Skip to main content

Functionalized Biopolymer Nanocomposites for the Degradation of Textile Dyes

  • Chapter
  • First Online:
Functional Polymer Nanocomposites for Wastewater Treatment

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 323))

Abstract

In recent years, wastewater treatment has been an utmost important endeavor adopted by several researchers around the globe. The alarming level of contamination caused by the continuous release of organic pollutants/effluents into water bodies from various industries such as textile, pharmaceutical, chemical, etc., has adverse effects in day-to-day life. The catalytic degradation of these organic pollutants (dyes) is a promising approach in the treatment of wastewater. The nanocomposites comprising biopolymers decorated with metal and metal oxide nanopaticles offer better applications due to their superior activity, ease of preparation, abundance, and ecological friendliness. Numerous nanocomposite catalysts have been prepared using variety of biopolymers (such as starch, cellulose, lignin, alginate, chitosan, silk, gelatin, gums, and resins) in combination with various metals/metal oxides/metal sulphides (such as Pd, Ag, Cu, CuO, and AgO) have been utilized for degradation of organic dye pollutants. These research findings encouraged us to write this chapter. Here, we include the recent developments in synthesizing novel biopolymer nanocomposites for degradation of a catalytic textile dye in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Abarna, T. Preethi, G.R. Rajarajeswari, Single-pot solid-state synthesis of ZnO/chitosan composite for photocatalytic and antitumour applications. J. Mater. Sci.: Mater. Electron. 30(24), 21355–21368 (2019). https://doi.org/10.1007/s10854-019-02512-5

    Article  CAS  Google Scholar 

  2. R. Abbassi, A.K. Yadav, N. Kumar, S. Huang, P.R. Jaffe, Modeling and optimization of dye removal using “green” clay supported iron nanoparticles. Ecol. Eng. 61, 366–370 (2013). https://doi.org/10.1016/j.ecoleng.2013.09.040

    Article  Google Scholar 

  3. S. Afzal, E.M. Samsudin, N.M. Julkapli, S.B.A. Hamid, Controlled acid catalyzed sol gel for the synthesis of highly active TiO2-chitosan nanocomposite and its corresponding photocatalytic activity. Environ. Sci. Pollut. Res. 23(22), 23158–23168 (2016). https://doi.org/10.1007/s11356-016-7507-2

    Article  CAS  Google Scholar 

  4. R. Ahmad, R. Kumar, Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Appl. Surf. Sci. 257(5), 1628–1633 (2010). https://doi.org/10.1016/j.apsusc.2010.08.111

    Article  CAS  Google Scholar 

  5. W. Ahmad et al., Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environ. Sci. Pollut. Res. 28(7), 8074–8087 (2021). https://doi.org/10.1007/s11356-020-10898-7

    Article  CAS  Google Scholar 

  6. H.B. Ahmed, N. Saad, H.E. Emam, Recyclable palladium based nano-catalytic laborer encaged within bio-granules for dye degradation. Surfaces Interfaces 25, 101175 (2021). https://doi.org/10.1016/j.surfin.2021.101175

  7. F. Ajalloueian et al., Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res. Int. 2014, 475280 (2014). https://doi.org/10.1155/2014/475280

  8. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4(70), 37003–37026 (2014). https://doi.org/10.1039/C4RA06658H

    Article  CAS  Google Scholar 

  9. A. Alharbi et al., Facile synthesis of novel zinc sulfide/chitosan composite for efficient photocatalytic degradation of acid brown 5G and acid black 2BNG dyes. Alex. Eng. J. 60(2), 2167–2178 (2021). https://doi.org/10.1016/j.aej.2020.12.025

    Article  Google Scholar 

  10. N. Ali et al., Selenide-chitosan as High-performance nanophotocatalyst for accelerated degradation of pollutants. Chem. Asian J. 15(17), 2660–2673 (2020). https://doi.org/10.1002/asia.202000597

  11. N. Ali et al., Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int. J. Biol. Macromol. 111, 832–838 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.092

    Article  CAS  Google Scholar 

  12. M.N. Alshabanat, M.M. Al-Anazy, An experimental study of photocatalytic degradation of congo red using polymer nanocomposite films. J. Chem. 2018, 9651850 (2018). https://doi.org/10.1155/2018/9651850

    Article  CAS  Google Scholar 

  13. E. Alzahrani, Chitosan membrane embedded with ZnO/CuO nanocomposites for the photodegradation of fast green dye under artificial and solar irradiation. Anal. Chem. Insights 13, 1177390118763361 (2018). https://doi.org/10.1177/1177390118763361

    Article  Google Scholar 

  14. W.W. Anku, S.K. Shukla, P.P. Govender, Graft gum ghatti caped Cu2O nanocomposite for photocatalytic degradation of naphthol blue black dye. J. Inorg. Organomet. Polym Mater. 28(4), 1540–1551 (2018). https://doi.org/10.1007/s10904-018-0875-y

    Article  CAS  Google Scholar 

  15. H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park, A.C.K. Yip, Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res. 12(5), 955–972 (2019). https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  16. R.S. Ashraf et al., Methods for the treatment of wastewaters containing dyes and pigments, in Water Pollution and Remediation: Organic Pollutants, ed. by Inamuddin, M.I. Ahamed, E. Lichtfouse (Springer International Publishing, Cham, 2021), pp. 597–661

    Google Scholar 

  17. M. Bahal, N. Kaur, N. Sharotri, D. Sud, Investigations on amphoteric chitosan/TiO2 bionanocomposites for application in visible light induced photocatalytic degradation. Adv. Polym. Technol. 2019, 2345631 (2019). https://doi.org/10.1155/2019/2345631

    Article  CAS  Google Scholar 

  18. J.P. Chaudhary et al., Fabrication of carbon and sulphur-doped nanocomposites with seaweed polymer carrageenan as an efficient catalyst for rapid degradation of dye pollutants using a solar concentrator. RSC Adv. 6(66), 61716–61724 (2016). https://doi.org/10.1039/C6RA10317K

    Article  CAS  Google Scholar 

  19. S. Chkirida, N. Zari, R. Achour, Q. Aek, R. Bouhfid, Efficient hybrid bionanocomposites based on iron-modified TiO2 for dye degradation via an adsorption-photocatalysis synergy under UV-Visible irradiations. Environ. Sci. Pollut. Res. 28(11), 14018–14027 (2021). https://doi.org/10.1007/s11356-020-11664-5

    Article  CAS  Google Scholar 

  20. S. Das, H. Mahalingam, Reusable floating polymer nanocomposite photocatalyst for the efficient treatment of dye wastewaters under scaled-up conditions in batch and recirculation modes. J. Chem. Technol. Biotechnol. 94(8), 2597–2608 (2019). https://doi.org/10.1002/jctb.6069

    Article  CAS  Google Scholar 

  21. R.S. Dassanayake, E. Rajakaruna, N. Abidi, Preparation of aerochitin-TiO2 composite for efficient photocatalytic degradation of methylene blue. J. Appl. Polym. Sci. 135(8), 45908 (2018). https://doi.org/10.1002/app.45908

    Article  CAS  Google Scholar 

  22. M. Dehghani, H. Nadeem, V. Singh Raghuwanshi, H. Mahdavi, M.M. Banaszak Holl, W. Batchelor, ZnO/cellulose nanofiber composites for sustainable sunlight-driven dye degradation. ACS Appl. Nano Mater. 3(10), 10284–10295 (2020). https://doi.org/10.1021/acsanm.0c02199

    Article  CAS  Google Scholar 

  23. H. Dong et al., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015). https://doi.org/10.1016/j.watres.2015.04.038

    Article  CAS  Google Scholar 

  24. H.E. Emam, H.B. Ahmed, Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int. J. Biol. Macromol. 138, 450–461 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.098

    Article  CAS  Google Scholar 

  25. H. Essabir, M. Raji, S.A. Laaziz, D. Rodrique, R. Bouhfid, Q. Aek, Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos. B Eng. 149, 1–11 (2018). https://doi.org/10.1016/j.compositesb.2018.05.020

    Article  CAS  Google Scholar 

  26. M. Faisal, M. Abu Tariq, M. Muneer, Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes Pigm. 72(2), 233–239 (2007). https://doi.org/10.1016/j.dyepig.2005.08.020

    Article  CAS  Google Scholar 

  27. M.H. Farzana, S. Meenakshi, Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind. Eng. Chem. Res. 53(1), 55–63 (2014). https://doi.org/10.1021/ie402347g

    Article  CAS  Google Scholar 

  28. E.P. Ferreira-Neto et al., Bacterial nanocellulose/MoS2 hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for in-flow water decontamination. ACS Appl. Mater. Interfaces 12(37), 41627–41643 (2020). https://doi.org/10.1021/acsami.0c14137

    Article  CAS  Google Scholar 

  29. N. Gupta et al., Photocatalytic nanocomposite microsponges of polylactide-titania for chemical remediation in water. ACS Appl. Polym. Mater. 2(11), 5188–5197 (2020). https://doi.org/10.1021/acsapm.0c00937

    Article  CAS  Google Scholar 

  30. V.K. Gupta et al., Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J. Mol. Liq. 232, 423–430 (2017). https://doi.org/10.1016/j.molliq.2017.02.095

    Article  CAS  Google Scholar 

  31. I. Hasan, A. Bassi, K.H. Alharbi, I.I. BinSharfan, R.A. Khan, A. Alslame, Sonophotocatalytic degradation of malachite green by nanocrystalline chitosan-ascorbic Acid@NiFe2O4 spinel ferrite. Coatings 10(12), 1200 (2020)

    Article  CAS  Google Scholar 

  32. I. Hasan, C. Shekhar, I.I. Bin Sharfan, R.A. Khan, A. Alsalme, Ecofriendly green synthesis of the ZnO-doped CuO@Alg bionanocomposite for efficient oxidative degradation of p-Nitrophenol. ACS Omega 5(49), 32011–32022 (2020). https://doi.org/10.1021/acsomega.0c04917

    Article  CAS  Google Scholar 

  33. I. Hasan, S. Walia, K.H. Alharbi, M.A. Khanjer, A. Alsalme, R.A. Khan, Multi-walled carbon nanotube coupled β-Cyclodextrin/PANI hybrid photocatalyst for advance oxidative degradation of crystal violet. J. Mol. Liq. 317,114216 (2020).https://doi.org/10.1016/j.molliq.2020.114216

  34. N. Hernández, R.C. Williams, E.W. Cochran, The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org. Biomol. Chem. 12(18), 2834–2849 (2014). https://doi.org/10.1039/C3OB42339E

  35. X. Huang, X. Li, Y. Li, X. Wang, Biopolymer as stabilizer and adhesive to in situ precipitate cus nanocrystals on cellulose nanofibers for preparing multifunctional composite papers. ACS Omega 3(7), 8083–8090 (2018). https://doi.org/10.1021/acsomega.8b01225

    Article  CAS  Google Scholar 

  36. G. Jung, H.-I. Kim, Synthesis and photocatalytic performance of PVA/TiO2/graphene-MWCNT nanocomposites for dye removal. J. Appl. Polym. Sci. 131(17) (2014). https://doi.org/10.1002/app.40715

  37. T. Kamal, I. Ahmad, S.B. Khan, M. Ul-Islam, A.M. Asiri, Microwave assisted synthesis and carboxymethyl cellulose stabilized copper nanoparticles on bacterial cellulose nanofibers support for pollutants degradation. J. Polym. Environ. 27(12), 2867–2877 (2019). https://doi.org/10.1007/s10924-019-01565-1

    Article  CAS  Google Scholar 

  38. T. Kamal, M.S.J. Khan, S.B. Khan, A.M. Asiri, M.T.S. Chani, M.W. Ullah, Silver nanoparticles embedded in gelatin biopolymer hydrogel as catalyst for reductive degradation of pollutants. J. Polym. Environ. 28(2), 399–410 (2020). https://doi.org/10.1007/s10924-019-01615-8

    Article  CAS  Google Scholar 

  39. T. Kamal, S.B. Khan, A.M. Asiri, Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 23(3), 1911–1923 (2016). https://doi.org/10.1007/s10570-016-0919-9

    Article  CAS  Google Scholar 

  40. S. Kaushal, N. Kaur, M. Kaur, P.P. Singh, Dual-responsive pectin/graphene Oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water. J. Photochem. Photobiol. A: Chem. 403, 112841 (2020). https://doi.org/10.1016/j.jphotochem.2020.112841

  41. A. Khalil, N. Ali, A. Asiri, T. Kamal, Synthesis and catalytic evaluation of Silver@nickel oxide and alginate biopolymer nanocomposite hydrogel beads. Res. Square (2021)

    Google Scholar 

  42. S.A. Khan, S.B. Khan, A. Farooq, A.M. Asiri, A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int. J. Biol. Macromol. 130, 288–299 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.114

    Article  CAS  Google Scholar 

  43. A.J. Kora, L. Rastogi, Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer. Ind. Crops Prod. 81, 1–10 (2016). https://doi.org/10.1016/j.indcrop.2015.11.055

    Article  CAS  Google Scholar 

  44. N. Kumar, H. Mittal, S.M. Alhassan, S.S. Ray, Bionanocomposite hydrogel for the adsorption of dye and reusability of generated waste for the photodegradation of ciprofloxacin: a demonstration of the circularity concept for water purification. ACS Sustain. Chem. Eng. 6(12), 17011–17025 (2018). https://doi.org/10.1021/acssuschemeng.8b04347

    Article  CAS  Google Scholar 

  45. W.-H. Lam, M.N. Chong, B.A. Horri, B.-T. Tey, E.-S. Chan, Physicochemical stability of calcium alginate beads immobilizing TiO2 nanoparticles for removal of cationic dye under UV irradiation. J. Appl. Polym. Sci. 134(26) (2017) . https://doi.org/10.1002/app.45002

  46. G. Li, Y. Li, Z. Wang, H. Liu, Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater. Chem. Phys. 187, 133–140 (2017). https://doi.org/10.1016/j.matchemphys.2016.11.057

    Article  CAS  Google Scholar 

  47. G. Li et al., Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo- and bio-catalytic dye degradation. J. Membr. Sci. 525, 89–98 (2017). https://doi.org/10.1016/j.memsci.2016.10.033

    Article  CAS  Google Scholar 

  48. K. Li, de Rancourt de Mimérand Y, Jin X, Yi J, Guo J, Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanoparticles on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3(3), 2830–2845 (2020). https://doi.org/10.1021/acsanm.0c00096

    Article  CAS  Google Scholar 

  49. W. Li, T. Li, G. Li, L. An, F. Li, Z. Zhang, Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohyd. Polym. 168, 153–162 (2017). https://doi.org/10.1016/j.carbpol.2017.03.079

    Article  CAS  Google Scholar 

  50. M. Lučić Škorić et al., Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. Eur. Polymer J. 82, 57–70 (2016). https://doi.org/10.1016/j.eurpolymj.2016.06.026

    Article  CAS  Google Scholar 

  51. X. Man, R. Wu, H. Lv, W. Wang, Synthesis of a montmorillonite-supported titania nanocomposite with grafted cellulose as a template and its application in photocatalytic degradation. J. Appl. Polym. Sci. 132(41) (2015). https://doi.org/10.1002/app.42627

  52. M. Manimohan, S. Pugalmani, K. Ravichandran, M.A. Sithique, Synthesis and characterisation of novel Cu(ii)-anchored biopolymer complexes as reusable materials for the photocatalytic degradation of methylene blue. RSC Adv. 10(31), 18259–18279 (2020). https://doi.org/10.1039/D0RA01724H

    Article  CAS  Google Scholar 

  53. L. Marija, M. Nedeljko, R. Maja, Š. Zoran, R. Marija, K.K. Melina, Photocatalytic degradation of C.I. Acid Orange 7 by TiO2 nanoparticles immobilized onto/into chitosan-based hydrogel. Polym. Compos. 35(4), 806–815 (2014). https://doi.org/10.1002/pc.22724

  54. N.U. Mary, M.J. Umapathy, A. Sivasamy, Biomaterial supported binary semiconductor metal oxide nanocomposite for Water remediation under solar irradiation. Optik 208,164219 (2020). https://doi.org/10.1016/j.ijleo.2020.164219

  55. S. Megha, D. Devadathan, V. Baiju, R. Raveendran, Structural, optical and photocatalytic degradation studies of polymer based Fe2o3 nanocomposite. J. Phys.: Conf. Ser. 1172, 012051 (2019). https://doi.org/10.1088/1742-6596/1172/1/012051

  56. L. Midya, A. Pal, S. Pal, Development of crosslinked chitosan/Au Nanocomposite, its characterization and application towards solar light driven photocatalytic degradation of toxic organic compounds. ChemistrySelect 1(19), 6115–6126 (2016). https://doi.org/10.1002/slct.201601337

    Article  CAS  Google Scholar 

  57. E.D. Mohamed Isa, N.W. Che Jusoh, R. Hazan, K. Shameli, Photocatalytic degradation of methyl orange using pullulan-mediated porous zinc oxide microflowers. Environ. Sci. Pollut. Res. 28(5), 5774–5785 (2021). https://doi.org/10.1007/s11356-020-10939-1

    Article  CAS  Google Scholar 

  58. S. Mohan, O.S. Oluwafemi, N. Kalarikkal, S. Thomas, S.P. Songca, Biopolymers – application in nanoscience and nanotechnology recent advances in biopolymers (2016)

    Google Scholar 

  59. A.A. Mohd Yatim et al., Vanadium and nitrogen Co-doped titanium dioxide (TiO2) with enhanced photocatalytic performance: potential in wastewater treatment. J. Nanosci. Nanotechnol. 20(2), 741–751 (2020). https://doi.org/10.1166/jnn.2020.16946

    Article  CAS  Google Scholar 

  60. N. Muhd Julkapli, S. Bagheri, S Bee Abd Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 692307 (2014). https://doi.org/10.1155/2014/692307

  61. A. Nasiri, M. Malakootian, M.R. Heidari, S.N. Asadzadeh, CoFe2O4@methylcelloluse as a new magnetic nano biocomposite for sonocatalytic degradation of reactive blue 19. J. Polym. Environ. 29(8), 2660–2675 (2021). https://doi.org/10.1007/s10924-021-02074-w

    Article  CAS  Google Scholar 

  62. L. Nouri, S. Hemidouche, A. Boudjemaa, F. Kaouah, Z. Sadaoui, K. Bachari, Elaboration and characterization of photobiocomposite beads, based on titanium (IV) oxide and sodium alginate biopolymer, for basic blue 41 adsorption/photocatalytic degradation. Int. J. Biol. Macromol. 151, 66–84 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.159

    Article  CAS  Google Scholar 

  63. T. Nusrat, S. Sharf Ilahi, R. Geetanjali, C. Saif Ali, Inamuddin, Abdullah MA, Nano-engineered adsorbent for the removal of dyes from water: a review. Curr. Anal. Chem. 16(1), 14–40 (2020). https://doi.org/10.2174/1573411015666190117124344

  64. L.V.F. Oliveira, S. Bennici, L. Josien, L. Limousy, M.A. Bizeto, F.F. Camilo, Free-standing cellulose film containing manganese dioxide nanoparticles and its use in discoloration of indigo carmine dye. Carbohydr. Polym. 230, 115621 (2020). https://doi.org/10.1016/j.carbpol.2019.115621

  65. N. Pandey, S.K. Shukla, N.B. Singh, Water purification by polymer nanocomposites: an overview. Nanocomposites 3(2), 47–66 (2017). https://doi.org/10.1080/20550324.2017.1329983

    Article  CAS  Google Scholar 

  66. S. Pandey, J.Y. Do, J. Kim, M. Kang, Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr. Polym. 230, 115597 (2020). https://doi.org/10.1016/j.carbpol.2019.115597

  67. D.R. Paul, L.M. Robeson, Polymer nanotechnology: nanocomposites. Polymer 49(15), 3187–3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  68. J. Pérez-Obando, D.A. Marín-Silva, A.N. Pinotti, L.R. Pizzio, P. Osorio-Vargas, J.A. Rengifo-Herrera, Degradation study of malachite green on chitosan films containing heterojunctions of melon/TiO2 absorbing visible-light in solid-gas interfaces. Appl. Catal. B 244, 773–785 (2019). https://doi.org/10.1016/j.apcatb.2018.12.004

    Article  CAS  Google Scholar 

  69. S. Ramadhani, H. Helmiyati, Alginate/CMC/ZnO nanocomposite for photocatalytic degradation of Congo red dye. AIP Conf. Proc. 2242(1), 040026 (2020). https://doi.org/10.1063/5.0008095

  70. Y.N. Rao, D. Banerjee, A. Datta, S.K. Das, A. Saha, Low temperature synthesis of Ag@anatase TiO2 nanocomposites through controlled hydrolysis and improved degradation of toxic malachite green under both ultra-violet and visible light. RSC Adv. 6(54), 49083–49090 (2016). https://doi.org/10.1039/C6RA05579F

    Article  CAS  Google Scholar 

  71. S. Rashtbari, G. Dehghan, Biodegradation of malachite green by a novel laccase-mimicking multicopper BSA-Cu complex: performance optimization, intermediates identification and artificial neural network modeling. J. Hazard. Mater. 406,124340 (2021). https://doi.org/10.1016/j.jhazmat.2020.124340

  72. A. Sangiorgi et al., 3D Printing of photocatalytic filters using a biopolymer to immobilize TiO2 nanoparticles. J. Electrochem. Soc. 166(5), H3239–H3248 (2019). https://doi.org/10.1149/2.0341905jes

    Article  CAS  Google Scholar 

  73. I. Sargin, T. Baran, G. Arslan, Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep. Purif. Technol. 247, 116987 (2020). https://doi.org/10.1016/j.seppur.2020.116987

  74. S. Sarkar, N.T. Ponce, A. Banerjee, R. Bandopadhyay, S. Rajendran, E. Lichtfouse, Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ. Chem. Lett. 18(5), 1569–1580 (2020). https://doi.org/10.1007/s10311-020-01021-w

    Article  CAS  Google Scholar 

  75. P. Senthil Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian, S. Chattopadhyay, Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv. 5(71), 57493–57501 (2015). https://doi.org/10.1039/C5RA08783J

    Article  CAS  Google Scholar 

  76. T. Shahwan et al., Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172(1), 258–266 (2011). https://doi.org/10.1016/j.cej.2011.05.103

    Article  CAS  Google Scholar 

  77. Y. Shen, Q. Fang, B. Chen, Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ. Sci. Technol. 49(1), 67–84 (2015). https://doi.org/10.1021/es504421y

    Article  CAS  Google Scholar 

  78. S. Sheshmani, H. Nejabat Ghamsari, Photodegradation of acid orange 7 from aqueous solution under visible light irradiation using nanosized ZnO/chitosan/graphene oxide composite. Int. J. Environ. Anal. Chem. 100(8), 912–921 (2020). https://doi.org/10.1080/03067319.2019.1645840

    Article  CAS  Google Scholar 

  79. V.G. Sirajuddin, G. Sharma, A. Kumar, F.J. Stadler, Inamuddin preparation and characterization of gum acacia/Ce(IV)MoPO4 nanocomposite ion exchanger for photocatalytic degradation of methyl violet dye. J. Inorg. Organomet. Polym. Mater. 29(4), 1171–1183 (2019). https://doi.org/10.1007/s10904-019-01080-9

  80. P. Sirajudheen, S. Meenakshi, Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int. J. Biol. Macromol. 133, 253–261 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.073

    Article  CAS  Google Scholar 

  81. R. Subekti, H. Helmiyati, Sodium alginate-TiO2-bentonite nanocomposite synthesis for photocatalysis of methylene blue dye removal. IOP Conf. Ser.: Mater. Sci. Eng. 763, 012018 (2020). https://doi.org/10.1088/1757-899x/763/1/012018

  82. S. Sultana, N. Ahmad, S.M. Faisal, M. Owais, S. Sabir, Synthesis, characterisation and potential applications of polyaniline/chitosan-Ag-nano-biocomposite. IET Nanobiotechnol. 11(7), 835–842 (2017). https://doi.org/10.1049/iet-nbt.2016.0215

    Article  Google Scholar 

  83. S. Sultana, N. Ahmad, S.M. Faisal, M. Owais, S. Sabir, Synthesis, characterisation and potential applications of polyaniline/chitosan-Ag-nano-biocomposite IET Nanobiotechnology. Inst. Eng. Technol. 835–842 (2017)

    Google Scholar 

  84. S.M.T.H. Moghaddas, B. Elahi, V. Javanbakht, Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J. Alloy. Compd. 821, 153519 (2020). https://doi.org/10.1016/j.jallcom.2019.153519

  85. M.T. Taghizadeh, V. Siyahi, H. Ashassi-Sorkhabi, G. Zarrini, ZnO, AgCl and AgCl/ZnO nanocomposites incorporated chitosan in the form of hydrogel beads for photocatalytic degradation of MB, E. coli and S. aureus. Int. J. Biol. Macromol. 147, 1018–1028 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.070

    Article  CAS  Google Scholar 

  86. N. Tavker, U.K. Gaur, M. Sharma, Highly active agro-waste-extracted cellulose-supported CuInS2 nanocomposite for visible-light-induced photocatalysis. ACS Omega 4(7), 11777–11784 (2019). https://doi.org/10.1021/acsomega.9b01054

    Article  CAS  Google Scholar 

  87. M. Thakur, G. Sharma, T. Ahamad, A.A. Ghfar, D. Pathania, M. Naushad, Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf. B 157, 456–463 (2017). https://doi.org/10.1016/j.colsurfb.2017.06.018

    Article  CAS  Google Scholar 

  88. K. Thiyagarajan, S. Samuel, P.S. Kumar, S.G. Babu, C3N4 supported on chitosan for simple and easy recovery of visible light active efficient photocatalysts. Bull. Mater. Sci. 43(1), 137 (2020). https://doi.org/10.1007/s12034-020-02107-5

    Article  CAS  Google Scholar 

  89. B. Thomas et al., Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118(24), 11575–11625 (2018). https://doi.org/10.1021/acs.chemrev.7b00627

    Article  CAS  Google Scholar 

  90. J.N. Tiwari et al., Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56, 173–182 (2013). https://doi.org/10.1016/j.carbon.2013.01.001

    Article  CAS  Google Scholar 

  91. J.D. Torres, E.A. Faria, J.R. SouzaDe, A.G.S. Prado, Preparation of photoactive chitosan–niobium (V) oxide composites for dye degradation. J. Photochem. Photobiol. A 182(2), 202–206 (2006). https://doi.org/10.1016/j.jphotochem.2006.02.027

    Article  CAS  Google Scholar 

  92. V. Lp, V. Rajagopalan, A new synergetic nanocomposite for dye degradation in dark and light. Sci. Rep. 6(1), 38606 (2016). https://doi.org/10.1038/srep38606

    Article  CAS  Google Scholar 

  93. A. Vanamudan, P.P. Sudhakar, Biopolymer capped silver nanoparticles with potential for multifaceted applications. Int. J. Biol. Macromol. 86, 262–268 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.056

    Article  CAS  Google Scholar 

  94. S. Vigneshwaran, P. Sirajudheen, C.P. Nabeena, S. Meenakshi, In situ fabrication of ternary TiO2 doped grafted chitosan/hydroxyapatite nanocomposite with improved catalytic performance for the removal of organic dyes: experimental and systemic studies. Colloids Surf. A: Phys. Chem. Eng. Asp. 611, 125789 (2021). https://doi.org/10.1016/j.colsurfa.2020.125789

  95. E.Z. Wang, Y. Wang, D. Xiao, Polymer nanocomposites for photocatalytic degradation and photoinduced utilizations of Azo-Dyes. Polymers 13(8), 1215 (2021)

    Article  CAS  Google Scholar 

  96. Q. Wang et al., Photodegradation of textile dye Rhodamine B over a novel biopolymer-metal complex wool-Pd/CdS photocatalysts under visible light irradiation. J. Photochem. Photobiol. B 126, 47–54 (2013). https://doi.org/10.1016/j.jphotobiol.2013.07.007

    Article  CAS  Google Scholar 

  97. Y. Yang et al., Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. Int. J. Biol. Macromol. 167, 169–181 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.167

    Article  CAS  Google Scholar 

  98. Z. Yang, J. Kang, L. Li, L. Guo, A biotemplating route for the synthesis of hierarchical Fe2O3 with highly dispersed carbon as electron-transfer channel. ChemPlusChem 85(1), 258–263 (2020). https://doi.org/10.1002/cplu.201900641

    Article  CAS  Google Scholar 

  99. M. Yurdakul, H.A. Oktem, M.D. Yilmaz, Transition metal chelated biopolymer coated mesoporous silica nanoparticles as highly efficient, stable, and recyclable nanocatalysts for catalytic bleaching. ChemistrySelect 4(7), 2084–2088 (2019). https://doi.org/10.1002/slct.201803783

    Article  CAS  Google Scholar 

  100. C. Zhao, Q. Yan, S. Wang, P. Dong, L. Zhang, Regenerable g-C3N4–chitosan beads with enhanced photocatalytic activity and stability. RSC Adv. 8(48), 27516–27524 (2018). https://doi.org/10.1039/C8RA04293D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gubbala V. Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tadi, K.K., Reddy, N.M., Chandaluri, C.G., Sakala, G.P., Ramesh, G.V. (2022). Functionalized Biopolymer Nanocomposites for the Degradation of Textile Dyes. In: Hato, M.J., Sinha Ray, S. (eds) Functional Polymer Nanocomposites for Wastewater Treatment. Springer Series in Materials Science, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-94995-2_6

Download citation

Publish with us

Policies and ethics