Skip to main content
Log in

Controlled acid catalyzed sol gel for the synthesis of highly active TiO2-chitosan nanocomposite and its corresponding photocatalytic activity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts’ surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of –NH2 and –OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdeen Z (2016) Adsorption efficiency of poly(ethylene glycol)/chitosan/CNT blends for maltene fraction separation. Environ Sci Pollut Res 23:11240–11246

    Article  CAS  Google Scholar 

  • Adelkhani H, Ghaemi M, Ruzbehani M (2011) Evaluation of the porosity and the nano-structure morphology of MnO2 prepared by pulse current electrodeposition. Int J Electrochem Sci 6:123–135

    CAS  Google Scholar 

  • Amorim RVDS, Souza WD, Fukushima K, Campos-Takaki GMD (2001) Faster chitosan production by mucoralean strains in submerged culture. Braz J Microbiol 32:20–23

    Article  CAS  Google Scholar 

  • Ananpattarachai J, Seraphin S, Kajitvichyanukul P (2016) Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light. Environ Sci Pollut Res 23:3884–3896

    Article  CAS  Google Scholar 

  • Aqil A, El kadib A, Aqil M, Bousmina M, Elidrissi A, Detrembleur C, Jerome C (2014) Nitroaldol condensation catalyzed by topologically modulable cooperative acid-base chitosan-TiO2 hybrid materials. RSC Adv 4:33160–33163

    Article  CAS  Google Scholar 

  • Ashutosh T, Valyukh S (2014) Advanced energy materials. John Wiley & Sons

  • Bagheri S, Muhd Julkapli N, Abd Hamid SB (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:21

    Article  Google Scholar 

  • Calatayud DG, Rodríguez M, Jardiel T (2015) Controlling the morphology of TiO2 nanocrystals with different capping agents. Bol Soc Esp Cerám V 54:159–165

    Article  Google Scholar 

  • Chang SS, Clair B, Ruelle J, Beauchêne J, Di Renzo F, Quignard F, Zhao GJ, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030

    Article  CAS  Google Scholar 

  • Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    Article  CAS  Google Scholar 

  • Condon JB (2006) Surface area and porosity determinations by physisorption measurements and theory. Elsevier Oxford, UK

    Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Delmar K, Bianco-Peled H (2015) The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohydr Polym 127:28–37

    Article  CAS  Google Scholar 

  • Dong H, Zeng G, Tang L, Fan C, Zhang C, HE X, HE Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  Google Scholar 

  • Fajriati I, Mudasir M, Wahyuni ET (2014) Photocatalytic decolorization study of methyl orange by TiO2–chitosan nanocomposites. Indo. J Chem 14:209–218

    CAS  Google Scholar 

  • Farzana MH, Meenakshi S (2014) Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind Eng Chem Res 53:55–63

    Article  CAS  Google Scholar 

  • Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J 6:1–10

    Article  Google Scholar 

  • Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich E, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polym 6:2037

    Article  Google Scholar 

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  CAS  Google Scholar 

  • Haldorai Y, Shim J (2014) Novel chitosan-TiO2 nanohybrid: preparation, characterization, antibacterial, and photocatalytic properties. Polym Compos 32:327–333

    Article  Google Scholar 

  • Hema M, Yelil Arasi A, Tamilselvi P, Anbarasan R (2013) Titania nanoparticles synthesized by sol-gel technique. Chem Sci Trans 2:239–245

    Article  Google Scholar 

  • Jawad AH, Nawi MA (2012) Oxidation of crosslinked chitosan-epichlorohydrine film and its application with TiO2 for phenol removal. Carbohydr Polym 90:87–94

    Article  CAS  Google Scholar 

  • Jiang R, Zhu HY, Chen HH, Yao J, Fu YQ, Zhang ZY, XU YM (2014) Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Appl Surf Sci 319:189–196

    Article  CAS  Google Scholar 

  • Jin C, Liu B, Lei Z, Sun J (2015) Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Res Lett 10:1–9

    Article  Google Scholar 

  • Kavitha K, Sutha S, Prabhu M, Rajendran V, Jayakumar T (2013) In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym 93:731–739

    Article  CAS  Google Scholar 

  • Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X (2011) Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J Am Chem Soc 133:16414–16417

    Article  CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  • Kyzas G, Bikiaris D (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar. Drugs 13:312

    Article  CAS  Google Scholar 

  • Lim SC, Ryu JH, Kim DH, Cho SY, Oh WC (2010) Reaction morphology and the effect of pH on the preparation of TiO2 nanoparticles by sol-gel method. J Ceram Process Res 11:736–741

    Google Scholar 

  • Mattu C, Li R, Ciardelli G (2013) Chitosan nanoparticles as therapeutic protein nanocarriers: the effect of pH on particle formation and encapsulation efficiency. Polym Compos 34:1538–1545

    Article  CAS  Google Scholar 

  • Nikkanen JP, Kanerva T, Mäntylä T (2007) The effect of acidity in low-temperature synthesis of titanium dioxide. J Cryst Growth 304:179–183

    Article  CAS  Google Scholar 

  • Nilchi A, Rasouli Garmarodi S, Darzi SJ (2010) Adsorption behavior of nanosized sol-gel derived TiO2-SiO2 binary oxide in removing Pb + 2 metal ions. Separ. Sci Technol 45:801–808

    CAS  Google Scholar 

  • Nishad PA, Bhaskarapillai A, Velmurugan S (2014) Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V). Carbohydr Polym 108:169–175

    Article  CAS  Google Scholar 

  • Ozer RR, Ferry JL (2001) Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environ Sci technol 35:3242–3246

    Article  CAS  Google Scholar 

  • Reddy DHK, Lee SM, Yang JK, Park YJ (2014) Characterization of binary oxide photoactive material and its application for inorganic arsenic removal. J Ind Eng Chem 20:3658–3662

    Article  CAS  Google Scholar 

  • Safari M, Ghiaci M, Jafari-Asl M, Ensafi AA (2015) Nanohybrid organic–inorganic chitosan/dopamine/TiO2 composites with controlled drug-delivery properties. ApplSurf Sci 342:26–33

    CAS  Google Scholar 

  • Samsudin EM, Abd Hamid SB, Juan JC, Basirun WJ, Kandjani AE, Bhargava SK (2015a) Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine. RSC Adv 5:44041–44052

    Article  CAS  Google Scholar 

  • Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Kandjani AE (2015b) Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Appl Surf Sci 359:883–896

    Article  CAS  Google Scholar 

  • Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Kandjani AE, Bhargava SK (2016) Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO2 prepared by modified sol–gel method. Appl.Surf. Sci 365:57–68

    Article  CAS  Google Scholar 

  • Sayilkan F, Fatma BE (2016) Characterization and photocatalytic properties of TiO2/chitosan nanocomposites synthesized by hydrothermal process. Turk J Chem 40:28–37

    Article  CAS  Google Scholar 

  • Szymańska E, Winnicka K (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 13:1819

    Article  Google Scholar 

  • Termnak S, Triampo W, Triampo D (2009) Effect of acid during synthesis on the agglomerated strength of TiO2 nanoparticles. J. Ceram. Process. Res 10

  • Tirgar A, Golbabaei F, Hamedi J, Nourijelyani K, Shahtaheri SJ, Moosavi SR (2006) Removal of airborne hexavalent chromium mist using chitosan gel beads as a new control approach. Int J Environ Sci Technol 3:305–313

    Article  CAS  Google Scholar 

  • Wang Y, HU B, HU C, Zhou X (2015) Fabrication of a novel Ti/SnO2–Sb–CeO2@TiO2–SnO2 electrode and photoelectrocatalytic application in wastewater treatment. Mater Sci Semicond Process 40:744–751

    Article  CAS  Google Scholar 

  • Wang CC, Li JR, Lv XL, Zhang YQ, Guo G (2014) Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 7:831–2867

    Article  Google Scholar 

  • Wang X, Liu Y, Zheng J (2016) Removal of as(III) and as(V) from water by chitosan and chitosan derivatives: a review. Environ Sci Pollut Res:1–13

  • Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485

    Article  CAS  Google Scholar 

  • Yan Y, Hao B, Chen G (2011) Biomimetic synthesis of titania with chitosan-mediated phase transformation at room temperature. J Mater Chem 21:10755–10760

    Article  CAS  Google Scholar 

  • Yang D, Li J, Jiang Z, Lu L, Chen X (2009) Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng Sci 64:3130–3137

    Article  CAS  Google Scholar 

  • Yousefi M, Ghasemi AS (2012) Synthesis and characterization of Cu, Nd, Ce, chitosan-codoped TiO2 nanoparticles by sol-gel method for stain resistance cotton fabric application. Asian J Chem 24:2855–2859

    CAS  Google Scholar 

  • Yu X, Kim B, Kim YK (2013) Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects. ACS Catal 3:2479–2486

    Article  CAS  Google Scholar 

  • Zainal Z, Hui LK, Hussein MZ, Abdullah AH, Hamadneh IR (2009) Characterization of TiO2–chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. J. Hazard. Mater 164:138–145

    CAS  Google Scholar 

  • Zając A, Hanuza J, Wandas M, Dymińska L (2015) Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim, Acta Mol. Biomol. Spectrosc 134:114–120

    Google Scholar 

  • Zha R, Nadimicherla R, Guo X (2015) Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J Mater Chem A 3:6565–6574

    Article  CAS  Google Scholar 

  • Zhang C, Li Y, Wang D, Zhang W, Wang Q, Wang Y, Wang P (2015) Ag@helical chiral TiO2 nanofibers for visible light photocatalytic degradation of 17α-ethinylestradiol. Environ Sci Pollut Res 22:10444–10451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge UM grant UMRG (A), IPPP (PG074-2014B), and Higher Education Commission (HEC) of Pakistan for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharifah Bee Abd Hamid.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, S., Samsudin, E.M., Julkapli, N.M. et al. Controlled acid catalyzed sol gel for the synthesis of highly active TiO2-chitosan nanocomposite and its corresponding photocatalytic activity. Environ Sci Pollut Res 23, 23158–23168 (2016). https://doi.org/10.1007/s11356-016-7507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7507-2

Keywords

Navigation