B, Morrey B. Ultrasonic percutaneous tenotomy for recalcitrant lateral elbow tendinopathy. Am J Sports Med. 2016;44(2):504–10.

    Article  PubMed  Google Scholar 

  55. Stover D, Fick B, Chimenti RL, Hall MM. Ultrasound-guided tenotomy improves physical function and decreases pain for tendinopathies of the elbow: a retrospective review. J Shoulder Elb Surg. 2019;28(12):2386–93.

    Article  Google Scholar 

  56. Thanasas C, Papadimitriou G, Charalambidis C, Paraskevopoulos I, Papanikolaou A. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis. Am J Sports Med. 2011;39(10):2130–4.

    Article  PubMed  Google Scholar 

  57. Atanda A, Buckley P, Hammoud S, Cohen S, Nazarian L, Ciccotti M. Early anatomic changes of the ulnar collateral ligament identified by stress ultrasound of the elbow in young professional baseball pitchers. Am J Sports Med. 2015;43(12):2943–9.

    Article  PubMed  Google Scholar 

  58. Marshall N, Keller R, Van Holsbeeck M, Moutzouros V. Ulnar collateral ligament and elbow adaptations in high school baseball pitchers. Sports Health. 2015;7(6):484–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ciccotti M, Hammoud S, Dodson C, Cohen S, Nazarian L, Ciccotti M. Stress ultrasound evaluation of medial elbow instability in a cadaveric model. Am J Sports Med. 2014;42(10):2463–9.

    Article  PubMed  Google Scholar 

  60. Park JY, Kim H, Lee JH, Heo T, Park H, Chung SW, Oh KS. Valgus stress ultrasound for medial ulnar collateral ligament injuries in athletes: is ultrasound alone enough for diagnosis? J Shoulder Elb Surg. 2020;29(3):578–86.

    Article  Google Scholar 

  61. Kurokawa D, Muraki T, Ishikawa H, Shinagawa K, Nagamoto H, Takahashi H, Yamamoto N, Tanaka M, Itoi E. The influence of pitch velocity on medial elbow pain and medial epicondyle abnormality among youth baseball players. Am J Sports Med. 2020:48(7): 1601–07

    Google Scholar 

  62. Hoshika S, Nimura A, Takahashi N, Sugaya H, Akita K. Valgus stability is enhanced by flexor digitorum superficialis muscle contraction of the index and middle fingers. J Orthop Surg Res. 2020;15(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hattori H, Akasaka A, Otsudo T, Hall T, Amemiya K, Mori Y, Sakaguchi K, Tachibana Y. Changes in medial elbow elasticity and joint space gapping during maximal gripping: reliability and validity in evaluation of the medial elbow joint using ultrasound elastography. J Shoulder Elbow Surg. 2020. https://doi.org/10.1016/j.jse.2019.11.005.

  64. Podesta L, Crow S, Volkmer D, Bert T, Yocum L. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. Am J Sports Med. 2013;41(7):1689–94.

    Article  PubMed  Google Scholar 

  65. Gordon A, De Luigi A. Adolescent pitcher recovery from partial ulnar collateral ligament tear after platelet-rich plasma. Curr Sports Med Rep. 2018;17(12):407–9.

    Article  PubMed  Google Scholar 

  66. Matsuura T, Suzue N, Iwame T, et al. Prevalence of osteochondritis dessicans of the capitellum in young baseball players: results based on ultrasonographic findings. Orthop J Sports Med. 2014;2(8):1.

    Article  Google Scholar 

  67. Yoshizuka M, Sunagawa T, Nakashima Y, Shinomiya R, Masuda T, Makitsubo M, Adachi N. Comparison of sonography and MRI in the evaluation of stability of capitellar osteochondritis dissecans. J Clin Ultrasound. 2018;46(4):247–52.

    Article  PubMed  Google Scholar 

  68. Satake H, Takahara M, Harada M, et al. Preoperative imaging criteria for unstable osteochondritis dessicans of the capitellum. Clin Orthop Relat Res. 2013;471(4):1137.

    Article  PubMed  Google Scholar 

  69. Rettig AC. Athletic injuries of the wrist and hand. Part 1. Traumatic injuries of the wrist. Am J Sports Med. 2003;31:1038–48.

    Article  PubMed  Google Scholar 

  70. Rumball JS, Lebrun CM, Di Ciacca SR, Orlando K. Rowing injuries. Sports Med. 2005;35(6):537–55.

    Article  PubMed  Google Scholar 

  71. Avery DM, Rodner CM, Edgar CM. Sports-related wrist and hand injuries: a review. J Orthop Surg Res. 2016;11:99. https://doi.org/10.1186/s13018-016-0432-8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karthik K, Carter-Esdale CW, Vijayanathan S, Kochhar T. Extensor pollicis brevis tendon damage presenting as De Quervain’s disease following kettleball training. BMC Sports Sci Med Rehabil. 2013;5:13. https://doi.org/10.1186/2052-1847-5-13.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Knobloch K, Gohritz A, Spies M, et al. Neovascularisation in de Quervain’s disease of the wrist: novel combined therapy using sclerosing therapy with polidocanol and eccentric training of the forearms and wrists—a pilot report. Knee Surg Sports Traumatol Arthr. 2008;16:803–5. https://doi.org/10.1007/s00167-008-0555-5.

    Article  Google Scholar 

  74. Hanlon DP, Luellen JR. Intersection syndrome: a case report and review of literature. J Emerg Med. 1999;17(6):969–71.

    Article  CAS  PubMed  Google Scholar 

  75. Montechiarello S, Miozzi F, D’Ambrosio I, Giovagnorio F. The intersection syndrome: ultrasound findings and their diagnostic value. J Ultrasound. 2010;13(2):70–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Draghi F, Bortolotto C. Intersection syndrome: ultrasound imaging. Skeletal Radiol. 2014;43(3):283–7.

    Article  PubMed  Google Scholar 

  77. Brink PR, Franssen BB, Disseldorp DJ. A simple blind tenolysis for flexor carpi radialis tendinopathy. Hand (NY). 2015;10(2):323–7.

    Article  Google Scholar 

  78. Luong D, Smith J, Bianchi S. Flexor carpi radialis tendon ultrasound pictorial essay. Skeletal Radiolog. 2014;43(6):745–60.

    Article  Google Scholar 

  79. Naredo E, D’Agostino MA, Wakefield RJ, Moller I, Ballint PV, Filippucci E, et al. Reliability of a consensus-based ultrasound score for tenosynovitis in rheumatoid arthritis. Ann Rheuma Dis. 2013; 72(8): http://dx.doi.org/10.1136/annrheumdis-2012-202092.

  80. Campbell D, Campbell R, O'Connor P, Hawkes R. Sports-related extensor carpi ulnaris pathology: a review of functional anatomy, sports injury and management. Br J Sports Med. 2013;47:1105–11.

    Article  PubMed  Google Scholar 

  81. Ruland RT, Hogan CJ. The ECU synergy test: an aid to diagnose ECU tendonitis. J Hand Surg [Am]. 2008;33:1777–82.

    Article  Google Scholar 

  82. Bianchi S, Martinoli C, editors. Ultrasound of the musculoskeletal system. Berlin, Heidelberg: Springer; 2007. p. 425–94.

    Book  Google Scholar 

  83. Palmer AK. Triangular fibrocartilage complex lesions: a classification. J Hand Surg. 1989;14:594–606.

    Article  CAS  Google Scholar 

  84. Wu WT, Chang KV, Mezian K, Naňka O, Yang YC, Hsu YC, Hsu PC, Özçakar L. Ulnar wrist pain revisited: ultrasound diagnosis and guided injection for triangular fibrocartilage complex injuries. J Clin Med. 2019;8(10):1540.

    Article  PubMed Central  Google Scholar 

  85. El-Deek AMF, Dawood EMAEH, Mohammed AAM. Role of ultrasound versus magnetic resonance imaging in evaluation of non-osseous disorders causing wrist pain. Egypt J Radiol Nucl Med. 2019;50(8) https://doi.org/10.1186/s43055-019-0008-9.

  86. Elsaftawy A. Radial wrist extensors as a dynamic stabilizers of scapholunate complex. Pol Przegl Chir. 2013;85(8):452–9.

    Article  PubMed  Google Scholar 

  87. Jacobson JA, Oh E, Propeck T, Jebson PJL, Jamadar JA, Hayes CW. Sonography of the scapulolunate ligament in four cadaveric wrists: correlation with MR arthrography and anatomy. Am J Roentgenol. 2002;179(2):523–7.

    Article  Google Scholar 

  88. Griffith J, Chan D, Ho P, Zhao L, Hung L, Metreweli C. Sonography of the normal scapholunate ligament and scapholunate joint space. J Clin Ultrasound. 2001;29:223–9.

    Article  CAS  PubMed  Google Scholar 

  89. Finlay K, Lee R, Friedman L. Ultrasound of intrinsic wrist ligament and triangular fibrocartilage injuries. Skeletal Radiol. 2004;33(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  90. Dao KD, Solomon DJ, Shin AY, Puckett ML. The efficacy of ultrasound in the evaluation of dynamic scapholunate ligamentous instability. JBJS. 2004;86(7):1473–8.

    Article  Google Scholar 

  91. Rhee PC, Jones DB, Kakar S. Management of thumb metacarpophalangeal ulnar collateral ligament injuries. J Bone Joint Surg Am. 2012;94(21):2005–12.

    Article  PubMed  Google Scholar 

  92. Gerber C, Senn F, Matter P. Skier’s thumb. Surgical treatment of recent injuries to the ulnar collateral ligament of the thumb’s metacarpophalangeal joint. a. J Sports Med. 1981;9(3):171–7.

    Article  CAS  Google Scholar 

  93. Campbell CS. Gamekeeper’s thumb. J Bone Joint Surg Br. 1955;37-B(1):148–9.

    Article  CAS  PubMed  Google Scholar 

  94. Melville DM, Jacobson JA, Fessell DP. Ultrasound of the ulnar collateral ligament: technique and pathology. Am J Roentgenol. 2014;202(2):W168.

    Article  Google Scholar 

  95. Melville D, Jacobson J, Haase S, Brandon C, Brigido M, Fessell D. Ultrasound of displaced ulnar collateral ligament tears of the thumb: the Stener lesion revisited. Skeletal Radiol. 2013;42(5):667–73.

    Article  PubMed  Google Scholar 

  96. Canella Moraes Carmo C, Cruz GP, Trudell D, Hughes T, Chung C, Resnick D. Anatomical features of metacarpal heads that simulate bone erosions: cadaveric study using computed tomography scanning and sectional radiography. J Comput Assist Tomogr. 2009;33:573–8.

    Article  PubMed  Google Scholar 

  97. Kataoka T, Moritomo H, Miyake J, Murase T, Yoshikawa H, Sugamoto K. Changes in shape and length of the collateral and accessory collateral ligaments of the metacarpophalangeal joint during flexion. J Bone Joint Surg Am. 2011;93:1318–25.

    Article  PubMed  Google Scholar 

  98. Shinohara T, Horii E, Majima M, et al. Sonographic diagnosis of acute injuries of the ulnar collateral ligament of the metacarpophalangeal joint of the thumb. J Clin Ultrasound. 2007;35:73–7.

    Article  PubMed  Google Scholar 

  99. Grandizio L, Klena J. Sagittal band, boutonniere, and pulley injuries in the athlete. Curr Rev Musculoskelet Med. 2017;10(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wheeldon FT. Recurrent dislocation of extensor tendons in the hand. J Bone Joint Surg Br. 1954;36B:612–7.

    Article  Google Scholar 

  101. Boyes J. Bunnell’s surgery of the hand. 4th ed. Boyes J, editor. Philadelphia: Lippincott; 1984.

    Google Scholar 

  102. Shinohara T, Nakamura R, Suzuki M, Maeda N. Extensor mechanism laxity at the metacarpophalangeal joint as identified by a new provocative test: predisposition to dislocation. J Hand Surg. 2005;30:79–82.

    Article  CAS  Google Scholar 

  103. Rayan GM, Murray D. Classification and treatment of closed sagittal band injuries. J Hand Surg. 1994;19:590–4.

    Article  CAS  Google Scholar 

  104. Lopez-Ben R, Lee DH, Nicolodi DJ. Boxer knuckle (injury of the extensor hood with extensor tendon subluxation): diagnosis with dynamic US. Report of three cases. Radiology. 2003;228:642–6.

    Article  PubMed  Google Scholar 

  105. Karsandas A, Self A, Tuckett J, Sinha R, Hide G. The boxer’s knuckle—injury to the sagittal band. A review of the anatomy with ultrasound and MRI correlation. ESSR 2016/P-0050. https://doi.org/10.1594/essr2016/P-0050.

  106. Kichouh M, Vanhoenacker F, Jager T, Roy P, Pouders C, Marcelis S, Hedent E, Mey J. Functional anatomy of the dorsal hood or the hand: correlation of ultrasound and MR findings with cadaveric dissection. Eur Radiol. 2009;19(8):1849–56.

    Article  PubMed  Google Scholar 

  107. Martinoli C, Bianchi S, Nebiolo M, Derchi LE, Garcia JF. Sonographic evaluation of digital annular pulley tears. Skeletal Radiol. 2000;29:387–91.

    Article  CAS  PubMed  Google Scholar 

  108. Boutry N, Titecat M, Demondion X, Glaudy E, Fontaine C, Cotten A. High frequency ultrasonographic examination of the finger pulley system. J Ultrasound Med. 2005;24(10):1333–9.

    Article  PubMed  Google Scholar 

  109. Schoffl I, Hugel A, Schoffl V, Rascher W, Jungert J. Diagnosis of complex pulley ruptures using ultrasound cadaver models. Ultrasound Med Biol. 2017;43(3):662–9.

    Article  PubMed  Google Scholar 

  110. Bodner G, Rudisch A, Gabl M, Judmaier W, Springer P, Klauser A. Diagnosis of digital flexor tendon annular pulley disruption: comparison of high frequency ultrasound and MRI. Ultraschall Med. 1999;20(4):131–6.

    Article  CAS  PubMed  Google Scholar 

  111. Klauser A, Frauscher F, Bodner G, Halpern EJ, Schocke MF, Springer P, et al. Finger pulley injuries in extreme rock climbers: depiction with dynamic ultrasound. Radiology. 2002;222(3):755. https://doi.org/10.1148/radiol.2223010752.

    Article  PubMed  Google Scholar 

  112. Ootes D, Lambers KT, Ring DC. The epidemiology of upper extremity injuries presenting to the emergency department in the United States. Hand (NY). 2012;7:18–22.

    Article  Google Scholar 

  113. Bachoura A, Ferikes A, Lubahn J. A review of mallet finger and jersey finger injuries in the athlete. Curr Rev Musculoskelet Med. 2017;10(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. de Gautard G, de Gautard R, Celi J, Jacquemoud G, Bianchi S. Sonography of Jersey finger. J Ultrasound Med. 2009;28(3):389–92.

    Article  PubMed  Google Scholar 

  115. Bianchi S, Martinolli C. Ultrasound of the musculoskeletal system. Ney York: Springer; 2007.

    Book  Google Scholar 

  116. Gilleard O, Silver D, Ahmad Z, Devaraj V. The accuracy of ultrasound in evaluating closed flexor tendon ruptures. Eur J Plast Surg. 2010;33(2):71–4.

    Article  Google Scholar 

  117. Sendher R, Ladd AL. The scaphoid. Orthop Clin North Am. 2013;44(1):107–20.

    Article  PubMed  Google Scholar 

  118. Garala K, Taub NA, Dias JJ. The epidemiology of fractures of the scaphoid: impact of age, gender, deprivation and seasonality. Bone Joint J. 2016;98-B(5):654–9.

    Article  CAS  PubMed  Google Scholar 

  119. Dias J, Kantharuban S. Treatment of scaphoid fractures: European approaches. Hand Clin. 2018;33(3):501–9.

    Article  Google Scholar 

  120. Clementson M, Björkman A, Thomsen N. Acute scaphoid fractures: guidelines for diagnosis and treatment. EFORT Open Rev. 2020;5(2):96–103.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mack GR, Bosse MJ, Gelberman RH, Yu E. The natural history of scaphoid nonunion. J Bone Joint Surg. 1984;66A:504–9.

    Article  Google Scholar 

  122. Kwee R, Kwee T. Ultrasound for diagnosing radiographically occult scaphoid fracture. Skeletal Radiol. 2018;47(9):1205–12.

    Article  PubMed  Google Scholar 

  123. Munk B, Bolvig L, Kroner K, Christiansen T, Borris L, Boe S. Ultrasound for diagnosis of scaphoid fractures. J Hand Surg. 2000;25(4):369–71.

    Article  CAS  Google Scholar 

  124. Malahias M, Nikolaou V, Chytas D, Kaseta M, Babis G. Accuracy and interobserver and intraobserver reliability of ultrasound in the early diagnosis of occult scaphoid fractures: diagnostic criteria and a way of interpretation. J Surg Orthop Adv. 2019;28(1):1–9.

    PubMed  Google Scholar 

  125. Mallee WH, Wang J, Poolman RW, Kloen P, Maas M, de Vet HC, Doornberg JN. Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinical suspected scaphoid fractures in patients with negative plain radiographs. Cochrane Database Syst Rev. 2015;6:CD010023.

    Google Scholar 

  126. Swärd E, Schriever T, Franko M, Björkman A, Wilcke M. The epidemiology of scaphoid fractures in Sweden: a nationwide registry study. J Hand Surg (Eur Vol). 2019;44(7):697–701.

    Article  Google Scholar 

  127. Ram AN, Chung KC. Evidence-based management of acute non-displaced scaphoid waist fractures. J Hand Surg Am. 2009;34:735–8.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Commandeur J, Rhemrev S, Buijze G, Beeres F. Conservative treatment of scaphoid fractures. Ned Tijdschr Geneeskd. 2020;2020(163):1.

    Google Scholar 

  129. Suh N, Grewal R. Controversies and best practices for acute scaphoid fracture management. J Hand Surg (Eur Vol). 2018;43(1):4–12.

    Article  Google Scholar 

  130. Grewal R, Lutz K, MacDermid JC, Suh N. Proximal pole scaphoid fractures: a computed tomographic assessment of outcomes. J Hand Surg Am. 2016;41:54–8.

    Article  PubMed  Google Scholar 

  131. Saltzman EB, Rancy SK, Lee SK, Wolfe SW. Acute management of proximal pole scaphoid fractures. In: Buijze ZE, Jupiter JB, editors. Scaphoid fractures: evidence-based management. Philadelphia: Elsevier; 2017.

    Google Scholar 

  132. Clementson M, Thomsen N, Beskajov J, Jorgsholm P, Bjorkman A. Long term outcomes after distal scaphoid fractures: a 10-year follow up. J Hand Surg Am. 2017;42(11):927.e1–7.

    Article  Google Scholar 

  133. Fowler JR, Hughes TB. Scaphoid fractures. Clin Sports Med. 2015;34:37–50.

    Article  PubMed  Google Scholar 

  134. Mekaouche M, Merabet M, Koriche H. Platelet rich plasma therapy for scaphoid fracture nonunion. Med. 2018.

    Google Scholar 

  135. Feinberg J, Nadler S, Krivickas L. Peripheral nerve injuries in the athlete. Sports Med. 2012;24(6):385–408.

    Article  Google Scholar 

  136. Toros T, Karabay N, Ozaksar T, Sugun S, Kayalar M, Bal E. Evaluation of the peripheral nerves of the upper limb with ultrasonography. A comparison of ultrasonographic examination and the intra-operative findings. J Bone Joint Surg Br. 2009;91-B(6):762. https://doi.org/10.1302/0301-620X.91B6.22284.

    Article  Google Scholar 

  137. Küllmer K, Sievers K, Reimers C, Rompe J, Müller-Felber W, Nägele M, Harland U. Changes of sonographic, magnetic resonance tomographic, electromyographic, and histopathologic findings within a 2-month period of examinations after experimental muscle denervation. Arch Orthop Trauma Surg. 1998;117(5):228–34.

    PubMed  Google Scholar 

  138. Zaidman CM, Seelig MJ, Baker JC, Mackinnon SE, Pestronk A. Detection of peripheral nerve pathology. Comparison of ultrasound and MRI. Neurology. 2013;80(18) https://doi.org/10.1212/WNL.0b013e3182904f3f.

  139. Lee FC, Singh H, Nazarian LN, Ratliff JK. High resolution ultrasonography in the diagnosis of intraoperative management of peripheral nerve lesions. J Neurosurg. 2011. https://doi.org/10.3171/2010.2.JNS091324.

  140. Martinolli C, Tagliafico A, Bianchi S, Bodner G, Padua L, Schenone A, Graif M. Peripheral nerve abnormalities. Ultrasound Clin. 2007;2(4):655–67.

    Article  Google Scholar 

  141. Jacobson JA, Wilson TJ, Yang LJS. Sonography of common peripheral nerve disorders with clinical correlation. J Ultrasound Med. 2016;35(4):683–93.

    Article  PubMed  Google Scholar 

  142. Koenig RW, Pedro MT, Heinen CP, Schmidt T, Richter HP, Antoniadis G, Kretschmer T. High resolution ultrasonography in evaluating peripheral nerve entrapment and trauma. Neurosurg Focus. 2009;26:E13.

    Article  PubMed  Google Scholar 

  143. Zhu J, Liu F, Li D, Shao J, Hu B. Preliminary study of the types of traumatic peripheral nerve injuries by ultrasound. Eur Radiol. 2010;21(5):1097–101.

    Article  CAS  PubMed  Google Scholar 

  144. Kawasaki T, Ota C, Yoneda T, Maki N, Urayama S, Nagao M, Nagayama M, Kaketa T, Takazawa Y, Kaneko K. Incidence of stingers in young Rugby players. Am J Sports Med. 2015;43(11):2809–15.

    Article  PubMed  Google Scholar 

  145. Chan JS, Ip JW. Upper limb nerve injuries in sport. In: Luchetti R, Pegoli L, Bain G, editors. Hand and wrist injuries in combat sports. Cham: Springer; 2018. p. 297–303.

    Chapter  Google Scholar 

  146. Chao S, Pacella M, Torg J. The pathomechanics, pathophysiology and prevention of cervical spinal cord and brachial plexus injuries in athletics. Sports Med. 2012;40(1):59–75.

    Article  Google Scholar 

  147. Robertson WC, Eichman PL, Clancy WG. Upper trunk brachial plexopathy in football players. JAMA. 1979;241:1480–2.

    Article  PubMed  Google Scholar 

  148. Belviso I, Palermi S, Sacco AM, Romano V, Corrado B, Zappia M, Sirico F. Brachial plexus injuries in sports medicine: clinical evaluation, diagnostic approaches, treatment options and rehabilitative interventions. J Funct Morphol Kinesiol. 2020;5(2):22. https://doi.org/10.3390/jfmk5020022.

    Article  PubMed Central  Google Scholar 

  149. Srivastava PK. High resolution ultrasound of brachial plexus. Ultrasound Med Biol. 2017;43(suppl1):S242.

    Article  Google Scholar 

  150. Lorei M, Hershman E. Peripheral nerve injuries in athletes. Sports Med. 2012;16(2):130–47.

    Article  Google Scholar 

  151. Lu J, Haman SP, Ebraheim NA. Vulnerability of the spinal accessory nerve in the posterior triangle of the neck: a cadaveric study. Healio Orthop. 2002;25(1):71–4.

    Article  CAS  Google Scholar 

  152. Canella C, Demondion X, Abreu E, Marchiori E, Cotten H, Cotton A. Anatomical study of spinal accessory nerve using ultrasonography. Eur J Radiol. 2013;82(1):56–61.

    Article  PubMed  Google Scholar 

  153. Bodner G, Harpf C, Gardetto A, Kovacs P, Gruber H, Peer S, Mallhoui A. Ultrasonography of the accessory nerve: normal and pathologic findings in cadavers and patients with iatrogenic accessory nerve palsy. J Ultrasound Med. 2002;21(10):1159–63.

    Article  PubMed  Google Scholar 

  154. Üstün ÖS. Isolated long thoracic nerve injury case presentation: a sports injury. Acta Neurol Belg. 2020;120(1):199–200.

    Article  Google Scholar 

  155. Inman VT, Saunders JB, Abbott LC. Observations on the function of the shoulder joint. J Bone Joint Surg. 1944;26:1–30.

    Google Scholar 

  156. Williams A, Smith H. Anatomical entrapment of the dorsal scapular and long thoracic nerves, secondary to brachial plexus piercing variation. Anat Sci Int. 2019;95(1):67–75.

    Article  PubMed  Google Scholar 

  157. Wiater JM, Flatow EL. Long thoracic nerve injury. Clin Orthop Relat Res. 1999;368:17–27.

    Article  Google Scholar 

  158. Chang KV, Wu WT, Mezian K, Nanka O, Ozcakar L. Sonoanatomy revisited: long thoracic nerve. Med Ultrason. 2019;21(3):349–52.

    Article  PubMed  Google Scholar 

  159. Nuber GW, McCarthy WJ. Neurovascular disorders: clinical assessment and treatment. In: Jobe FW, editor. Operative techniques in upper extremity sports injuries. St Louis: Mosby; 1996. p. 373–87.

    Google Scholar 

  160. Cummins C, Bowen M, Anderson K, Messer T. Suprascapular nerve entrapment at the spinoglenoid notch in a professional baseball pitcher. Am J Sports Med. 1999;27(6):810–2.

    Article  CAS  PubMed  Google Scholar 

  161. Contemori S, Biscarini A. Shoulder position sense in volleyball players with infraspinatus atrophy secondary to suprascapular nerve neuropathy. Scand J Med Sci Sports. 2018;28(1):267–75.

    Article  CAS  PubMed  Google Scholar 

  162. Safran M. Nerve injury about the shoulder in athletes, part 1. Am J Sports Med. 2004;32(3):803–19.

    Article  PubMed  Google Scholar 

  163. Becker J. Infraspinatus atrophy in a volleyball player a case of a Bennett lesion causing nerve impingement. Curr Sports Med Rep. 2014;13(6):358–60.

    Article  PubMed  Google Scholar 

  164. Yücesoy C, Akkaya T, Özel O, Cömert A, Tüccar E, Bedirli N, Ünlü E, Hekimoğlu B, Gümüş H. Ultrasonographic evaluation and morphometric measurements of the suprascapular notch. Surg Radiol Anat. 2009;31(6):409–14.

    Article  PubMed  Google Scholar 

  165. Perlmutter G, Apruzzese W. Axillary nerve injuries in contact sports. Sports Med. 2012;26(5):351–61.

    Article  Google Scholar 

  166. Lee S, Saetia K, Saha S, Kline DG, Kim DH. Axillary nerve injury associated with sports. J Neurosurg. 2011;31(5):E10. https://doi.org/10.3171/2011.8.FOCUS11183.

    Article  Google Scholar 

  167. Feng S, Hsiao M, Wu C, Özçakar L. Ultrasound-guided diagnosis and management for quadrilateral spsce Syndrome. Pain Med. 2017;18(1):184–6.

    Article  PubMed  Google Scholar 

  168. Gruber H, Peer S, Loescher W, Bauer T, Loizides A. Ultrasound imaging of the axillary nerve and its role in the diagnosis of traumatic impairment. Ultraschall Med. 2014;35(4):332–8.

    Article  CAS  PubMed  Google Scholar 

  169. Guerri-Guttenberg R, Ingolotti M. Classifying musculocutaneous nerve variations. Clin Anat. 2009;22(6):671–83.

    Article  PubMed  Google Scholar 

  170. Papanikolaou A, Maris J, Tsampazis K. Isolated musculocutaneous nerve palsy after heavy physical activity. Injury Extra. 2005;36:486–8.

    Article  Google Scholar 

  171. Mautner K, Keel JC. Musculocutaneous nerve injury after simulated free fall in a vertical wind-tunnel: a case report. Arch Phys Med Rehabil. 2007;88:391–3.

    Article  PubMed  Google Scholar 

  172. Blyth MJ, Macleod CM, Asante DK, Kinninmonth AW. Iatrogenic nerve injury with the Russell-Taylor humeral nail. Injury. 2003;34:227–8.

    Article  CAS  PubMed  Google Scholar 

  173. Gillingham BL, Mack GR. Compression of the lateral antebrachial cutaneous nerve by the biceps tendon. J Shoulder Elb Surg. 1996;5:330–2.

    Article  CAS  Google Scholar 

  174. Tagliafico A, Michaud J, Marchetti A, Garello I, Padua L, Martinoli C. US imaging of the musculocutaneous nerve. Skeletal Radiol. 2011;40(5):609–16.

    Article  PubMed  Google Scholar 

  175. Lee MJ, LaStayo PC. Pronator syndrome and other nerve compressions that mimic carpal tunnel syndrome. J Orthop Sports Phys Ther. 2004;34(10):601–9.

    Article  PubMed  Google Scholar 

  176. Cass S. Upper extremity nerve entrapment syndromes in sports: an update. Curr Sports Med Rep. 2014;13(1):16–21.

    Article  PubMed  Google Scholar 

  177. Martinoli C, Bianchi S, Pugliese F, Bacigalupo L, Gauglio C, Valle M, Derchi L. Sonography of entrapment neuropathies in the upper limb (wrist excluded). J Clin Ultrasound. 2004;32(9):438–50.

    Article  PubMed  Google Scholar 

  178. Youngner J, Matsuo K, Grant T, Garg A, Samet J, Omar I. Sonographic evaluation of uncommonly assessed upper extremity peripheral nerves: anatomy, technique, and clinical syndromes. Skeletal Radiol. 2018;48(1):57–74.

    Article  PubMed  Google Scholar 

  179. Andrea C, PierLuigi B, Guglielmo L. Median nerve disorders at the elbow. In: Bain G, Eygendaal D, van Riet R, editors. Surgical techniques for trauma and sports related injuries of the elbow. Springer, Berlin, Heidelberg: Berlin, Heidelberg; 2019. p. 751–5.

    Google Scholar 

  180. Meirelles LM, Fernandes CH, Ejnisman B, Cohen M, Gomes dos Santos JB, Albertoni WM. The prevalence of carpal tunnel syndrome in adapted sports athletes based on clinical diagnostic. Orthop Traumatol Surg Res. 2020. https://doi.org/10.1016/j.otsr.2020.02.004.

  181. Geoghegan L, Wormald J. Sport-related hand injury: a new perspective of e-sports. J Hand Surg (Eur Vol). 2019;44(2):219–20.

    Article  PubMed  Google Scholar 

  182. Akuthota V, Plastaras C, Lindberg K, Tobey J, Press J, Garvan C. The effect of long-distance bicycling on ulnar and median nerves. Am J Sports Med. 2005;33(8):1224–30.

    Article  PubMed  Google Scholar 

  183. Mousavi AA, Saied AR. Comparison of sonography and electrodiagnostic tests in diagnosis and treatment of carpal tunnel syndrome. World Appl Sci J. 2011;15:490–5.

    Google Scholar 

  184. Taylor-Gjevre RM, Gjevre JA, Nair B. Suspected carpal tunnel syndrome: do nerve conduction study results and symptoms match? Can Fam Phys. 2010;56:250–4.

    Google Scholar 

  185. Werner RA, Andary M. Electrodiagnostic evaluation of carpal tunnel syndrome. Muscle Nerve. 2011;44:597–607.

    Article  PubMed  Google Scholar 

  186. Aktürk S, Büyükavcı R, Ersoy Y. Median nerve ultrasound in carpal tunnel syndrome with normal electrodiagnostic tests. Acta Neurol Belg. 2020;120(1):43–7.

    Article  PubMed  Google Scholar 

  187. Mhoon J, Juel V, Hobson-Webb L. Median nerve ultrasound as a screening tool in carpal tunnel syndrome: correlation of cross-sectional area measures with electrodiagnostic abnormality. Muscle Nerve. 2012;46(6):861–70.

    Article  Google Scholar 

  188. Cartwright M, Baute V, Caress J, Walker F. Ultrahigh-frequency ultrasound of fascicles in the median nerve at the wrist. Muscle Nerve. 2017;56(4):819–22.

    Article  PubMed  Google Scholar 

  189. Babaei-Ghazani A, Roomizadeh P, Nouri E, Raeisi G, Yousefi N, Asilian-mahabadi M, Moeini M. Ultrasonographic reference values for the median nerve at the level of pronator teres muscle. Surg Radiol Anat. 2018;40(9):1019–24.

    Article  PubMed  Google Scholar 

  190. Hide I, Grainger A, Naisby G, Campbell R. Sonographic findings in the anterior interosseous nerve syndrome. J Clin Ultrasound. 1999;27(8):459–64.

    Article  CAS  PubMed  Google Scholar 

  191. Malahias M, Chytas D, Mavrogenis A, Nikolaou V, Johnson E, Babis G. Platelet-rich plasma injections for carpal tunnel syndrome: a systematic and comprehensive review. Eur J Orthop Surg Traumatol. 2018;29(1):1–8.

    Article  PubMed  Google Scholar 

  192. Dowdle S, Chalmers P. Management of the Ulnar Nerve in throwing athletes. Curr Rev Musculoskelet Med. 2020;13:449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Andrews JR. Bony injuries about the elbow in the throwing athletes. Instr Course Lect. 1985;34:323–31.

    CAS  PubMed  Google Scholar 

  194. Mihata T, Akeda M, Kunzler M, McGarry MH, Neo M, Lee TQ. Ulnar collateral ligament insufficiency affects cubital tunnel syndrome during throwing motion: a cadaveric biomechanical study. J Shoulder Elb Surg. 2019;28(9):1758–63.

    Article  Google Scholar 

  195. Maruyama M, Satake H, Takahara M, Harada M, Uno T, Mura N, Takagi M. Treatment for ulnar neuritis around the elbow in adolescent baseball players: factors associated with poor outcome. Am J Sports Med. 2017;45(4):803–9.

    Article  PubMed  Google Scholar 

  196. Sivak W, Hagerty S, Huyhn L, Jordan A, Munin M, Spiess A. Diagnosis of ulnar nerve entrapment at the arcade of struthers with electromyography and ultrasound. Plastic Reconstr Surg Global Open. 2016;4(3):e648.

    Article  Google Scholar 

  197. Tubbs RS, Deep A, Shoja MM, Mortazavi MM, Loukas M, Cohen-Gadol AA. The arcade of Struthers: an anatomical study with potential neurosurgical significance. Surg Neurol Int. 2011;2:184.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Elhassan B, Steinmann S. Entrapment neuropathy of the ulnar nerve. J Am Acad Orthop Surg. 2007;15(11):672–81.

    Article  PubMed  Google Scholar 

  199. Akyü MZ. Fit, Cyclist’s neuropathy a compression syndrome of the deep motor branch of the ulnar nerve a case report. Neurosurg Q. 2015;25(3):337–40.

    Article  Google Scholar 

  200. Doyle JR, Botte MJ. Surgical anatomy of the hand and upper extremity. Philadelphia, London: Lippincott, Williams and Wilkins; 2003. p. 575–81.

    Google Scholar 

  201. Wajid H, LeBlanc J, Shapiro D, Delzell P. Bowler’s thumb: ultrasound diagnosis of a neuroma of the ulnar digital nerve of the thumb. Skeletal Radiol. 2016;45(11):1589–92.

    Article  PubMed  Google Scholar 

  202. Draghi F, Bortolotto C, Ballerini D, Preda L. Ultrasonography of the ulnar nerve in the elbow: video article. J Ultrasound, OnlineFirst. 2020;23(3):335–36

    Google Scholar 

  203. Ellegaard H, Fuglsang-Frederiksen A, Hess A, Johnsen B, Qerama E. High-resolution ultrasound in ulnar neuropathy at the elbow: a prospective study. Muscle Nerve. 2015;52(5):759–66.

    Article  PubMed  Google Scholar 

  204. Aird C, Thoirs K, Maranna S, Massy-Westropp N. Ultrasound measurements and assessments of the ulnar nerve at the elbow and cubital tunnel: a scoping review. J Diagn Med Sonogr. 2019;35(6):474–82.

    Article  Google Scholar 

  205. Schneidl E, Bohm J, Farbaky Z, et al. Ultrasonography of ulnar neuropathy at the elbow: axonal involvement leads to greater nerve swelling than demyelinating nerve lesion. Clin Neurophysiol. 2013;124:619–5.

    Article  Google Scholar 

  206. Riegler G, Lieba-Samal D, Brugger P, Pivec C, Platzgummer H, Vierhapper M, Muschitz G, Jengojan S, Bodner G. High-resolution ultrasound visualization of the deep branch of the ulnar nerve. Muscle Nerve. 2017;56(6):1101–7.

    Article  PubMed  Google Scholar 

  207. Cavaletti G, Marmiroli P, Alberti G, Michielon G, Tredici G. Sport–related peripheral nerve injuries: part 1. Sport Sci Health. 2004;1(2):55–60.

    Article  Google Scholar 

  208. Dickerman RD, Stevens QEJ, Cohen AJ, Jaikumar S. Radial tunnel syndrome in an elite power athlete: a case of direct compressive neuropathy. J Peripher Nerve Sys. 2002;7:229–32.

    Article  Google Scholar 

  209. Meng S, Tinhofer I, Weninger W, Grisold W. Ultrasound and anatomical correlation of the radial nerve at the arcade of Frohse. Muscle Nerve. 2015;51(6):853–8.

    Article  PubMed  Google Scholar 

  210. Dietz A, Bucelli R, Pestronk A, Zaidman C. Nerve ultrasound identifies abnormalities in the posterior interosseous nerve in patients with proximal radial neuropathies. Muscle Nerve. 2016;53(3):379–83.

    Article  PubMed  Google Scholar 

  211. Marchant MH, Gambardella RA, Podesta L. Superficial radial nerve injury after avulsion fracture of the brachioradialis muscle origin in a professional lacrosse player: a case report. J Shoulder Elb Surg. 2009;18(6):E9–E12.

    Article  Google Scholar 

  212. Chang K, Hung C, Özçakar L. Snapping thumb and superficial radial nerve entrapment in De Quervain disease: ultrasound imaging/guidance revisited. Pain Med. 2015;16(11):2214–5.

    Article  PubMed  Google Scholar 

  213. Miller TT, Reinus WR. Nerve entrapment syndromes of the elbow, forearm and wrist. Am J Roentgenol. 2010;195(3):585–94.

    Article  Google Scholar 

  214. Brant J, Johnson B, Brou L, Comstock R, Vu T. Rates and patterns of lower extremity sports injuries in all gender-comparable US high school sports. Orthop J Sports Med. 2019;7(10):1–7.

    Article  Google Scholar 

  215. McGuine T, Bell D, Brooks M, Hetzel S, Pfaller A, Post E. The effect of sport specialization on lower extremity injury rates in high school athletes. Orthop J Sports Med. 2017;5(7_suppl6):1.

    Article  Google Scholar 

  216. Poor A, Roedl J, Zoga A, Meyers W. Core muscle injuries in athletes. Curr Sports Med Rep. 2018;17(2):54–8.

    Article  PubMed  Google Scholar 

  217. Lynch T, Bedi A, Larson C. Athletic hip injuries. J Am Acad Orthop Surg. 2017;25(4):269–79.

    Article  PubMed  Google Scholar 

  218. Epstein DM, Mchugh M, Yorio M, Neri B. Intraarticular hip injuries in national hockey league players: a descriptive epidemiological study. Am J Sports Med. 2013;41(2):343–8.

    Article  PubMed  Google Scholar 

  219. Ekhtiari S, Khan M, Burrus T, Madden K, Gagnier J, Rogowski J, Maerz T, Bedi A. Hip and groin injuries in professional basketball players: impact on playing career and quality of life after retirement. Sports Health. 2019;11(3):218–22.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Maradit Kremers H, Larson DR, Crowson CS, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97:1386–97.

    Article  PubMed  Google Scholar 

  221. Tak I, Glasgow P, Langhout R, Weir A, Kerkhoffs G, Agricola R. Hip range of motion is lower in professional soccer players with hip and groin symptoms or previous injuries, independent of cam deformities. Am J Sports Med. 2016;44(3):682–8.

    Article  PubMed  Google Scholar 

  222. Serner A, Weir A, Tol J, Thorborg K, Roemer F, Guermazi A, Yamashiro E, Hölmich P. Characteristics of acute groin injuries in the hip flexor muscles — a detailed MRI study in athletes. Scand J Med Sci Sports. 2018;28(2):677–85.

    Article  CAS  PubMed  Google Scholar 

  223. Eckard T, Padua D, Dompier T, Dalton S, Thorborg K, Kerr Z. Epidemiology of hip flexor and hip adductor strains in National Collegiate Athletic Association Athletes, 2009/2010-2014/2015. Am J Sports Med. 2017;45(12):2713–22.

    Article  PubMed  Google Scholar 

  224. Ralston B, Arthur J, Makovicka J, Hassebrock J, Tummala S, Deckey D, Patel K, Chhabra A, Hartigan D. Hip and groin injuries in National Collegiate Athletic Association Women’s soccer players. Orthop J Sports Med. 2020;8(1):1–6.

    Article  Google Scholar 

  225. Palisch A, Zoga AC, Meyers WC. Imaging of athletic pubalgia and core muscle injuries: clinical and therapeutic correlations. Clin Sports Med. 2013;32(3):427–47.

    Article  PubMed  Google Scholar 

  226. Meyers WC, Foley DP, Garrett WE, Lohnes JH, Mandlebaum BR. PAIN (Performing Athletes with Abdominal or Inguinal Neuromuscular Pain Study Group): management of severe lower abdominal or inguinal pain in high-performance athletes. Am J Sports Med. 2000;28(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  227. Zoga AC, Kavanagh EC, Omar IM, et al. Athletic pubalgia and “sports hernia”: MR imaging findings. Radiology. 2008;247(3):797–807.

    Article  PubMed  Google Scholar 

  228. Kopelman D, Kaplan U, Hatoum OA, et al. The management of sportsman’s groin hernia in professional and amateur soccer players: a revised concept. Hernia. 2016;20:69–75.

    Article  CAS  PubMed  Google Scholar 

  229. De Blaiser C, Roosen P, Willems T, Danneels L, Bossche LV, De Ridder R. Is care stability a risk factor for lower extremity injuries in an athletic population? A systematic review. Phys Ther Sport. 2018;30:48–56.

    Article  PubMed  Google Scholar 

  230. Via A, Frizziero A, Finotti P, Oliva F, Randelli F, Maffulli N. Management of osteitis pubis in athletes: rehabilitation and return to training – a review of the most recent literature. Open Access J Sports Med. 2018;10:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Economopoulos KJ, Milewski MD, Hanks JB, Hart JM, Diduch DR. Radiographic evidence of femoroacetabular impingement in athletes with athletic pubalgia. Sports Health. 2014;6(2):171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Krishnamoorthy V, Kunze K, Beck E, Cancienne J, O’Keefe L, Ayeni O, Nho S. Radiographic prevalence of symphysis pubis abnormalities and clinical outcomes in patients with femoroacetabular impingement syndrome. Am J Sports Med. 2019;47(6):1467–72.

    Article  PubMed  Google Scholar 

  233. Frizziero A, Vittadini F, Pignataro F, et al. Conservative management of tendinopathies around hip. Muscles Ligaments Tendons J. 2016;6(3):281–92.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Brandon CJ, Jacobson JA, Fessell D, Dong Q, Morag Y, Girish G, Jamadar D. Groin pain beyond the hip: how anatomy predisposes to injury as visualized by musculoskeletal ultrasound and MRI. Am J Roentgenol. 2011;197(5):1190–7.

    Article  Google Scholar 

  235. Campbell R. Ultrasound of the athletic groin. Semin Musculoskelet Radiol. 2013;17(1):34–42.

    Article  PubMed  Google Scholar 

  236. Lungu E, Michaud J, Bureau N. US assessment of sports-related hip injuries. Radiographics. 2018;38(3):867–89.

    Article  PubMed  Google Scholar 

  237. Kelly B, Weiland D, Schenker M, Philippon MJ. Arthroscopic labral repair in the hip: surgical technique and review of the literature. Arthroscopy. 2005;21:1496–504.

    Article  PubMed  Google Scholar 

  238. Wenger D, Kendell K, Miner M, Trousdale RT. Acetabular labral tears rarely occur in the absence of bony abnormalities. Clin Orthop Relat Res. 2004;426:145–50.

    Article  Google Scholar 

  239. Rankin A, Bleakley C, Cullen M. Hip joint pathology as a leading cause of groin pain in the sporting population. Am J Sports Med. 2015;43(7):1698–703.

    Article  PubMed  Google Scholar 

  240. Aiba H, Watanabe N, Fukuoka M, Wada I, Murakami H. Radiographic analysis of subclinical appearances of the hip joint among patients with labral tears. J Orthop Surg Res. 2019;14(1):1–6.

    Article  Google Scholar 

  241. Su T, Chen GX, Yang L. Diagnosis and treatment of labral tear. Chin Med J. 2019;132(2):211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Fukushima K, Inoue G, Fujimaki H, Uchida K, Miyagi M, Nagura N, Uchiyama K, Takahira N, Takaso M. The cytokine expression in synovial membrane and the relationship with pain and pathological findings at hip arthroscopy. J Exp Orthop. 2017;4(1):1–7.

    Article  Google Scholar 

  243. Lynch T, O’Connor M, Minkara A, Westermann R, Rosneck J. Biomarkers for femoroacetabular impingement and hip osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2019;47(9):2242–50.

    Article  PubMed  Google Scholar 

  244. Mervak BM, Morag Y, Marcantonio D, Jacobson J, Brandon C, Fessell D. Paralabral cysts of the hip: sonographic evaluation with magnetic resonance arthrographic correlation. J Ultrasound Med. 2012;31(3):495–500.

    Article  PubMed  Google Scholar 

  245. Jin W, Kim KI, Rhyu KH, et al. Sonographic evaluation of the anterosuperior hip labral tears with magnetic resonance arthrographic correlation. J Ultrasound Med. 2012;31(3):439–47.

    Article  PubMed  Google Scholar 

  246. De Luigi A, Blatz D, Karam C, Gustin Z, Gordon A. Use of platelet-rich plasma for the treatment of acetabular labral tear of the hip. Am J Phys Med Rehabil. 2019;98(11):1010–7.

    Article  PubMed  Google Scholar 

  247. Kassarjian A, Rodrigo RM, Santisteban JM. Intrasmuscular degloving injuries to the rectus femoris: findings at MRI. Am J Roentgenol. 2014;202(5):W475–80.

    Article  Google Scholar 

  248. Lutterbach-Penna RA, Kalume-Brigido M, Morag Y, Boon T, Jacobson JA, Fessell DP. Ultrasound of the thigh: focal, compartmental, or comprehensive examination? Am J Roentgenol. 2014;203(5):1085–92.

    Article  Google Scholar 

  249. Bui K, Ilaslan H, Recht M, Sundaram M. Iliopsoas injury: an MRI study of patterns and prevalence correlated with clinical findings. Skeletal Radiol. 2008;37(3):245–9.

    Article  PubMed  Google Scholar 

  250. Anderson CN. Iliopsoas: pathology, diagnosis and treatment. Clin Sports Med. 2016;35(3):419–33.

    Article  PubMed  Google Scholar 

  251. Bouvard M, Roger B, Laffond J, Lippa A, Tassery F. Iliopsoas muscle injuries. In: Roger B, Guermazi A, Skaf A, editors. Muscle injuries in sport athletes. Sports and traumatology. Cham: Springer; 2017. p. 245–59.

    Chapter  Google Scholar 

  252. Blankenbaker DG, Tuite MJ. Iliopsoas musculotendinous unit. Semin Musculoskelet Radiol. 2008;12(1):13–27.

    Article  PubMed  Google Scholar 

  253. Lyons JC, Peterson LF. The snapping iliopsoas tendon. Mayo Clin Proc. 1984;59:327–9.

    Article  CAS  PubMed  Google Scholar 

  254. Lee KS, Rosas HG, Phancao JP. Snapping hip: imaging and treatment. Semin Musculoskelet Radiol. 2013;17(3):286–94.

    Article  PubMed  Google Scholar 

  255. Tatu L, Parratte B, Vuillier F, Diop M, Monnier G. Descriptive anatomy of the femoral portion of the iliopsoas muscle. Anatomical basis of anterior snapping of the hip. Surg Radiol Anat. 2001;23:371–4.

    Article  CAS  PubMed  Google Scholar 

  256. Guillin R, Cardinal E, Bureau N. Sonographic anatomy and dynamic study of the normal iliopsoas musculotendinous junction. Eur Radiol. 2008;19(4):995–1001.

    Article  PubMed  Google Scholar 

  257. Deslandes M, Guillin R, Cardinal E, Hobden R, Bureau NJ. The snapping iliopsoas tendon; new mechanisms using dynamic sonography. Am J Roentgenol. 2008;190:576–81.

    Article  Google Scholar 

  258. Bureau NJ. Sonographic evaluation of the snapping hip syndrome. J Ultrasound Med. 2013;32(6):895–900.

    Article  PubMed  Google Scholar 

  259. Audenaert EA, Khanduja V, Claes P, Malviya A, Steenackers G. Mechanics of psoas tendon snapping. A virtual population study. Front Bioeng Biotechnol. 2020;8:264.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Flato R, Passanante G, Skalski M, Patel D, White E, Matcuk G. The iliotibial tract: imaging, anatomy, injuries, and other pathology. Skeletal Radiol. 2017;46(5):605–22.

    Article  PubMed  Google Scholar 

  261. Scillia A, Choo A, Milman E, et al. Snapping of the proximal hamstring origin: a rare cause of coxa saltans: a case report. J Bone Joint Surg Am. 2011;93:e1251–3.

    Article  PubMed  Google Scholar 

  262. Yen Y, Lewis CL, Kim Y. Understanding and treating the snapping hip. Sports Med Arthrosc Rev. 2015;23(4):194–9.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Pelsser V, Cardinal E, Hobden R, et al. Extra-articular snapping hip: sonographic findings. Am J Roentgenol. 2001;176:67–73.

    Article  CAS  Google Scholar 

  264. Potalivo G, Bugiantella W. Snapping hip syndrome: systematic review of surgical treatment. Hip Int. 2017;27(2):111–21.

    Article  PubMed  Google Scholar 

  265. Krishnamurthy G, Connolly B, Narayanan U, Babyn P. Imaging findings in external snapping hip syndrome. Pediatr Radiol. 2007;37(12):1272–4.

    Article  PubMed  Google Scholar 

  266. Via AG, Fioruzzi A, Randelli F. Diagnosis and management of snapping hip syndrome: a comprehensive review of literature. Rheumatol Curr Res. 2017;17(4):1–7.

    Google Scholar 

  267. Walker-Santiago R, Wojnowski NM, Lall AC, Maldonado DR, Rabe SM, Domb BG. Platelet-rich plasma versus surgery for the management of recalcitrant greater trochanteric pain syndrome: a systematic review. Arthroscopy. 2020;36(3):875–88.

    Article  PubMed  Google Scholar 

  268. Lewis CL. Extra-articular snapping hip: a literature review. Sports Health. 2010;2(3):186–90.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Pierce T, Kurowicki J, Issa K, Festa A, Scillia A, McInerney V. External snapping hip: a systematic review of outcomes following surgical intervention: external snapping hip systematic review. Hip Int. 2018;28(5):468–72.

    Article  PubMed  Google Scholar 

  270. Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553–8.

    Article  CAS  PubMed  Google Scholar 

  271. Alzahrani M, Aldebeyan S, Abduljabbar F, Martineau P. Hamstring injuries in athletes: diagnosis and treatment. JBJS Rev. 2015;3(6):11.

    Article  Google Scholar 

  272. Chu S, Rho M. Hamstring injuries in the athlete: diagnosis, treatment, and return to play. Curr Sports Med Rep. 2016;15(3):184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Orchard J, Best TM, Verrall GM. Return to play following muscle strains. Clin J Sport Med. 2005;15:436–41.

    Article  PubMed  Google Scholar 

  274. Heiderscheit BC, Sherry MA, Silder A, et al. Hamstring strain injuries: recommendations for diagnosis, rehabilitation and injury prevention. J Orthop Sports Phys Ther. 2010;40:67–81.

    Article  PubMed  PubMed Central  Google Scholar 

  275. van der Made A, Tol J, Reurink G, Peters R, Kerkhoffs G. Potential hamstring injury blind spot: we need to raise awareness of proximal hamstring tendon avulsion injuries. Br J Sports Med. 2019;53(7):390–2.

    Article  PubMed  Google Scholar 

  276. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging and recovery characteristics. Am J Sports Med. 2007;35(10):1716–24.

    Article  PubMed  Google Scholar 

  277. Kenneally-Dabrowski C, Brown N, Lai A, Perriman D, Spratford W, Serpell B. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand J Med Sci Sports. 2019;29(8):1083–91.

    Article  PubMed  Google Scholar 

  278. Made A, Wieldraaijer T, Kerkhoffs G, Kleipool R, Engebretsen L, Dijk C, Golanó P. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2115–22.

    Article  PubMed  Google Scholar 

  279. Irger M, Willinger L, Lacheta L, Pogorzelski J, Imhoff A, Feucht M. Proximal hamstring tendon avulsion injuries occur predominately in middle-aged patients with distinct gender differences: epidemiologic analysis of 263 surgically treated cases. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1221–9.

    Article  PubMed  Google Scholar 

  280. Stępień K, Śmigielski R, Mouton C, Ciszek B, Engelhardt M, Seil R. Anatomy of proximal attachment, course, and innervation of hamstring muscles: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2018;27(3):673–84.

    Article  PubMed  Google Scholar 

  281. Beatty N, Félix I, Hettler J, Moley P, Wyss J. Rehabilitation and prevention of proximal hamstring tendinopathy. Curr Sports Med Rep. 2017;16(3):162–71.

    Article  PubMed  Google Scholar 

  282. Degen R. Proximal hamstring injuries: management of tendinopathy and avulsion injuries. Curr Rev Musculoskelet Med. 2019;12(2):138–46.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Brucker PU, Imhoff AB. Functional assessment after acute and chronic ruptures of the proximal hamstring tendons. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):411–8.

    Article  PubMed  Google Scholar 

  284. Cohen SB, Rangavajjula A, Vyas D, Bradley JP. Functional results and outcomes after repair of proximal hamstring avulsions. Am J Sports Med. 2012;40(9):2092–8.

    Article  PubMed  Google Scholar 

  285. Seow D, Shimozono Y, Tengku Yusof T, Yasui Y, Massey A, Kennedy J. Platelet-rich plasma injection for the treatment of hamstring injuries: a systematic review and meta-analysis with best-worst case analysis. Am J Sports Med. 2020;1:1–9.

    Google Scholar 

  286. Manduca M, Straub S. Effectiveness of PRP injection in reducing recovery time of acute hamstring injury: a critically appraised topic. J Sport Rehabil. 2018;27(5):480–4.

    Article  PubMed  Google Scholar 

  287. Bradley J, Lawyer T, Ruef S, Towers J, Arner J. Platelet-rich plasma shortens return to play in National Football League Players with acute hamstring injuries. Orthop J Sports Med. 2020;8(4):1–5.

    Article  Google Scholar 

  288. Wilson T, Spinner R, Mohan R, Gibbs C, Krych A. Sciatic nerve injury after proximal hamstring avulsion and repair. Orthop J Sports Med. 2017;5(7):1–8.

    Article  Google Scholar 

  289. Subbu R, Benjamin-Laing H, Haddad F. Timing of surgery for complete proximal hamstring avulsion injuries. Am J Sports Med. 2015;43(2):385–91.

    Article  PubMed  Google Scholar 

  290. Willinger L, Siebenlist S, Lacheta L, Wurm M, Irger M, Feucht M, Imhoff A, Forkel P. Excellent clinical outcome and low complication rate after proximal hamstring tendon repair at mid-term follow up. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1230–5.

    Article  PubMed  Google Scholar 

  291. Ekstrand J, Healy JC, Walden M, et al. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46:112–7.

    Article  PubMed  Google Scholar 

  292. Chan O, Del Buono A, Best TM, Maffuli N. Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Athrosc. 2012;20:2356–62.

    Article  Google Scholar 

  293. Pollock N, James SLJ, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48:1347–51.

    Article  PubMed  Google Scholar 

  294. Wangensteen A, Guermazi A, Tol J, Roemer F, Hamilton B, Alonso J, Whiteley R, Bahr R. New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol. 2018;28(8):3532–41.

    Article  PubMed  Google Scholar 

  295. Eggleston L, McMeniman M, Engstrom C. High-grade intramuscular tendon disruption in acute hamstring injury and return to play in Australian Football players. Scand J Med Sci Sports. 2020;30(6):1073–82.

    Article  PubMed  Google Scholar 

  296. Gaballah A, Elgeidi A, Bressel E, Shakrah N, Abd-Alghany A. Rehabilitation of hamstring strains: does a single injection of platelet-rich plasma improve outcomes? (clinical study). Sport Sci Health. 2018;14(2):439–47.

    Article  Google Scholar 

  297. Wangensteen A, Tol J, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, Bahr R. Hamstring Reinjuries occur at the same location and early after return to sport. Am J Sports Med. 2016;44(8):2112–21.

    Article  PubMed  Google Scholar 

  298. Vatovec R, Kozinc Z, Šarabon N. Exercise interventions to prevent hamstring injuries in athletes: a systematic review and meta-analysis. Eur J Sport Sci. 2021;20(7):992–04

    Google Scholar 

  299. Crema M, Guermazi A, Reurink G, Roemer F, Maas M, Weir A, Moen M, Goudswaard G, Tol J. Can a clinical examination demonstrate intramuscular tendon involvement in acute hamstring injuries? Orthop J Sports Med. 2017;5(10):1–8.

    Article  Google Scholar 

  300. Dunlop G, Ardern C, Andersen T, Lewin C, Dupont G, Ashworth B, O’Driscoll G, Rolls A, Brown S, McCall A. Return-to-play practices following hamstring injury: a worldwide survey of 131 premier league football teams. Sports Med. 2020;50(4):829–40.

    Article  PubMed  Google Scholar 

  301. Gage BE, McIlvain NM, Collins CL, Fields SK, Comstock RD. Epidemiology of 6.6 million knee injuries presenting to United States emergency departments from 1999 through 2008. Acad Emerg Med. 2012;19(4):378–85.

    Article  PubMed  Google Scholar 

  302. Bien DP, Dubuque TJ. Considerations for late stage ACL rehabilitation and return to sport to limit re-injury risk and maximize athletic performance. Int J Sports Phys Ther. 2015;10:256–71.

    PubMed  PubMed Central  Google Scholar 

  303. Naraghi A, White L. Imaging of athletic injuries of knee ligaments and menisci: sports imaging series. Radiology. 2016;281(1):23–40.

    Article  PubMed  Google Scholar 

  304. Elkin J, Zamora E, Gallo R. Combined anterior cruciate ligament and medial collateral ligament knee injuries: anatomy, diagnosis, management recommendations, and return to sport. Curr Rev in Musculoskelet Med. 2019;12(2):239–44.

    Article  Google Scholar 

  305. MacMahon PJ, Palmer WE. A biomechanical approach to MRI of acute knee injuries. Am J Roentgenol. 2011;197(3):568–77.

    Article  Google Scholar 

  306. LaPrade RF, Wentorf FA, Fritts H, Gundry C, Hightower CD. A prospective magnetic resonance imaging study of the incidence of posterolateral and multiple ligament injuries in acute knee injuries presenting with a hemarthrosis. Arthroscopy. 2007;23(12):1341–7.

    Article  PubMed  Google Scholar 

  307. Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther. 2006;36:267–88.

    Article  PubMed  Google Scholar 

  308. Lee S, Yun S. Efficiency of knee ultrasound for diagnosing anterior cruciate ligament and posterior cruciate ligament injuries: a systematic review and meta-analysis. Skeletal Radiol. 2019;48(10):1599–610.

    Article  PubMed  Google Scholar 

  309. Tsai WH, Chiang YP, Lew RJ. Sonographic examination of knee ligaments. Am J Phys Med Rehabil. 2015;94(8):e77–9.

    Article  PubMed  Google Scholar 

  310. Ptasznik R, Feller J, Bartlett J, Fitt G, Mitchell A, Hennessey O. The value of sonography in the diagnosis of traumatic rupture of the anterior cruciate ligament of the knee. Am J Roentgenol. 1995;164:1461–3.

    Article  CAS  Google Scholar 

  311. Chylarecki C, Hierholzer G, Tabertshofer H. Ultrasound criteria of fresh rupture of the anterior cruciate ligament (in German). Unfallchirurgie. 1995;21:109–17.

    Article  CAS  PubMed  Google Scholar 

  312. Mautner K, Sussman WI, Nanos K, Blazuk J, Brigham C, Sarros E. Validity of indirect ultrasound findings in acute anterior cruciate ligament ruptures. J Ultrasound Med. 2019;38:1685–92.

    Article  PubMed  Google Scholar 

  313. Alazzawi S, Sukeik M, Ibrahim M, Haddad F. Management of anterior cruciate ligament injury: pathophysiology and treatment. Br J Hosp Med. 2016;77(4):222–5.

    Article  Google Scholar 

  314. Van der List JP, Mintz DN, DiFelice GS. The location of anterior cruciate ligament tears: a prevalence study using magnetic resonance imaging. Orthop J Sports Med. 2017;5:2325967117709966.

    PubMed  PubMed Central  Google Scholar 

  315. Webster K, Feller J, Kimp A, Whitehead T. Low rates of return to preinjury sport after bilateral anterior cruciate ligament reconstruction. Am J Sports Med. 2019;47(2):334–8.

    Article  PubMed  Google Scholar 

  316. Lindanger L, Strand T, Mølster A, Solheim E, Inderhaug E. Return to play and long-term participation in pivoting sports after anterior cruciate ligament reconstruction. Am J Sports Med. 2019;47(14):3339–46.

    Article  PubMed  Google Scholar 

  317. Clifford A, Buckley E, O’Farrell D, Louw Q, Moloney C. Fear of movement in patients after anterior cruciate ligament reconstruction. Physiother Pract Res. 2017;38(2):113–20.

    Google Scholar 

  318. Faleide A, Inderhaug E, Vervaat W, Breivik K, Bogen B, Mo I, Trøan I, Strand T, Magnussen L. Anterior cruciate ligament—return to sport after injury scale: validation of the Norwegian language version. Knee Surg Sports Traumatol Arthrosc. 2020;OnlineFirst:1–10.

    Google Scholar 

  319. Hirohata K, Aizawa J, Furuya H, Mitomo S, Ohmi T, Ohji S, Ohara T, Koga H, Yagishita K, Webster K. The Japanese version of the anterior cruciate ligament-return to sport after injury (ACL-RSI) scale has acceptable validity and reliability. Knee Surg Sports Traumatol Arthrosc. 2020;OnlineFirst:1–7.

    Google Scholar 

  320. Webster K, Hewett T. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917–29.

    Article  PubMed  Google Scholar 

  321. Undheim MB, Cosgrave C, King E, et al. Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? A systematic review and a protocol recommendation. Br J Sports Med. 2015;49:1305–10.

    Article  PubMed  Google Scholar 

  322. Keays S, Newcombe P, Keays A. Nearly 90% participation in sports activity 12years after non-surgical management for anterior cruciate ligament injury relates to physical outcome measures. Knee Surg Sports Traumatol Arthrosc. 2018;27(8):2511–9.

    Article  PubMed  Google Scholar 

  323. Patterson B, Culvenor A, Barton C, Guermazi A, Stefanik J, Morris H, Whitehead T, Crossley K. Worsening knee osteoarthritis features on magnetic resonance imaging 1 to 5 years after anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46(12):2873–83.

    Article  PubMed  PubMed Central  Google Scholar 

  324. Cheung E, DiLallo M, Feeley B, Lansdown D. Osteoarthritis and ACL reconstruction—myths and risks. Curr Rev Musculoskelet Med. 2020;13(1):115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Wellsandt E, Failla M, Axe M, Snyder-Mackler L. Does anterior cruciate ligament reconstruction improve functional and radiographic outcomes over nonoperative management 5 years after injury? Am J Sports Med. 2018;46(9):2103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Smith TO, Postle K, Penny F, McNamara I, Mann CJV. Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment. Knee. 2014;21:462–70.

    Article  CAS  PubMed  Google Scholar 

  327. Rothrauff B, Jorge A, de Sa D, Kay J, Fu F, Musahl V. Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: a systematic review with minimum 10-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1072–84.

    Article  PubMed  Google Scholar 

  328. Agarwalla A, Puzzitiello R, Liu J, Cvetanovich G, Gowd A, Verma N, Cole B, Forsythe B. Timeline for maximal subjective outcome improvement after anterior cruciate ligament reconstruction. Am J Sports Med. 2019;47(10):2501–9.

    Article  PubMed  Google Scholar 

  329. LaPrade R, Goodrich L, Phillips J, Dornan G, Turnbull T, Hawes M, Dahl K, Coggins A, Kisiday J, Frisbie D, Chahla J. Use of platelet-rich plasma immediately after an injury did not improve ligament healing, and increasing platelet concentrations was detrimental in an in vivo animal model. Am J Sports Med. 2018;46(3):702–12.

    Article  PubMed  Google Scholar 

  330. Wang D, Rodeo SA. Platelet-rich plasma in orthopaedic surgery: a critical analysis review. JBJS Rev. 2017;5(9):1–10.

    Article  Google Scholar 

  331. Arthur J, Haglin J, Makovicka J, Chhabra A. Anatomy and biomechanics of the posterior cruciate ligament and their surgical implications. Sports Med Arthrosc Rev. 2020;28(1):e1–e10.

    Article  PubMed  Google Scholar 

  332. Fanelli GC, Edson CJ. Posterior cruciate ligament injuries in trauma patients: part II. Arthroscopy. 1995;11:526–9.

    Article  CAS  PubMed  Google Scholar 

  333. Petrigliano FA, McAllister DR. Isolated posterior cruciate ligament injuries of the knee. Sports Med Arthrosc Rev. 2006;14:206–12.

    Article  PubMed  Google Scholar 

  334. Verhulst F, MacDonald P. Diagnosing PCL injuries: history, physical examination, imaging studies, arthroscopic evaluation. Sports Med Arthrosc Rev. 2020;28(1):2–7.

    Article  PubMed  Google Scholar 

  335. Schlumberger M, Schuster P, Eichinger M, Mayer P, Mayr R, Immendörfer M, Richter J. Posterior cruciate ligament lesions are mainly present as combined lesions even in sports injuries. Knee Surg Sports Traumatol Arthrosc. 2020;OnlineFirst:1–8.

    Google Scholar 

  336. Sekiya JK, Haemmerle MJ, Stabile KJ, et al. Biomechanical analysis of a combined double-bundle posterior cruciate ligament and posterolateral corner reconstruction. Am J Sports Med. 2005;33:360–9.

    Article  PubMed  Google Scholar 

  337. Apsingi S, Nguyen T, Bull AM, et al. The role of PCL reconstruction in knees with combined PCL and posterolateral corner deficiency. Knee Surg Sports Traumatol Arthrosc. 2008;16:104–11.

    Article  CAS  PubMed  Google Scholar 

  338. Petrillo S, Volpi P, Papalia R, Maffulli N, Denaro V. Management of combined injuries of the posterior cruciate ligament and posterolateral corner of the knee: a systematic review. Br Med Bull. 2017;123(1):47–57.

    Article  PubMed  Google Scholar 

  339. Kannus P, Bergfeld J, Jarvinen M, et al. Injuries to the posterior cruciate ligament of the knee. Sports Med. 1991;12:110–31.

    Article  CAS  PubMed  Google Scholar 

  340. Owesen C, Sandven-Thrane S, Lind M, Forssblad M, Granan LP, Aroen A. Epidemiology of surgically treated posterior cruciate ligament injuries in Scandinavia. Knee Surg Sports Traumatol Arthrosc. 2017;25:2384–91.

    Article  PubMed  Google Scholar 

  341. Wang D, Graziano J, Williams R, Jones K. Nonoperative treatment of PCL injuries: goals of rehabilitation and the natural history of conservative care. Curr Rev Musculoskelet Med. 2018;11(2):290–7.

    Article  PubMed  PubMed Central  Google Scholar 

  342. Xu B, Xu H, Tu J, et al. Initial assessment and implications for surgery: the missed diagnosis of irreducible knee dislocation. J Knee Surg. 2018;31:254–63.

    Article  PubMed  Google Scholar 

  343. DePhillipo N, Cinque M, Godin J, Moatshe G, Chahla J, LaPrade R. Posterior tibial translation measurements on magnetic resonance imaging improve diagnostic sensitivity for chronic posterior cruciate ligament injuries and graft tears. Am J Sports Med. 2018;46(2):341–7.

    Article  PubMed  Google Scholar 

  344. Ringler MD, Shotts EE, Collins MS, et al. Intra-articular pathology associated with isolated posterior cruciate ligament injury on MRI. Skeletal Radiol. 2016;45:1695–703.

    Article  PubMed  Google Scholar 

  345. Wang L, Yang T, Huang Y, Chou W, Huang C, Wang C. Evaluating posterior cruciate ligament injury by using two-dimensional ultrasonography and sonoelastography. Knee Surg Sports Traumatol Arthrosc. 2016;25(10):3108–15.

    Article  PubMed  Google Scholar 

  346. Miller T. Sonography of injury of the posterior cruciate ligament of the knee. Skeletal Radiol. 2002;31(3):149–54.

    Article  PubMed  Google Scholar 

  347. Suzuki S, Kasahara K, Futami T, Iwasaki R, Ueo T, Yamamuro T. Ultrasound diagnosis of pathology of the anterior and posterior cruciate ligaments of the knee joint. Arch Orthop Trauma Surg. 2004;110(4):200–3.

    Article  Google Scholar 

  348. Sekiya JK, Swaringen JC, Wojtys EM, Jacobson JA. Diagnostic ultrasound evaluation of posterolateral corner knee injuries. Arthroscopy. 2010;26(4):494–9.

    Article  PubMed  Google Scholar 

  349. Shelbourne KD, Davis TJ, Patel DV. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries: a prospective study. Am J Sports Med. 1999;27(3):276–83.

    Article  CAS  PubMed  Google Scholar 

  350. Akisue T, Kurosaka M, Yoshiya S, Kuroda R, Mizuno K. Evaluation of healing of the injured posterior cruciate ligament: analysis of instability and magnetic resonance imaging. Arthroscopy. 2001;17(3):264–9.

    Article  PubMed  Google Scholar 

  351. Rodriguez W Jr, Vinson EN, Helms CA, Toth AP. MRI appearance of posterior cruciate ligament tears. Am J Roentgenol. 2008;191(4):1031.

    Article  Google Scholar 

  352. Chan TW, Kong CC, del Buono A, et al. Acute augmentation for interstitial insufficiency of the posterior cruciate ligament. A two to five year clinical and radiographic study. Muscles Ligaments Tendon J. 2016;6:58–63.

    Article  Google Scholar 

  353. Mariani PP, Margheritini F, Christel P, Bellelli A. Evaluation of posterior cruciate ligament healing: a study using magnetic resonance imaging and stress radiography. Arthroscopy. 2005;21(11):1354–61.

    Article  PubMed  Google Scholar 

  354. Vermeijden H, van der List J, DiFelice G. Arthroscopic posterior cruciate ligament primary repair. Sports Med Arthrosc Rev. 2020;28(1):23–9.

    Article  PubMed  Google Scholar 

  355. Bushnell BD, Bitting SS, Crain JM, Boublik M, Schlegel TF. Treatment of magnetic resonance imaging-documented isolated grade III lateral collateral ligament injuries in National Football League athletes. Am J Sports Med. 2010;38(1):86–91.

    Article  PubMed  Google Scholar 

  356. Grawe B, Schroeder AJ, Kakazu R, Messer MS. Lateral collateral ligament injury about the knee: anatomy, evaluation, and management. J Am Acad Orthop Surg. 2018;26(6):e120–7.

    Article  PubMed  Google Scholar 

  357. Wilson WT, Deakin AH, Payne AP, Picard F, Wearing SC. Comparative analysis of the structural properties of the collateral ligaments of the human knee. J Orthop Sports Phys Ther. 2012;42(4):345–51.

    Article  PubMed  Google Scholar 

  358. Buzzi R, Aglietti P, Vena LM, Giron F. Lateral collateral ligament reconstruction using a semitendinous graft. Knee Surg Sports Traumatol Arthrosc. 2004;12(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  359. Lim HC, Bae JH, Bae TS, Moon BC, Shyam AK, Wang JH. Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament. Arch Orthop Trauma Surg. 2012;132(11):1631–6.

    Article  PubMed  Google Scholar 

  360. Coobs BR, LaPrade RF, Griffith CJ, Nelson BJ. Biomechanical analysis of an isolated fibular (lateral) collateral ligament reconstruction using an autogenous semitendinosus graft. Am J Sports Med. 2007;35(9):1521–7.

    Article  PubMed  Google Scholar 

  361. Devitt BM, Whelan DB. Physical examination and imaging of the lateral collateral ligament and posterolateral corner of the knee. Sports Med Arthrosc. 2015;23(1):10–6.

    Article  PubMed  Google Scholar 

  362. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat. 2013;223(4):321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Temponi E, Saithna A, de Carvalho L, Teixeira B, Sonnery-Cottet B. Nonoperative treatment for partial ruptures of the lateral collateral ligament occurring in combination with complete ruptures of the anterolateral ligament: a common injury pattern in Brazilian Jiu-Jitsu athletes with acute knee injury. Orthop J Sports Med. 2019;7(1):1–7.

    Article  Google Scholar 

  364. Davis BA, Hiller LP, Imbesi SG, Chang EY. Isolated lateral collateral ligament complex injury in rock climbing and Brazilian jiu-jitsu. Skeletal Radiol. 2015;44(8):1175–9.

    Article  PubMed  Google Scholar 

  365. Rosas H. Unraveling the posterolateral corner of the knee. Radiographics. 2016;36(6):1776–91.

    Article  PubMed  Google Scholar 

  366. Shekari I, Shekarchi B, Abbasian M, Minator Sajjadi M, Momeni Moghaddam A, Kazemi S. Predictive factors associated with anterolateral ligament injury in the patients with anterior cruciate ligament tear. Indian J Orthop. 2020;OnlineFirst:1–10.

    Google Scholar 

  367. Warren R. Editorial commentary: knee lateral collateral ligament injury is more common than we thought. Arthroscopy. 2019;33(12):2182–3.

    Article  Google Scholar 

  368. Bonadio MB, Helito CP, Gury LA, Demange MK, Pecora JR, Angelini FJ. Correlation between magnetic resonance imaging and physical exam in assessment of injuries to posterolateral corner of the knee. Acta Ortop Bras. 2014;22(3):124–6.

    Article  PubMed  PubMed Central  Google Scholar 

  369. Mirowitz SA, Shu HH. MR imaging evaluation of knee collateral ligaments and related injuries: comparison of T1-weighted, T2-weighted, and fat-saturated T2-weighted sequences. Correlation with clinical findings. J Magn Reson Imaging. 1994;4(5):725–32.

    Article  CAS  PubMed  Google Scholar 

  370. Cianca J, John J, Pandit S, Chiou-Tan FY. Musculoskeletal ultrasound imaging of the recently described anterolateral ligament of the knee. Am J Phys Med Rehabil. 2014;93(2):186.

    Article  PubMed  Google Scholar 

  371. Moulton S, Matheny L, James E, LaPrade R. Outcomes following anatomic fibular (lateral) collateral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2960–6.

    Article  PubMed  Google Scholar 

  372. Silva A, Sampaio R. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing? Knee Surg Sports Traumatol Arthrosc. 2009;17(6):676–82.

    Article  PubMed  Google Scholar 

  373. Chen X, Jones I, Park C, Vangsness C. The efficacy of platelet-rich plasma on tendon and ligament healing: a systematic review and meta-analysis with bias assessment. Am J Sports Med. 2018;46(8):2020–32.

    Article  PubMed  Google Scholar 

  374. Reider B. Medial collateral ligament injuries in athletes. Sports Med. 2012;21(2):147–56.

    Article  Google Scholar 

  375. Motamedi A, Gowd A, Nazemi A, Gardner S, Behrend C. Incidence, positional distribution, severity, and time missed in medial collateral ligament injuries of the knee in NCAA division I football athletes. J Am Acad Orthop Surg Global Res Rev. 2017;1(5):1–4.

    Google Scholar 

  376. Chen L, Kim P, Ahmad C, Levine W. Medial collateral ligament injuries of the knee: current treatment concepts. Curr Rev Musculoskelet Med. 2007;1(2):108–13.

    Article  PubMed Central  Google Scholar 

  377. Warren LF, Marshall JL. The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Joint Surg Am. 1979;61:56–62.

    Article  CAS  PubMed  Google Scholar 

  378. De Maeseneer M, Van Roy F, Lenchik L, Barbaix E, De Ridder F, Osteaux M. Medial capsular and supporting structures of the knee: MR imaging-anatomic correlation. Radiographics. 2000;20:83–9.

    Article  Google Scholar 

  379. Nur H, Aytekin A, Gilgil E. Medial collateral ligament bursitis in a patient with knee osteoarthritis. J Back Musculoskelet Rehabil. 2018;31(4):589–91.

    Article  PubMed  Google Scholar 

  380. Gardiner JC, Weiss JA, Rosenberg TD. Strain in the human medial collateral ligament during valgus loading of the knee. Clin Orthop Relat Res. 2001;391:266–74.

    Article  Google Scholar 

  381. Kramer D, Miller P, Berrahou I, Yen Y, Heyworth B. Collateral ligament knee injuries in pediatric and adolescent athletes. J Pediatr Orthop. 2020;40(2):71–7.

    Article  PubMed  Google Scholar 

  382. Wierer G, Milinkovic D, Robinson J, Raschke M, Weiler A, Fink C, Herbort M, Kittl C. The superficial medial collateral ligament is the major restraint to anteromedial instability of the knee. Knee Surg Sports Traumatol Arthrosc. 2020;OnlineFirst:1–12.

    Google Scholar 

  383. Craft J, Kurzweil P. Physical examination and imaging of medial collateral ligament and posteromedial corner of the knee. Sports Med Arthrosc Rev. 2015;23(2):e1–6.

    Article  PubMed  Google Scholar 

  384. Sanders TG, Miller MD. A systematic approach to magnetic resonance imaging interpretation of sports medicine injuries of the knee. Am J Sports Med. 2005;33:131–48.

    Article  PubMed  Google Scholar 

  385. Injuries, American Medical Association. Committee on the Medical Aspects of Sports, Subcommittee on Classification of Sports Injuries in Standard Nomenclature for Athletic Injuries. 1966. A.M.A. 99–100.

    Google Scholar 

  386. Taketomi S, Uchiyama E, Nakagawa T, et al. Clinical features and injury patterns of medial collateral ligament tibial side avulsions: “wave sign” on magnetic resonance imaging is essential for diagnosis. Knee. 2014;21(6):1151–5.

    Article  PubMed  Google Scholar 

  387. Boutin R, Fritz R, Walker R, Pathria M, Marder R, Yao L. Tears in the distal superficial medial collateral ligament: the wave sign and other associated MRI findings. Skeletal Radiol. 2020;49(5):747–56.

    Article  PubMed  Google Scholar 

  388. Maeseneer M, Marcelis S, Boulet C, Kichouh M, Shahabpour M, Mey J, Cattrysse E. Ultrasound of the knee with emphasis on the detailed anatomy of anterior, medial, and lateral structures. Skeletal Radiol. 2014;43(8):1025–39.

    PubMed  Google Scholar 

  389. Yoshioka T, Akihiro K, Toshikatsu W, Katsuya A, Kenta U, Masataka S, Naoyuki O. The effects of plasma rich in growth factors (PRGF-Endoret) on healing of medial collateral ligament of the knee. Knee Surg Sports Traumatol Arthrosc. 2013;21(8):1763–9.

    Article  PubMed  Google Scholar 

  390. Yoshida M, Marumo K. An autologous leukocyte-reduced platelet-rich plasma therapy for chronic injury of the medial collateral ligament in the knee: a report of 3 successful cases. Clin J Sport Med. 2019;29(1):e4–6.

    Article  PubMed  Google Scholar 

  391. Godin J, Chahla J, Moatshe G, Kruckeberg B, Muckenhirn K, Vap A, Geeslin A, LaPrade R. A comprehensive reanalysis of the distal iliotibial band: quantitative anatomy, radiographic markers, and biomechanical properties. Am J Sports Med. 2017;45(11):2595–603.

    Article  PubMed  Google Scholar 

  392. Landreau P, Catteeuw A, Hamie F, Saithna A, Sonnery-Cottet B, Smigielski R. Anatomic study and reanalysis of the nomenclature of the anterolateral complex of the knee focusing on the distal iliotibial band: identification and description of the condylar strap. Orthop J Sports Med. 2019;7(1):1–9.

    Article  Google Scholar 

  393. Terry GC, Hughston JC, Norwood LA. The anatomy of iliopatellar band and iliotibial tract. Am J Sports Med. 1986;14(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  394. Batty L, Murgier J, O’Sullivan R, Webster K, Feller J, Devitt B. The Kaplan Fibers of the iliotibial band can be identified on routine knee magnetic resonance imaging. Am J Sports Med. 2019;47(12):2895–903.

    Article  PubMed  Google Scholar 

  395. Batty L, Murgier J, Feller J, O’Sullivan R, Webster K, Devitt B. Radiological identification of injury to the Kaplan Fibers of the iliotibial band in association with anterior cruciate ligament injury. Am J Sports Med. 2020;48(9):2213–20.

    Article  PubMed  Google Scholar 

  396. Herbst E, Albers M, Burnham J, Shaikh H, Naendrup J, Fu F, Musahl V. The anterolateral complex of the knee: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1009–14.

    Article  PubMed  Google Scholar 

  397. Getgood A, Brown C, Lording T, Amis A, Claes S, Geeslin A, Musahl V. The anterolateral complex of the knee: results from the international ALC consensus group meeting. Knee Surg Sports Traumatol Arthrosc. 2018;27(1):166–76.

    Article  PubMed  Google Scholar 

  398. Sinclair J, Ingram J, Butters B, Brooks D, Stainton P, Taylor P. A three-experiment examination of iliotibial band strain characteristics during different conditions using musculoskeletal simulation. Sport Sci Health. 2020;16(4):727–36

    Google Scholar 

  399. Jiménez Díaz F, Gitto S, Sconfienza L, Draghi F. Ultrasound of iliotibial band syndrome. J Ultrasound. 2020;23:379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  400. Abdelshahed D, Neuman S, Oh-Park M. Dynamic change in ultrasonographic findings in iliotibial band syndrome after running. Am J Phys Med Rehabil. 2018;97(2):e13.

    Article  PubMed  Google Scholar 

  401. Jain N, Bauman P, Hamilton WG, Merkle A, Adler RS. Can elite dancers return to dance after ultrasound-guided platelet-rich plasma injections? J Dance Med Sci. 2018;22(4):225–32.

    Article  PubMed  Google Scholar 

  402. Golman M, Wright M, Wong T, Lynch T, Ahmad C, Thomopoulos S, Popkin C. Rethinking patellar tendinopathy and partial patellar tendon tears: a novel classification system. Am J Sports Med. 2020;48(2):359–69.

    Article  PubMed  Google Scholar 

  403. Pang J, Shen S, Pan WR, Jones IR, Rosen WM, Taylor GI. The arterial supply of the patellar tendon: anatomical study with clinical implications for knee surgery. Clin Anat. 2009;22(3):371–6.

    Article  PubMed  Google Scholar 

  404. Zhang C, Couppé C, Scheijen J, Schalkwijk C, Kjaer M, Magnusson S, Svensson R. Regional collagen turnover and composition of the human patellar tendon. J Appl Physiol. 2020;128(4):884–91.

    Article  CAS  PubMed  Google Scholar 

  405. Liam OB, Engebretsen L, Bahr R. Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med. 2005;33:561–7.

    Article  Google Scholar 

  406. Di Matteo B, Filardo G, Kon E, Marcacci M. Platelet-rich plasma: evidence for the treatment of patellar and Achilles tendinopathy—a systematic review. Musculoskelet Surg. 2014;99(1):1–9.

    Article  PubMed  Google Scholar 

  407. Le A, Enweze L, DeBaun M, Dragoo J. Current clinical recommendations for use of platelet-rich plasma. Curr Rev Musculoskelet Med. 2018;11(4):624–34.

    Article  PubMed  PubMed Central  Google Scholar 

  408. Blake M, Lattermann C, Johnson D. MRI and arthroscopic evaluation of meniscal injuries. Sports Med Arthros Rev. 2017;25(4):219–26.

    Article  Google Scholar 

  409. Clayton RA, Court-Brown CM. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury. 2008;39:1338–44.

    Article  PubMed  Google Scholar 

  410. Kosy J, Matteliano L, Rastogi A, Pearce D, Whelan D. Meniscal root tears occur frequently in multi-ligament knee injury and can be predicted by associated MRI injury patterns. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3731–7.

    Article  PubMed  Google Scholar 

  411. Vaishya R, Kambhampati S, Vaish A. Meniscal injuries in the Olympic and elite athletes. Indian J Orthop. 2020;54(3):281–93.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Xia X, Chen H, Zhou B. Ultrasonography for meniscal injuries in knee joint: a systematic review and meta-analysis. J Sports Med Phys Fitness. 2017;56(10):1179–87.

    Google Scholar 

  413. Cook JL, Cook CR, Stannard JP, Vaughn G, et al. MRI versus ultrasonography to assess meniscal abnormalities in acute knees. J Knee Surg. 2014;27:319–24.

    Article  PubMed  Google Scholar 

  414. Hashemi S, Ranjbar M, Tahami M, Shahriarirad R, Erfani A. Comparison of accuracy in expert clinical examination versus magnetic resonance imaging and arthroscopic exam in diagnosis of meniscal tear. Adv Orthop. 2020;2020:1895852.

    Article  PubMed  PubMed Central  Google Scholar 

  415. Bhan K. Meniscal tears: current understanding, diagnosis, and management. Cureus. 2020;12(6):1–8.

    Google Scholar 

  416. Winkler P, Rothrauff B, Buerba R, Shah N, Zaffagnini S, Alexander P, Musahl V. Meniscal substitution, a developing and long-awaited demand. J Exp Orthop. 2020;7(1):1–15.

    Article  Google Scholar 

  417. Belk J, Kraeutler M, Thon S, Littlefield C, Smith J, McCarty E. Augmentation of meniscal repair with platelet-rich plasma: a systematic review of comparative studies. Orthop J Sports Med. 2020;8(6):1–9.

    Article  Google Scholar 

  418. Lucasti C, Dworkin M, Warrender W, Winters B, Cohen S, Ciccotti M, Pedowitz D. Ankle and lower leg injuries in professional baseball players. Am J Sports Med. 2020;48(4):908–15.

    Article  PubMed  Google Scholar 

  419. Seok H, Lee S, Yun S. Diagnostic performance of ankle ultrasound for diagnosing anterior talofibular and calcaneofibular ligament injuries: a meta-analysis. Acta Radiol. 2020;61(5):651–61.

    Article  PubMed  Google Scholar 

  420. D’Hooghe P, Cruz F, Alkhelaifi K. Return to play after a lateral ligament ankle sprain. Curr Rev Musculoskelet Med. 2020;13(3):281–8.

    Article  PubMed  PubMed Central  Google Scholar 

  421. Anderson RL, Engebretsen L, Kennedy N, LaPrade R, Wegner AM, Giza E. Epidemiology and mechanisms and ankle pathology in football. In: The ankle in football. Paris: Springer; 2014. p. 31–59.

    Chapter  Google Scholar 

  422. Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports. 2011;45(7):553–8.

    Article  CAS  Google Scholar 

  423. Vega J, Karlsson J, Kerkhoffs G, Dalmau-Pastor M. Ankle arthroscopy: the wave that’s coming. Knee Surg Sports Traumatol Arthrosc. 2020;28(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  424. Vega J, Malagelada F, Manzanares Céspedes M, Dalmau-Pastor M. The lateral fibulotalocalcaneal ligament complex: an ankle stabilizing isometric structure. Knee Surg Sports Traumatol Arthrosc. 2020;28(1):8–17.

    Article  PubMed  Google Scholar 

  425. Lee S, Yun S. Ankle ultrasound for detecting anterior talofibular ligament tear using operative finding as reference standard: a systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2020;46(1):73–81.

    Article  PubMed  Google Scholar 

  426. Chen Y, Cai Y, Wang Y. Value of ultrasonography for detecting chronic injury of the lateral ligaments compared with ultrasonography findings. Br J Radiol. 2014;87(1033):20130406

    Google Scholar 

  427. Chen E, McInnis K, Borg-Stein J. Ankle sprains: evaluation, rehabilitation, and prevention. Curr Sports Med Rep. 2019;18(6):217–23.

    Article  PubMed  Google Scholar 

  428. Tassignon B, Verschueren J, Delahunt E, Smith M, Vicenzino B, Verhagen E, Meeusen R. Criteria-based return to sport decision-making following lateral ankle sprain injury: a systematic review and narrative synthesis. Sports Med. 2019;49(4):601–19.

    Article  PubMed  Google Scholar 

  429. Prakash A. Epidemiology of high ankle sprains: a systematic review. Foot Ankle Spec. 2020;13(5):420–30.

    Article  PubMed  Google Scholar 

  430. Becciolini M, Bonacchi G, Stella S, Galletti S, Ricci V. High ankle sprain: sonographic demonstration of a posterior inferior tibiofibular ligament avulsion. J Ultrasound. 2020;23(3):431–3.

    Article  PubMed  PubMed Central  Google Scholar 

  431. Tampere T, D’Hooghe P. The ankle syndesmosis pivot shift “Are we reviving the ACL story?”. Knee Surg Sports Traumatol Arthrosc. 2020;OnlineFirst:1–4.

    Google Scholar 

  432. Baldassarre R, Pathria M, Huang B, Dwek J, Fliszar E. Periosteal stripping in high ankle sprains: an association with osteonecrosis. Clin Imaging. 2020;67:237–45.

    Article  PubMed  Google Scholar 

  433. Randell M, Marsland D, Ballard E, Forster B, Lutz M. MRI for high ankle sprains with an unstable syndesmosis: posterior malleolus bone oedema is common and time to scan matters. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2890–7.

    Article  PubMed  Google Scholar 

  434. Calder J, Mitchell A, Lomax A, Ballal M, Grice J, van Dijk N, Lee J. The broken “Ring of Fire”: a new radiological sign as predictor of syndesmosis injury? Orthop J Sports Med. 2017;5(3):2325967117695064.

    Article  PubMed  PubMed Central  Google Scholar 

  435. Park J, Lee S, Choo H, Kim S, Gwak H, Lee S. Ultrasonography of the ankle joint. Ultrasonography. 2017;36(4):321–35.

    Article  PubMed  PubMed Central  Google Scholar 

  436. Milz P, Milz S, Steenborn M, et al. Lateral ankle ligament and tibiofibular syndesmosis: 13 MHz frequency sonography and MRI compared in 20 patients. Act Orthop Scand. 1998;69:51–5.

    Article  CAS  Google Scholar 

  437. Mei-Dan O, Kots E, Barchilon V, Massarwe S, Nyska M, Mann G. A dynamic ultrasound examination for the diagnosis of ankle syndesmotic injury in professional athletes: a preliminary study. Am J Sports Med. 2009;37(5):1009–16.

    Article  PubMed  Google Scholar 

  438. Fisher C, Rabbani T, Johnson K, Reeves R, Wood A. Diagnostic capability of dynamic ultrasound evaluation of supination-external rotation ankle injuries: a cadaveric study. BMC Musculoskelet Disord. 2019;20(1):1–7.

    Article  CAS  Google Scholar 

  439. Hagemeijer N, Chang S, Saengsin J, Waryasz G, Kerkhoffs G, DiGiovanni C, Guss D. Reproducibility and reliability of dynamic ultrasound for evaluating tibiofibular translation in the sagittal plane. Foot Ankle Orthop. 2019;4(4):1.

    Article  Google Scholar 

  440. Laver L, Carmont MR, McConkey MO, et al. Plasma rich in growth factors (PRGF) as a treatment for high ankle sprain in elite athletes: a randomized controlled trial. Knee Surg Sport Traumatol Arthrosc. 2015;23:3383–92.

    Article  Google Scholar 

  441. Samra DJ, Sman AD, Rae K, et al. Effectiveness of a single platelet-rich plasma injection to promote recovery in rugby players with ankle syndesmosis injury. BMJ Open Sport Exerc Med. 2017;3:1–7.

    Google Scholar 

  442. Ferreira J, Vide J, Mendes D, Protásio J, Viegas R, Sousa M. Prognostic factors in ankle sprains: a review. EFORT Open Rev. 2020;5(6):334–8.

    Article  PubMed  PubMed Central  Google Scholar 

  443. Wade F, Mok K, Fong D. Kinematic analysis of a televised medial ankle sprain. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2018;2018(12):12–6.

    Google Scholar 

  444. Haynes J, Gosselin M, Cusworth B, McCormick J, Johnson J, Klein S. The arterial anatomy of the deltoid ligament: a cadaveric study. Foot Ankle Int. 2017;38(7):785–90.

    Article  PubMed  Google Scholar 

  445. Hintermann B, Boss A, Schafer D. Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med. 2002;30(3):402–9.

    Article  PubMed  Google Scholar 

  446. Rosa I, Rodeia J, Fernandes P, Teixeira R, Saldanha T, Consciência J. Ultrasonographic assessment of deltoid ligament integrity in ankle fractures. Foot Ankle Int. 2020;41(2):147–53.

    Article  PubMed  Google Scholar 

  447. Acevedo J, Kreulen C, Cedeno A, Baumfeld D, Nery C, Mangone P. Technique for arthroscopic deltoid ligament repair with description of safe zones. Foot Ankle Int. 2020;41(5):605–11.

    Article  PubMed  Google Scholar 

  448. Salameh M, Alhammoud A, Alkhatib N, Attia A, Mekhaimar M, D’Hooghe P, Mahmoud K. Outcome of primary deltoid ligament repair in acute ankle fractures: a meta-analysis of comparative studies. Int Orthop. 2020;44(2):341–7.

    Article  PubMed  Google Scholar 

  449. Egger A, Berkowitz M. Achilles tendon injuries. Curr Rev Musculoskelet Med. 2017;10(1):72–80.

    Article  PubMed  PubMed Central  Google Scholar 

  450. Park Y, Kim T, Choi G, Kim H. Achilles tendinosis does not always precede Achilles tendon rupture. Knee Surg Sports Traumatol Arthrosc. 2018;27(10):3297–303.

    Article  PubMed  Google Scholar 

  451. Wezenbeek E, Willems T, Mahieu N, Van Caekenberghe I, Witvrouw E, De Clercq D. Is Achilles tendon blood flow related to foot pronation? Scand J Med Sci Sports. 2017;27(12):1970–7.

    Article  CAS  PubMed  Google Scholar 

  452. Arner O, Lindholm A, Orell SR. Histologic changes in subcutaneous rupture of the Achilles tendon: a study of 74 cases. Acta Chir Scand. 1959;116(5-6):484–90.

    CAS  PubMed  Google Scholar 

  453. Maffulli N, Via A, Oliva F. Chronic Achilles tendon rupture. Open Orthop J. 2017;11:660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  454. Barfred T. Achilles tendon rupture: etiology and pathogenesis of subcutaneous rupture on the basis of the literature and rupture experiments in rats. Acta Orthop Scand. 1973;44(supp152):1–126.

    Article  Google Scholar 

  455. Binkley HM, Douglass D, Phillips K, Wise SL. Rehabilitation and return to sport after nonsurgical treatment of Achilles tendon rupture. Strength Cond J. 2020;42(3):90–9.

    Article  Google Scholar 

  456. Caldwell J, Lightsey H, Trofa D, Swindell H, Greisberg J, Vosseller J. Seasonal variation of Achilles tendon injury. JAAOS Global Res Rev. 2018;2(8):1–6.

    Article  Google Scholar 

  457. Schwieterman B, Haas D, Columber K, Knupp D, Cook C. Diagnostic accuracy of physical examination tests of the ankle/foot complex: a systematic review. Int J Sports Phys Ther. 2013;8:416–26.

    PubMed  PubMed Central  Google Scholar 

  458. Bleakney RR, White LM, Maffuli N. Imaging of the Achilles tendon. Foot Ankle Clin. 2005;10:239–54.

    Article  PubMed  Google Scholar 

  459. Griffin MJ, Olson K, Heckmann N, Charlton TP. Realtime Achilles ultrasound Thompson (RAUT) test for the evaluation and diagnosis of acute achilles tendon rupture. Foot Ankle Int. 2017;38:36–40.

    Article  PubMed  Google Scholar 

  460. Meulenkamp B, Stacey D, Fergusson D, Hutton B, Mlis R, Graham I. Protocol for treatment of Achilles tendon ruptures; a systematic review with network meta-analysis. Syst Rev. 2018;7:247.

    Article  PubMed  PubMed Central  Google Scholar 

  461. Aufwerber S, Heijne A, Edman G, Silbernagel K, Ackermann P. Does early functional mobilization affect long-term outcomes after an Achilles tendon rupture? A randomized clinical trial. Orthop J Sports Med. 2020;8(3):1–9.

    Article  Google Scholar 

  462. Carpenter D, Dederer K, Weinhold P, Tennant J. Endoscopically assisted percutaneous Achilles tendon repair: a biomechanical and clinical pilot. Foot Ankle Orthop. 2019;4(4):1.

    Article  Google Scholar 

  463. Lima M, Patel M, Kadakia A. Percutaneous treatment of Achilles tendon rupture: a patient report outcome study. Foot Ankle Orthop. 2019;4(4):1.

    Article  Google Scholar 

  464. Neph A, Schroeder A, Enseki K, Everts P, Wang J, Onishi K. Role of mechanical loading for platelet-rich plasma-treated Achilles tendinopathy. Curr Sports Med Rep. 2020;19(6):209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  465. Boesen A, Boesen M, Hansen R, Barfod K, Lenskjold A, Malliaras P, Langberg H. Effect of platelet-rich plasma on nonsurgically treated acute Achilles tendon ruptures: a randomized, double-blinded prospective study. Am J Sports Med. 2020;48(9):2268–76.

    Article  PubMed  Google Scholar 

  466. Trofa D, Miller J, Jang E, Woode D, Greisberg J, Vosseller J. Professional athletes’ return to play and performance after operative repair of an Achilles tendon rupture. Am J Sports Med. 2017;45(12):2864–71.

    Article  PubMed  Google Scholar 

  467. Washburn N, Onishi K, Wang J. Ultrasound elastography and ultrasound tissue characterisation for tendon evaluation. J Orthop Translat. 2018;15:9–20.

    Article  PubMed  PubMed Central  Google Scholar 

  468. Taljanovic M, Gimber L, Becker G, Latt L, Klauser A, Melville D, Gao L, Witte R. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855–70.

    Article  PubMed  Google Scholar 

  469. Dischler JD, Baumer TG, Finkelstein E, Siegal DS, Bey MJ. Association between years of competition and shoulder function in collegiate swimmers. Sports Health. 2018;10(2):113–8.

    Article  PubMed  Google Scholar 

  470. Hackett L, Aveledo R, Lam P, Murrell G. Reliability of shear wave elastography ultrasound to assess the supraspinatus tendon: an intra and inter-rater in vivo study. Shoulder Elbow. 2020;12(1):18–23.

    Article  PubMed  Google Scholar 

  471. Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto A. Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging. 2018;9(5):791–814.

    Article  PubMed  PubMed Central  Google Scholar 

  472. Gruber L, van Holsbeeck MT, Khoury V, Deml C, Gabl MF, Jaschke W, Klauser AS. Compliance assessment and flip-angle measurement of the median nerve: sonographic tools for carpal tunnel syndrome assessment? Eur Radiol. 2019;29:588–98.

    Article  PubMed  Google Scholar 

  473. van Ark M, Rabello L, Hoevenaars D, Meijerink J, van Gelderen N, Zwerver J, van den Akker-Scheek I. Inter- and intra-rater reliability of ultrasound tissue characterization (UTC) in patellar tendons. Scand J Med Sci Sports. 2019;29(8):1205–11.

    Article  PubMed  Google Scholar 

  474. Wezenbeek E, Mahieu N, Willems T, Van Tiggelen D, De Muynck M, De Clercq D, Witvrouw E. What does normal tendon structure look like? New insights into tissue characterization in the Achilles tendon. Scand J Med Sci Sports. 2017;27(7):746–53.

    Article  CAS  PubMed  Google Scholar 

  475. Van Holsbeeck MT, Soliman S, van Kerkhove F, Craig J. Advance musculoskeletal ultrasound techniques: what are the applications? Am J Roentgenol. 2020. https://doi.org/10.2214/AJR.20.22840.

  476. Fischer C, Kunz P, Strauch M, Weber M, Doll J. Safety profile of musculoskeletal contrast-enhanced ultrasound with sulfur hexafluoride contrast agent. Ther Clin Risk Manag. 2020;16:269–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Special thanks to the Almighty God for providing me the inspiration and guidance in preparing this chapter and to my wife Kyna and my two kids: Rafael Bennett de Castro and Zarah Francine de Castro.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Castro, J.C. (2022). Use of Musculoskeletal Ultrasound and Regenerative Therapies in Sports. In: El Miedany, Y. (eds) Musculoskeletal Ultrasound-Guided Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-98256-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98256-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98255-3

  • Online ISBN: 978-3-030-98256-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics