Skip to main content

Molecular Genetic Findings in Prader-Willi Syndrome

  • Chapter
  • First Online:
Management of Prader-Willi Syndrome

Abstract

Prader-Willi syndrome (PWS) is caused by the loss of paternal gene expression from an imprinted region on chromosome 15q11.2-q13.1, usually from a deletion of the 15q11-q13 region involving proximal chromosome 15q11-q13 breakpoints BP1 or BP2 and distal breakpoint BP3. Here, we review the structure, function and imprinting status of both protein coding and non-coding genes in the extended chromosome 15 region from BP1-BP5. The region is characterized by complex genomic imprinting, that includes both maternal, paternal and non-imprinted genes. PWS was the first genetic disorder found to be due to errors in genomic imprinting in humans. The protein coding genes of this region have diverse functions, such as magnesium transport and protein ubiquitination, pigment production, and are part of splicing components and neurotransmitter receptors. The non-protein coding genes act in imprinting or regulation of distant gene regions and influence pre-mRNA processing, but most of their functions are still elusive. Unlike Angelman syndrome, a sister genomic imprinting disorder due to loss of function of the maternally expressed UBE3A gene found in the same chromosome 15 region, not a single gene stands out as the sole contributor to PWS which has to be taken into account for all therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14:10–26.

    Article  CAS  PubMed  Google Scholar 

  2. Driscoll DJ, Miller JL, Schwartz S, Cassidy SB. Prader-Willi Syndrome. Gene Reviews. Internet. 2016;

    Google Scholar 

  3. Butler MG. Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. J Intellect Disabil Res. 2017;61:568–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20:235–48.

    Article  CAS  PubMed  Google Scholar 

  5. Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G. Genomic imprinting and physiological processes in mammals. Cell. 2019;176:952–65.

    Article  CAS  PubMed  Google Scholar 

  6. Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014;15:517–30.

    Article  CAS  PubMed  Google Scholar 

  7. Cleaton MA, Edwards CA, Ferguson-Smith AC. Phenotypic outcomes of imprinted gene models in mice: elucidation of pre- and postnatal functions of imprinted genes. Annu Rev Genomics Hum Genet. 2014;15:93–126.

    Article  CAS  PubMed  Google Scholar 

  8. Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA. Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res. 1996;92:91–100.

    Article  CAS  PubMed  Google Scholar 

  9. Farber C, Gross S, Neesen J, Buiting K, Horsthemke B. Identification of a testis-specific gene (C15orf2) in the Prader-Willi syndrome region on chromosome 15. Genomics. 2000;65:174–83.

    Article  CAS  PubMed  Google Scholar 

  10. Buiting K, Nazlican H, Galetzka D, Wawrzik M, Gross S, Horsthemke B. C15orf2 and a novel noncoding transcript from the Prader-Willi/Angelman syndrome region show monoallelic expression in fetal brain. Genomics. 2007;89:588–95.

    Article  CAS  PubMed  Google Scholar 

  11. Grier MD, Carson RP, Lagrange AH. Toward a broader view of Ube3a in a Mouse Model of Angelman syndrome: expression in brain, spinal cord, sciatic nerve and glial cells. PLoS One. 2015;10:e0124649.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol. 2014;522:1874–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wan LB, Bartolomei MS. Regulation of imprinting in clusters: noncoding RNAs versus insulators. Adv Genet. 2008;61:207–23.

    Article  CAS  PubMed  Google Scholar 

  14. Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. 2014;6:a18382.

    Article  Google Scholar 

  15. Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 2012;48:R45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP. Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet. 2002;11:1527–38.

    Article  CAS  PubMed  Google Scholar 

  17. Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature. 2017;547:419–24.

    Article  CAS  PubMed  Google Scholar 

  18. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    Article  CAS  PubMed  Google Scholar 

  19. Morreale FE, Walden H. Types of ubiquitin ligases. Cell. 2016;165(248–248):e241.

    Google Scholar 

  20. Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999;8:783–93.

    Article  CAS  PubMed  Google Scholar 

  21. Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, Liang JN, Carroll RS, Latronico AC, Ronnekleiv OK, et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 2020;130:4486–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD. The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics. 2000;66:76–86.

    Article  CAS  PubMed  Google Scholar 

  23. Shin YL. An update on the genetic causes of central precocious puberty. Ann Pediatr Endocrinol Metab. 2016;21:66–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, Cukier P, Thompson IR, Navarro VM, Gagliardi PC, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368:2467–75.

    Article  CAS  PubMed  Google Scholar 

  25. Carel JC, Leger J. Clinical practice. Precocious puberty. N Engl J Med. 2008;358:2366–77.

    Article  CAS  PubMed  Google Scholar 

  26. Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Goncalves de Castro LC, Abreu AP, Carroll RS, Latronico AC, Kaiser UB, Guerra ENS, et al. MKRN3 mutations in central precocious puberty: a systematic review and meta-analysis. J Endocr Soc. 2019;3:979–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crino A, Schiaffini R, Ciampalini P, Spera S, Beccaria L, Benzi F, Bosio L, Corrias A, Gargantini L, Salvatoni A, et al. Hypogonadism and pubertal development in Prader-Willi syndrome. Eur J Pediatr. 2003;162:327–33.

    Article  CAS  PubMed  Google Scholar 

  28. Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, Lucas S. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001;61:5544–51.

    CAS  PubMed  Google Scholar 

  29. Lee AK, Potts PR. A comprehensive guide to the MAGE family of ubiquitin ligases. J Mol Biol. 2017;429:1114–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doyle JM, Gao J, Wang J, Yang M, Potts PR. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell. 2010;39:963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R. Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000;9:1813–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang HX, Xu ZS, Lin H, Li M, Xia T, Cui K, Wang SY, Li Y, Shu HB, Wang YY. TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. Nat Commun. 2018;9:3441.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625.

    Article  CAS  PubMed  Google Scholar 

  34. Seaman MN, Gautreau A, Billadeau DD. Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol. 2013;23:522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell. 2013;152:1051–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim T, Gondre-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology (Bethesda). 2006;21:124–33.

    CAS  Google Scholar 

  37. Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, et al. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight. 2020;5:e138576.

    Article  PubMed Central  Google Scholar 

  38. McCarthy J, Lupo PJ, Kovar E, Rech M, Bostwick B, Scott D, Kraft K, Roscioli T, Charrow J, Schrier Vergano SA, et al. Schaaf-Yang syndrome overview: report of 78 individuals. Am J Med Genet A. 2018;176:2564–74.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Negishi Y, Ieda D, Hori I, Nozaki Y, Yamagata T, Komaki H, Tohyama J, Nagasaki K, Tada H, Saitoh S. Schaaf-Yang syndrome shows a Prader-Willi syndrome-like phenotype during infancy. Orphanet J Rare Dis. 2019;14:277.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maruyama K, Usami M, Aizawa T, Yoshikawa K. A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun. 1991;178:291–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lavi-Itzkovitz A, Tcherpakov M, Levy Z, Itzkovitz S, Muscatelli F, Fainzilber M. Functional consequences of necdin nucleocytoplasmic localization. PLoS One. 2012;7:e33786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Francois S, D'Orlando C, Fatone T, Touvier T, Pessina P, Meneveri R, Brunelli S. Necdin enhances myoblasts survival by facilitating the degradation of the mediator of apoptosis CCAR1/CARP1. PLoS One. 2012;7:e43335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gur I, Fujiwara K, Hasegawa K, Yoshikawa K. Necdin promotes ubiquitin-dependent degradation of PIAS1 SUMO E3 ligase. PLoS One. 2014;9:e99503.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kuwako K, Taniura H, Yoshikawa K. Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem. 2004;279:1703–12.

    Article  CAS  PubMed  Google Scholar 

  45. Miller NL, Wevrick R, Mellon PL. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2009;18:248–60.

    Article  CAS  PubMed  Google Scholar 

  46. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, Cremer H. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet. 2000;9:3101–10.

    Article  CAS  PubMed  Google Scholar 

  47. Wawrzik M, Spiess AN, Herrmann R, Buiting K, Horsthemke B. Expression of SNURF-SNRPN upstream transcripts and epigenetic regulatory genes during human spermatogenesis. Eur J Hum Genet. 2009;17:1463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wawrzik M, Unmehopa UA, Swaab DF, van de Nes J, Buiting K, Horsthemke B. The C15orf2 gene in the Prader-Willi syndrome region is subject to genomic imprinting and positive selection. Neurogenetics. 2010;11:153–61.

    Article  CAS  PubMed  Google Scholar 

  49. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20:89–108.

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 2019;47:D175–80.

    Article  CAS  PubMed  Google Scholar 

  51. Neumann LC, Markaki Y, Mladenov E, Hoffmann D, Buiting K, Horsthemke B. The imprinted NPAP1/C15orf2 gene in the Prader-Willi syndrome region encodes a nuclear pore complex associated protein. Hum Mol Genet. 2012;21:4038–48.

    Article  CAS  PubMed  Google Scholar 

  52. Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, et al. Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import. Cell. 2018;174:1200–1215 e1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neumann LC, Feiner N, Meyer A, Buiting K, Horsthemke B. The imprinted NPAP1 gene in the Prader-Willi syndrome region belongs to a POM121-related family of retrogenes. Genome Biol Evol. 2014;6:344–51.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dittrich B, Buiting K, Korn B, Rickard S, Buxton J, Saitoh S, Nicholls RD, Poustka A, Winterpacht A, Zabel B, et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996;14:163–70.

    Article  CAS  PubMed  Google Scholar 

  55. Nicholls RD, Saitoh S, Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet. 1998;14:194–200.

    Article  CAS  PubMed  Google Scholar 

  56. Ohta T, Gray TA, Rogan PK, Buiting K, Gabriel JM, Saitoh S, Muralidhar B, Bilienska B, Krajewska-Walasek M, Driscoll DJ, et al. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet. 1999;64:397–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. El-Maarri O, Buiting K, Peery EG, Kroisel PM, Balaban B, Wagner K, Urman B, Heyd J, Lich C, Brannan CI, et al. Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet. 2001;27:341–4.

    Article  CAS  PubMed  Google Scholar 

  58. Glenn CC, Saitoh S, Jong MT, Filbrandt MM, Surti U, Driscoll DJ, Nicholls RD. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996;58:335–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gray TA, Saitoh S, Nicholls RD. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A. 1999;96:5616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khusial P, Plaag R, Zieve GW. LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem Sci. 2005;30:522–8.

    Article  CAS  PubMed  Google Scholar 

  61. Chu JL, Elkon KB. The small nuclear ribonucleoproteins, SmB and B', are products of a single gene. Gene. 1991;97:311–2.

    Article  CAS  PubMed  Google Scholar 

  62. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, et al. Identification and characterization of a spinal muscular atrophy-determining gene [see comments]. Cell. 1995;80:155–65.

    Article  CAS  PubMed  Google Scholar 

  63. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol. 2002;14:305–12.

    Article  CAS  PubMed  Google Scholar 

  64. McAllister G, Amara SG, Lerner MR. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein associated polypeptide N. Proc Natl Acad Sci U S A. 1988;85:5296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gray TA, Smithwick MJ, Schaldach MA, Martone DL, Graves JA, McCarrey JR, Nicholls RD. Concerted regulation and molecular evolution of the duplicated SNRPB'/B and SNRPN loci. Nucleic Acids Res. 1999;27:4577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huntriss JD, Latchman DS, Williams DG. The snRNP core protein SmB and tissue-specific SmN protein are differentially distributed between snRNP particles. Nucleic Acids Res. 1993;21:4047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee MS, Lin YS, Deng YF, Hsu WT, Shen CC, Cheng YH, Huang YT, Li C. Modulation of alternative splicing by expression of small nuclear ribonucleoprotein polypeptide N. FEBS J. 2014;281:5194–207.

    Article  CAS  PubMed  Google Scholar 

  68. Huntriss JD, Barr JA, Horn DA, Williams DG, Latchman DS. Mice lacking Snrpn expression show normal regulation of neuronal alternative splicing events. [Review]. Mol Biol Rep. 1994;20:19–25.

    Article  CAS  PubMed  Google Scholar 

  69. Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet. 2001;10:2687–700.

    Article  CAS  PubMed  Google Scholar 

  70. Galiveti CR, Raabe CA, Konthur Z, Rozhdestvensky TS. Differential regulation of non-protein coding RNAs from Prader-Willi syndrome locus. Sci Rep. 2014;4:6445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jorjani H, Kehr S, Jedlinski DJ, Gumienny R, Hertel J, Stadler PF, Zavolan M, Gruber AR. An updated human snoRNAome. Nucleic Acids Res. 2016;44:5068–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Falaleeva M, Welden JR, Duncan MC, Stamm S. C/D-box snoRNAs form methylating and non methylating ribonucleoprotein complexes: old dogs show new tricks. BioEssays. 2017;39:10.1002/bies.201600264.

    Article  PubMed Central  Google Scholar 

  73. Reddy R, Henning D, Busch H. Nucleotide sequence of nucleolar U3B RNA. J Biol Chem. 1979;254:11097–105.

    Article  CAS  PubMed  Google Scholar 

  74. Tyc K, Steitz JA. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 1989;8:3113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maxwell ES, Fournier MJ. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934.

    Article  CAS  PubMed  Google Scholar 

  76. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14:618–30.

    Article  CAS  PubMed  Google Scholar 

  77. Filipowicz W, Pelczar P, Pogacic V, Dragon F. Structure and biogenesis of small nucleolar RNAs acting as guides for ribosomal RNA modification. Acta Biochim Pol. 1999;46:377–89.

    Article  CAS  PubMed  Google Scholar 

  78. Lestrade L, Weber MJ. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res. 2006;34:D158–62.

    Article  CAS  PubMed  Google Scholar 

  79. Deschamps-Francoeur G, Garneau D, Dupuis-Sandoval F, Roy A, Frappier M, Catala M, Couture S, Barbe-Marcoux M, Abou-Elela S, Scott MS. Identification of discrete classes of small nucleolar RNA featuring different ends and RNA binding protein dependency. Nucleic Acids Res. 2014;42:10073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3′-maturation. J Biol Chem. 2011;286:4535–43.

    Article  CAS  PubMed  Google Scholar 

  81. Miki TS, Grosshans H. The multifunctional RNase XRN2. Biochem Soc Trans. 2013;41:825–30.

    Article  CAS  PubMed  Google Scholar 

  82. Hirose T, Steitz JA. Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells. Proc Natl Acad Sci U S A. 2001;98:12914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hirose T, Ideue T, Nagai M, Hagiwara M, Shu MD, Steitz JA. A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. Mol Cell. 2006;23:673–84.

    Article  CAS  PubMed  Google Scholar 

  84. Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol. 2002;14:319–27.

    Article  CAS  PubMed  Google Scholar 

  85. Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 2012;3:397–414.

    Article  CAS  PubMed  Google Scholar 

  86. Hirose T, Shu MD, Steitz JA. Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. Mol Cell. 2003;12:113–23.

    Article  CAS  PubMed  Google Scholar 

  87. Kakihara Y, Saeki M. The R2TP chaperone complex: its involvement in snoRNP assembly and tumorigenesis. Biomol Concepts. 2014;5:513–20.

    Article  CAS  PubMed  Google Scholar 

  88. Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA. Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol. 2014;15:404.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE, Garcia M, Laforets F, Marcel V, Baudin-Baillieu A, et al. Evidence for rRNA 2'-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci U S A. 2017;114:12934–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gerbi SA, Borovjagin AV, Ezrokhi M, Lange TS. Ribosome biogenesis: role of small nucleolar RNA in maturation of eukaryotic rRNA. Cold Spring Harb Symp Quant Biol. 2001;66:575–90.

    Article  CAS  PubMed  Google Scholar 

  91. Todorov IT, Noll F, Hadjiolov AA. The sequential addition of ribosomal proteins during the formation of the small ribosomal subunit in friend erythroleukemia cells. Eur J Biochem. 1983;131:271–5.

    Article  CAS  PubMed  Google Scholar 

  92. Borovjagin AV, Gerbi SA. The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing. J Mol Biol. 2000;300:57–74.

    Article  CAS  PubMed  Google Scholar 

  93. Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997;89:669–72.

    Article  CAS  PubMed  Google Scholar 

  94. Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996;85:1077–88.

    Article  CAS  PubMed  Google Scholar 

  95. Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT. Implication of snoRNA U50 in human breast cancer. J Genet Genomic. 2009;36:447–54.

    Article  CAS  Google Scholar 

  96. Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008;17:1031–42.

    Article  CAS  PubMed  Google Scholar 

  97. Siprashvili Z, Webster DE, Johnston D, Shenoy RM, Ungewickell AJ, Bhaduri A, Flockhart R, Zarnegar BJ, Che Y, Meschi F, et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat Genet. 2015;48:53–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tanaka R, Satoh H, Moriyama M, Satoh K, Morishita Y, Yoshida S, Watanabe T, Nakamura Y, Mori S. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes Cells. 2000;5:277–87.

    Article  CAS  PubMed  Google Scholar 

  99. Smith CM, Steitz JA. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18:6897–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.

    Article  CAS  PubMed  Google Scholar 

  101. Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.

    Article  CAS  PubMed  Google Scholar 

  102. Krell J, Frampton AE, Mirnezami R, Harding V, De Giorgio A, Roca Alonso L, Cohen P, Ottaviani S, Colombo T, Jacob J, et al. Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer. PLoS One. 2014;9:e98561.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Su J, Liao J, Gao L, Shen J, Guarnera MA, Zhan M, Fang H, Stass-Feng Jiang SA, Jiang F. Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget. 2015;7:5131.

    Article  PubMed Central  Google Scholar 

  104. Lopez-Corral L, Mateos MV, Corchete LA, Sarasquete ME, de la Rubia J, de Arriba F, Lahuerta JJ, Garcia-Sanz R, San Miguel JF, Gutierrez NC. Genomic analysis of high-risk smoldering multiple myeloma. Haematologica. 2012;97:1439–43.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brandis KA, Gale S, Jinn S, Langmade SJ, Dudely-Rucker N, Jiang H, Sidhu R, Ren A, Goldberg A, Schaffer JE, et al. Box C/D snoRNA U60 regulates intracellular cholesterol trafficking. J Biol Chem. 2013;288:35703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metabol. 2011;14:33–44.

    Article  CAS  Google Scholar 

  107. Steinbusch MM, Fang Y, Milner PI, Clegg PD, Young DA, Welting TJ, Peffers MJ. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Sci Rep. 2017;7:43558.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jenkinson EM, Rodero MP, Kasher PR, Uggenti C, Oojageer A, Goosey LC, Rose Y, Kershaw CJ, Urquhart JE, Williams SG, et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat Genet. 2016;48:1185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee J, Harris AN, Holley CL, Mahadevan J, Pyles KD, Lavagnino Z, Scherrer DE, Fujiwara H, Sidhu R, Zhang J, et al. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. J Clin Invest. 2016;126:4616–25.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Stamm S, Lodmell JS. C/D box snoRNAs in viral infections: RNA viruses use old dogs for new tricks. Noncoding RNA Res. 2019;4:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Falaleeva M, Pages A, Matuszek Z, Hidmi S, Agranat-Tamir L, Korotkov K, Nevo Y, Eyras E, Sperling R, Stamm S. Dual function of C/D box snoRNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A. 2016;113:E1625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang C, Shi J, Guo Y, Huang W, Huang S, Ming S, Wu X, Zhang R, Ding J, Zhao W, et al. A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res. 2017;45:8647–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shi J, Huang C, Huang S, Yao C. snoRNAs associate with mRNA 3′ processing complex: new wine in old bottles. RNA Biol. 2018;15:194–7.

    Article  PubMed  Google Scholar 

  114. Cavaille J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. Wiley Interdiscip Rev RNA. 2017;8

    Google Scholar 

  115. Castle JC, Armour CD, Lower M, Haynor D, Biery M, Bouzek H, Chen R, Jackson S, Johnson JM, Rohl CA, et al. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification. PLoS One. 2010;5:e11779.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Good DJ, Kocher MA. Phylogenetic analysis of the SNORD116 locus. Genes (Basel). 2017;8:358.

    Article  Google Scholar 

  117. Falaleeva M, Surface J, Shen M, de la Grange P, Stamm S. SNORD116 and SNORD115 change expression of multiple genes and modify each other's activity. Gene. 2015;572:266–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Coulson RL, Powell WT, Yasui DH, Dileep G, Resnick J, LaSalle JM. Prader-Willi locus Snord116 RNA processing requires an active endogenous allele and neuron-specific splicing by Rbfox3/NeuN. Hum Mol Genet. 2018;27:4051–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, Alice Yamada N, Yasui DH, Lasalle JM. A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet. 2013;22:4318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Burnett LC, LeDuc CA, Sulsona CR, Paull D, Rausch R, Eddiry S, Carli JF, Morabito MV, Skowronski AA, Hubner G, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293–305.

    Article  PubMed  Google Scholar 

  121. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40:719–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet. 2010;18:1196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bieth E, Eddiry S, Gaston V, Lorenzini F, Buffet A, Conte Auriol F, Molinas C, Cailley D, Rooryck C, Arveiler B, et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur J Hum Genet. 2015;23:252–5.

    Article  CAS  PubMed  Google Scholar 

  124. de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet. 2009;18:3257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hassan M, Butler MG. Prader-Willi syndrome and atypical submicroscopic 15q11-q13 deletions with or without imprinting defects. Eur J Med Genet. 2016;59(11):584–9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tan Q, Potter KJ, Burnett LC, Orsso CE, Inman M, Ryman DC, Haqq AM. Prader-Willi-like phenotype caused by an atypical 15q11.2 microdeletion. Genes (Basel). 2020;11:128.

    Article  CAS  Google Scholar 

  127. Fontana P, Grasso M, Acquaviva F, Gennaro E, Galli ML, Falco M, Scarano F, Scarano G, Lonardo F. SNORD116 deletions cause Prader-Willi syndrome with a mild phenotype and macrocephaly. Clin Genet. 2017;92:440.

    Article  CAS  PubMed  Google Scholar 

  128. Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, Karpova E, Rozhdestvensky TS, Brosius J. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet. 2007;3:e235.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Qi Y, Purtell L, Fu M, Zhang L, Zolotukhin S, Campbell L, Herzog H. Hypothalamus specific re-introduction of Snord116 into otherwise Snord116 deficient mice increased energy expenditure. J Neuroendocrinol. 2017;29

    Google Scholar 

  130. Rozhdestvensky TS, Robeck T, Galiveti CR, Raabe CA, Seeger B, Wolters A, Gubar LV, Brosius J, Skryabin BV. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice. Sci Rep. 2016;6:20398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Coulson RL, Yasui DH, Dunaway KW, Laufer BI, Vogel Ciernia A, Zhu Y, Mordaunt CE, Totah TS, LaSalle JM. Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat Commun. 2018;9:1616.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zhang Z, Shen M, Gresch P, Ghamari-Langroudi M, Rabchevsky AG, Emeson RB, Stamm S. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake. EMBO Mol Med. 2016;8:878–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 2006;311:230–2.

    Article  CAS  PubMed  Google Scholar 

  134. Shen M, Bellaousov S, Hiller M, de La Grange P, Creamer TP, Malina O, Sperling R, Mathews DH, Stoilov P, Stamm S. Pyrvinium pamoate changes alternative splicing of the serotonin receptor 2C by influencing its RNA structure. Nucleic Acids Res. 2013;41:3819–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaille J, Huttenhofer A. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol. 2005;169:745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Raabe CA, Voss R, Kummerfeld DM, Brosius J, Galiveti CR, Wolters A, Seggewiss J, Huge A, Skryabin BV, Rozhdestvensky TS. Ectopic expression of Snord115 in choroid plexus interferes with editing but not splicing of 5-Ht2c receptor pre-mRNA in mice. Sci Rep. 2019;9:4300.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Garfield AS, Davies JR, Burke LK, Furby HV, Wilkinson LS, Heisler LK, Isles AR. Increased alternate splicing of Htr2c in a mouse model for Prader-Willi syndrome leads disruption of 5HT2C receptor mediated appetite. Mol Brain. 2016;9:95.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Welden JR, Zhang Z, Duncan MJ, Falaleeva M, Wells T, Stamm S. The serotonin receptor 2C mRNA is expressed in the posterior pituitary. Neurosci Lett. 2018;684:132–9.

    Article  CAS  PubMed  Google Scholar 

  139. Hebras J, Marty V, Personnaz J, Mercier P, Krogh N, Nielsen H, Aguirrebengoa M, Seitz H, Pradere JP, Guiard BP, et al. Reassessment of the involvement of Snord115 in the serotonin 2c receptor pathway in a genetically relevant mouse model. elife. 2020;9:e60862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46:551–7.

    Article  CAS  PubMed  Google Scholar 

  141. Enterina JR, Enfield KSS, Anderson C, Marshall EA, Ng KW, Lam WL. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev Respir Med. 2017;11:749–61.

    Article  CAS  PubMed  Google Scholar 

  142. Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet. 2020;29:R107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ogata T, Kagami M. Molecular mechanisms leading to the phenotypic development in paternal and maternal uniparental disomy for chromosome 14. Clin Pediatr Endocrinol. 2008;17:103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Meng L, Person RE, Beaudet AL. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet. 2012;21:3001–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 2013;9:e1004039.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Runte M, Kroisel PM, Gillessen-Kaesbach G, Varon R, Horn D, Cohen MY, Wagstaff J, Horsthemke B, Buiting K. SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Hum Genet. 2004;114:553–61.

    Article  CAS  PubMed  Google Scholar 

  147. Khatri N, Man HY. The autism and Angelman syndrome protein Ube3A/E6AP: the gene, E3 ligase ubiquitination targets and neurobiological functions. Front Mol Neurosci. 2019;12:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Naito T, Takatsu H, Miyano R, Takada N, Nakayama K, Shin HW. Phospholipid Flippase ATP10A Translocates phosphatidylcholine and is involved in plasma membrane dynamics. J Biol Chem. 2015;290:15004–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rafi SK, Butler MG. The 15q11.2 BP1-BP2 microdeletion (Burnside-Butler) syndrome: in silico analyses of the four coding genes reveal functional associations with neurodevelopmental phenotypes. Int J Mol Sci. 2020;21(9):3296.

    Article  CAS  PubMed Central  Google Scholar 

  150. Doornbos M, Sikkema-Raddatz B, Ruijvenkamp CA, Dijkhuizen T, Bijlsma EK, Gijsbers AC, Hilhorst-Hofstee Y, Hordijk R, Verbruggen KT, Kerstjens-Frederikse WS, et al. Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural disturbances. Eur J Med Genet. 2009;52:108–15.

    Article  PubMed  Google Scholar 

  151. Goytain A, Hines RM, El-Husseini A, Quamme GA. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem. 2007;282:8060–8.

    Article  CAS  PubMed  Google Scholar 

  152. Goytain A, Hines RM, Quamme GA. Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol. 2008;295:C944–53.

    Article  CAS  PubMed  Google Scholar 

  153. Zhao W, Zhang W, Ma H, Yang M. NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep. 2020;10:3078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nowicki ST, Tassone F, Ono MY, Ferranti J, Croquette MF, Goodlin-Jones B, Hagerman RJ. The Prader-Willi phenotype of fragile X syndrome. J Dev Behav Pediatr. 2007;28:133–8.

    Article  PubMed  Google Scholar 

  155. Schenck A, Bardoni B, Moro A, Bagni C, Mandel JL. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci U S A. 2001;98:8844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. De Rubeis S, Pasciuto E, Li KW, Fernandez E, Di Marino D, Buzzi A, Ostroff LE, Klann E, Zwartkruis FJ, Komiyama NH, et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron. 2013;79:1169–82.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Murphy SM, Preble AM, Patel UK, O'Connell KL, Dias DP, Moritz M, Agard D, Stults JT, Stearns T. GCP5 and GCP6: two new members of the human gamma-tubulin complex. Mol Biol Cell. 2001;12:3340–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rieder CL, Faruki S, Khodjakov A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 2001;11:413–9.

    Article  CAS  PubMed  Google Scholar 

  159. Nagase T, Kikuno R, Ohara O. Prediction of the coding sequences of unidentified human genes. XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins. DNA Res. 2001;8:179–87.

    Article  CAS  PubMed  Google Scholar 

  160. Sigel E, Steinmann ME. Structure, function, and modulation of GABA(A) receptors. J Biol Chem. 2012;287:40224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rosemblat S, Durham-Pierre D, Gardner JM, Nakatsu Y, Brilliant MH, Orlow SJ. Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene. Proc Natl Acad Sci U S A. 1994;91:12071–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brilliant MH. The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH. Pigment Cell Res. 2001;14:86–93.

    Article  CAS  PubMed  Google Scholar 

  163. Spritz RA, Bailin T, Nicholls RD, Lee ST, Park SK, Mascari MJ, Butler MG. Hypopigmentation in the Prader-Willi syndrome correlates with P gene deletion but not with haplotype of the hemizygous P allele. Am J Med Genet. 1997;71:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sanchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci. 2016;73:1955–68.

    Article  CAS  PubMed  Google Scholar 

  165. Galligan JT, Martinez-Noel G, Arndt V, Hayes S, Chittenden TW, Harper JW, Howley PM. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J Proteome Res. 2015;14:953–66.

    Article  CAS  PubMed  Google Scholar 

  166. Kuhnle S, Kogel U, Glockzin S, Marquardt A, Ciechanover A, Matentzoglu K, Scheffner M. Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2. J Biol Chem. 2011;286:19410–6.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lehman AL, Nakatsu Y, Ching A, Bronson RT, Oakey RJ, Keiper-Hrynko N, Finger JN, Durham-Pierre D, Horton DB, Newton JM, et al. A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice. Proc Natl Acad Sci U S A. 1998;95:9436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lee DS, Tomita S, Kirino Y, Suzuki T. Regulation of X11L-dependent amyloid precursor protein metabolism by XB51, a novel X11L-binding protein. J Biol Chem. 2000;275:23134–8.

    Article  CAS  PubMed  Google Scholar 

  169. Swistowski A, Zhang Q, Orcholski ME, Crippen D, Vitelli C, Kurakin A, Bredesen DE. Novel mediators of amyloid precursor protein signaling. J Neurosci. 2009;29:15703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology. 2015;96:274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ieda D, Negishi Y, Miyamoto T, Johmura Y, Kumamoto N, Kato K, Miyoshi I, Nakanishi M, Ugawa S, Oishi H, et al. Two mouse models carrying truncating mutations in Magel2 show distinct phenotypes. PLoS One. 2020;15:e0237814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments Stefan Stamm is supported by the ‘Jacqueline A. Noonan Professorship in Pediatrics’ endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin G. Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stamm, S., Butler, M.G. (2022). Molecular Genetic Findings in Prader-Willi Syndrome. In: Butler, M.G., Lee, P.D.K., Whitman, B.Y. (eds) Management of Prader-Willi Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-98171-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98171-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98170-9

  • Online ISBN: 978-3-030-98171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics