Skip to main content

Epigenetics and Assisted Reproductive Technologies

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

The human genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development. The myriad of exposures unique to assisted reproductive technologies (ART) including superovulation, fertilization procedures, embryo culture variations, embryo biopsy, and gamete/embryo cryopreservation all occur during this period of intense global reprogramming. While the vast majority of children born after assisted reproductive technologies are healthy, epidemiologic studies have demonstrated that ART is associated with a number of adverse perinatal outcomes including hypertensive disorders of pregnancy, preterm delivery, low birthweight, and an increased prevalence of imprinting disorders. Data from animal models support both global and gene-specific changes after ART exposures. Further studies including prospective longitudinal human cohort studies are needed to delineate the effects of these exposures on the epigenome, the long-term impacts on immediate offspring, and transgenerational effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

assisted reproductive technologies

AS:

Angelman syndrome

BWS:

Beckwith–Wiedemann Syndrome

DNA:

deoxyribonucleic acid

ICSI:

intracytoplasmic sperm injection

IVF :

in vitro fertilization

PGT:

pre-implantation genetic testing

RNA:

ribonucleic acid

References

  1. Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L et al (2019) Assisted reproductive technology surveillance—United States, 2016. MMWR Surveill Summ 68(4):1–23

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barnhart KT (2013) Assisted reproductive technologies and perinatal morbidity: interrogating the association. Fertil Steril 99(2):299–302

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adamson GDTM, Macaluso M, deMouzon J (2013) The number of babies born globally after treatment with assisted reproductive technologies (ART). Fertil Steril 100(3):S42

    Article  Google Scholar 

  4. Adamson GD, de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O et al (2018) International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertil Steril 110(6):1067–1080

    Article  PubMed  Google Scholar 

  5. Berntsen S, Soderstrom-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB et al (2019) The health of children conceived by ART: ‘the chicken or the egg?’. Hum Reprod Update 25(2):137–158

    Article  PubMed  Google Scholar 

  6. Cortessis VK, Azadian M, Buxbaum J, Sanogo F, Song AY, Sriprasert I et al (2018) Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet 35(6):943–952

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093

    Article  CAS  PubMed  Google Scholar 

  8. Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A et al (2014) DNA methylation dynamics of the human preimplantation embryo. Nature 511(7511):611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gosden R, Trasler J, Lucifero D, Faddy M (2003) Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361(9373):1975–1977

    Article  PubMed  Google Scholar 

  10. Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES (2009) Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod 15(8):471–477

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N et al (2009) DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. European journal of human genetics : EJHG 17(12):1582–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hiura H, Hattori H, Kobayashi N, Okae H, Chiba H, Miyauchi N et al (2017) Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer. Clin Epigenetics 9:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tierling S, Souren NY, Gries J, Loporto C, Groth M, Lutsik P et al (2010) Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J Med Genet 47(6):371–376

    Article  CAS  PubMed  Google Scholar 

  14. Kanber D, Buiting K, Zeschnigk M, Ludwig M, Horsthemke B (2009) Low frequency of imprinting defects in ICSI children born small for gestational age. European journal of human genetics : EJHG. 17(1):22–29

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Wang L, Le F, Liu X, Yu P, Sheng J et al (2011) Evaluation of DNA methylation status at differentially methylated regions in IVF-conceived newborn twins. Fertil Steril 95(6):1975–1979

    Article  CAS  PubMed  Google Scholar 

  16. Zechner U, Pliushch G, Schneider E, El Hajj N, Tresch A, Shufaro Y et al (2010) Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol Hum Reprod 16(9):704–713

    Article  CAS  PubMed  Google Scholar 

  17. Feng C, Tian S, Zhang Y, He J, Zhu XM, Zhang D et al (2011) General imprinting status is stable in assisted reproduction-conceived offspring. Fertil Steril 96(6):1417–23.e9

    Article  CAS  PubMed  Google Scholar 

  18. Shi X, Ni Y, Zheng H, Chen S, Zhong M, Wu F et al (2011) Abnormal methylation patterns at the IGF2/H19 imprinting control region in phenotypically normal babies conceived by assisted reproductive technologies. Eur J Obstet Gynecol Reprod Biol 158(1):52–55

    Article  CAS  PubMed  Google Scholar 

  19. Zheng HY, Shi XY, Wu FR, Wu YQ, Wang LL, Chen SL (2011) Assisted reproductive technologies do not increase risk of abnormal methylation of PEG1/MEST in human early pregnancy loss. Fertil Steril 96(1):84–9.e2

    Article  CAS  PubMed  Google Scholar 

  20. Zheng HY, Shi XY, Wang LL, Wu YQ, Chen SL, Zhang L (2011) Study of DNA methylation patterns of imprinted genes in children born after assisted reproductive technologies reveals no imprinting errors: a pilot study. Exp Ther Med 2(4):751–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng HY, Tang Y, Niu J, Li P, Ye DS, Chen X et al (2013) Aberrant DNA methylation of imprinted loci in human spontaneous abortions after assisted reproduction techniques and natural conception. Hum Reprod 28(1):265–273

    Article  CAS  PubMed  Google Scholar 

  22. Oliver VF, Miles HL, Cutfield WS, Hofman PL, Ludgate JL, Morison IM (2012) Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population. Fertil Steril 97(1):147–53 e7

    Article  CAS  PubMed  Google Scholar 

  23. Sakian S, Louie K, Wong EC, Havelock J, Kashyap S, Rowe T et al (2015) Altered gene expression of H19 and IGF2 in placentas from ART pregnancies. Placenta 36(10):1100–1105

    Article  CAS  PubMed  Google Scholar 

  24. Vincent RN, Gooding LD, Louie K, Chan Wong E, Ma S (2016) Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril 106(3):739–48.e3

    Article  CAS  PubMed  Google Scholar 

  25. Wong EC, Hatakeyama C, Robinson WP, Ma S. DNA methylation at H19/IGF2 ICR1 in the placenta of pregnancies conceived by in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 2011;95(8):2524–6.e1–3

    Google Scholar 

  26. Rancourt RC, Harris HR, Michels KB (2012) Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum Reprod 27(7):2208–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puumala SE, Nelson HH, Ross JA, Nguyen RH, Damario MA, Spector LG (2012) Similar DNA methylation levels in specific imprinting control regions in children conceived with and without assisted reproductive technology: a cross-sectional study. BMC Pediatr 12:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Camprubí C, Iglesias-Platas I, Martin-Trujillo A, Salvador-Alarcon C, Rodriguez MA, Barredo DR et al (2013) Stability of genomic imprinting and gestational-age dynamic methylation in complicated pregnancies conceived following assisted reproductive technologies. Biol Reprod 89(3):50

    Article  CAS  PubMed  Google Scholar 

  29. Loke YJ, Galati JC, Saffery R, Craig JM (2015) Association of in vitro fertilization with global and IGF2/H19 methylation variation in newborn twins. J Dev Orig Health Dis 6(2):115–124

    Article  CAS  PubMed  Google Scholar 

  30. Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P (2014) Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod 29(7):1452–1458

    Article  CAS  PubMed  Google Scholar 

  31. Choux C, Binquet C, Carmignac V, Bruno C, Chapusot C, Barberet J et al (2018) The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility. Hum Reprod 33(2):331–340

    Article  CAS  PubMed  Google Scholar 

  32. Dimitriadou E, Noutsopoulos D, Markopoulos G, Vlaikou AM, Mantziou S, Traeger-Synodinos J et al (2013) Abnormal DLK1/MEG3 imprinting correlates with decreased HERV-K methylation after assisted reproduction and preimplantation genetic diagnosis. Stress 16(6):689–697

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Tang Y, Ye D, Ma W, Feng S, Li X et al (2018) Impact of abnormal DNA methylation of imprinted loci on human spontaneous abortion. Reprod Sci 25(1):131–139

    Article  CAS  PubMed  Google Scholar 

  34. Chen XJ, Chen F, Lv PP, Zhang D, Ding GL, Hu XL et al (2018) Maternal high estradiol exposure alters CDKN1C and IGF2 expression in human placenta. Placenta 61:72–79

    Article  CAS  PubMed  Google Scholar 

  35. Tang L, Liu Z, Zhang R, Su C, Yang W, Yao Y et al (2017) Imprinting alterations in sperm may not significantly influence ART outcomes and imprinting patterns in the cord blood of offspring. PLoS One 12(11):e0187869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP et al (2010) Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 6(7):e1001033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duranthon V, Chavatte-Palmer P (2018) Long term effects of ART: what do animals tell us? Mol Reprod Dev 85(4):348–368

    Article  CAS  PubMed  Google Scholar 

  38. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL et al (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71(1):162–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henningsen AA, Gissler M, Rasmussen S, Opdahl S, Wennerholm UB, Spangsmose AL et al (2020) Imprinting disorders in children born after ART: a Nordic study from the CoNARTaS group. Hum Reprod 35(5):1178–1184

    Article  CAS  PubMed  Google Scholar 

  40. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR (2010) Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19(1):36–51

    Article  CAS  PubMed  Google Scholar 

  41. de Waal E, Yamazaki Y, Ingale P, Bartolomei MS, Yanagimachi R, McCarrey JR (2012) Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet 21(20):4460–4472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T (2007) Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod 22(1):26–35

    Article  CAS  PubMed  Google Scholar 

  43. Khoueiry R, Ibala-Rhomdane S, Mery L, Blachere T, Guerin JF, Lornage J et al (2008) Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet 45(9):583–588

    Article  CAS  PubMed  Google Scholar 

  44. Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M (2007) Methylation analysis of KvDMR1 in human oocytes. J Med Genet 44(2):144–147

    Article  CAS  PubMed  Google Scholar 

  45. Fauque P, Jouannet P, Lesaffre C, Ripoche MA, Dandolo L, Vaiman D et al (2007) Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol 7:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi W, Haaf T (2002) Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 63(3):329–334

    Article  CAS  PubMed  Google Scholar 

  47. Sullivan-Pyke C, Mani S, Rhon-Calderon EA, Ord T, Coutifaris C, Bartolomei MS et al (2020) Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse modeldagger. Biol Reprod 103(4):854–865

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM (2008) Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 17(11):1653–1665

    Article  CAS  PubMed  Google Scholar 

  49. Huffman SR, Pak Y, Rivera RM (2015) Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol Reprod Dev 82(3):207–217

    Article  CAS  PubMed  Google Scholar 

  50. Liang XW, Cui XS, Sun SC, Jin YX, Heo YT, Namgoong S et al (2013) Superovulation induces defective methylation in line-1 retrotransposon elements in blastocyst. Reproductive biology and endocrinology : RB&E 11:69

    Article  CAS  Google Scholar 

  51. Tang SB, Yang LL, Zhang TT, Wang Q, Yin S, Luo SM et al (2019) Multiple superovulations alter histone modifications in mouse early embryos. Reproduction 157(6):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Senapati S, Wang F, Ord T, Coutifaris C, Feng R, Mainigi M (2018) Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J Assist Reprod Genet 35(10):1799–1808

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gardner DK, Kelley RL (2017) Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J Dev Orig Health Dis 8(4):418–435

    Article  CAS  PubMed  Google Scholar 

  54. Lane M, Gardner DK (2007) Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol 21(1):83–100

    Article  PubMed  Google Scholar 

  55. Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9(6):557–582

    Article  CAS  PubMed  Google Scholar 

  56. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1)

    Google Scholar 

  57. Maher ER (2005) Imprinting and assisted reproductive technology. Hum Mol Genet 14(1):R133–R138

    Article  CAS  PubMed  Google Scholar 

  58. Owen CM, Segars JH Jr (2009) Imprinting disorders and assisted reproductive technology. Semin Reprod Med 27(5):417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zaitseva I, Zaitsev S, Alenina N, Bader M, Krivokharchenko A (2007) Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev 74(10):1255–1261

    Article  CAS  PubMed  Google Scholar 

  60. Reis e Silva AR, Bruno C, Fleurot R, Daniel N, Archilla C, Peynot N et al (2012) Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 7(5):440–446

    Article  CAS  PubMed  Google Scholar 

  61. Wright K, Brown L, Brown G, Casson P, Brown S (2011) Microarray assessment of methylation in individual mouse blastocyst stage embryos shows that in vitro culture may have widespread genomic effects. Hum Reprod 26(9):2576–2585

    Article  CAS  PubMed  Google Scholar 

  62. Tan K, Zhang Z, Miao K, Yu Y, Sui L, Tian J et al (2016) Dynamic integrated analysis of DNA methylation and gene expression profiles in in vivo and in vitro fertilized mouse post-implantation extraembryonic and placental tissues. Mol Hum Reprod 22(7):485–498

    Article  CAS  PubMed  Google Scholar 

  63. Feuer S, Liu X, Donjacour A, Simbulan R, Maltepe E, Rinaudo P (2016) Common and specific transcriptional signatures in mouse embryos and adult tissues induced by in vitro procedures. Reproduction

    Google Scholar 

  64. Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128(3):301–311

    Article  CAS  PubMed  Google Scholar 

  65. Hori N, Nagai M, Hirayama M, Hirai T, Matsuda K, Hayashi M et al (2010) Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci 122(3–4):303–312

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki J Jr, Therrien J, Filion F, Lefebvre R, Goff AK, Smith LC (2009) In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev Biol 9:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hiendleder S, Wirtz M, Mund C, Klempt M, Reichenbach HD, Stojkovic M et al (2006) Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses. Biol Reprod 75(1):17–23

    Article  CAS  PubMed  Google Scholar 

  68. Wrenzycki C, Herrmann D, Lucas-Hahn A, Korsawe K, Lemme E, Niemann H (2005) Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod Fertil Dev 17(1–2):23–35

    Article  CAS  PubMed  Google Scholar 

  69. Niemann H, Carnwath JW, Herrmann D, Wieczorek G, Lemme E, Lucas-Hahn A et al (2010) DNA methylation patterns reflect epigenetic reprogramming in bovine embryos. Cell Reprogram 12(1):33–42

    Article  CAS  PubMed  Google Scholar 

  70. El Hajj N, Haaf T (2013) Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 99(3):632–641

    Article  CAS  PubMed  Google Scholar 

  71. Smith LC, Suzuki J Jr, Goff AK, Filion F, Therrien J, Murphy BD et al (2012) Developmental and epigenetic anomalies in cloned cattle. Reprod Domest Anim 47(Suppl 4):107–114

    Article  PubMed  Google Scholar 

  72. Salilew-Wondim D, Fournier E, Hoelker M, Saeed-Zidane M, Tholen E, Looft C et al (2015) Genome-wide DNA methylation patterns of bovine blastocysts developed in vivo from embryos completed different stages of development in vitro. PLoS One 10(11):e0140467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heras S, De Coninck DI, Van Poucke M, Goossens K, Bogado Pascottini O, Van Nieuwerburgh F et al (2016) Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genomics 17:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Canovas S, Ivanova E, Romar R, Garcia-Martinez S, Soriano-Ubeda C, Garcia-Vazquez FA et al (2017) DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. elife 6

    Google Scholar 

  75. Kleijkers SH, Eijssen LM, Coonen E, Derhaag JG, Mantikou E, Jonker MJ et al (2015) Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum Reprod 30(10):2303–2311

    Article  CAS  PubMed  Google Scholar 

  76. Mantikou E, Jonker MJ, Wong KM, van Montfoort AP, de Jong M, Breit TM et al (2016) Factors affecting the gene expression of in vitro cultured human preimplantation embryos. Hum Reprod 31(2):298–311

    CAS  PubMed  Google Scholar 

  77. Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6(2)

    Google Scholar 

  78. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C et al (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27(2):153–154

    Article  CAS  PubMed  Google Scholar 

  79. Velker BA, Denomme MM, Mann MR (2012) Embryo culture and epigenetics. Methods Mol Biol 912:399–421

    CAS  PubMed  Google Scholar 

  80. Denomme MM, Mann MR (2012) Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 144(4):393–409

    Article  CAS  PubMed  Google Scholar 

  81. Sasaki H, Ferguson-Smith AC, Shum AS, Barton SC, Surani MA (1995) Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development 121(12):4195–4202

    Article  CAS  PubMed  Google Scholar 

  82. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62(6):1526–1535

    Article  CAS  PubMed  Google Scholar 

  83. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64(3):918–926

    Article  CAS  PubMed  Google Scholar 

  84. Li T, Vu TH, Ulaner GA, Littman E, Ling JQ, Chen HL et al (2005) IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 11(9):631–640

    Article  CAS  PubMed  Google Scholar 

  85. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS (2008) Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 17(1):1–14

    Article  CAS  PubMed  Google Scholar 

  86. Mann MR, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM et al (2004) Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131(15):3727–3735

    Article  CAS  PubMed  Google Scholar 

  87. Market-Velker BA, Fernandes AD, Mann MR (2010) Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod 83(6):938–950

    Article  CAS  PubMed  Google Scholar 

  88. Salvaing J, Peynot N, Bedhane MN, Veniel S, Pellier E, Boulesteix C et al (2016) Assessment of ‘one-step’ versus ‘sequential’ embryo culture conditions through embryonic genome methylation and hydroxymethylation changes. Hum Reprod 31(11):2471–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barrera AD, Garcia EV, Hamdi M, Sanchez-Calabuig MJ, Lopez-Cardona AP, Balvis NF et al (2017) Embryo culture in presence of oviductal fluid induces DNA methylation changes in bovine blastocysts. Reproduction 154(1):1–12

    Article  CAS  PubMed  Google Scholar 

  90. de Waal E, Mak W, Calhoun S, Stein P, Ord T, Krapp C et al (2014) In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol Reprod 90(2):22

    PubMed  Google Scholar 

  91. Quinn P, Kerin JF, Warnes GM (1985) Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 44(4):493–498

    Article  CAS  PubMed  Google Scholar 

  92. Morbeck DE, Paczkowski M, Fredrickson JR, Krisher RL, Hoff HS, Baumann NA et al (2014) Composition of protein supplements used for human embryo culture. J Assist Reprod Genet 31(12):1703–1711

    Article  PubMed  PubMed Central  Google Scholar 

  93. Biggers JD, Racowsky C (2002) The development of fertilized human ova to the blastocyst stage in KSOM(AA) medium: is a two-step protocol necessary? Reprod Biomed Online 5(2):133–140

    Article  PubMed  Google Scholar 

  94. Mantikou E, Youssef MA, van Wely M, van der Veen F, Al-Inany HG, Repping S et al (2013) Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update 19(3):210–220

    Article  CAS  PubMed  Google Scholar 

  95. Fernandez-Gonzalez R, Ramirez MA, Pericuesta E, Calle A, Gutierrez-Adan A (2010) Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol Reprod 83(5):720–727

    Article  CAS  PubMed  Google Scholar 

  96. Morgan HD, Jin XL, Li A, Whitelaw E, O’Neill C (2008) The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod 79(4):618–623

    Article  CAS  PubMed  Google Scholar 

  97. Zandstra H, Brentjens L, Spauwen B, Touwslager RNH, Bons JAP, Mulder AL et al (2018) Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Hum Reprod 33(9):1645–1656

    Article  CAS  PubMed  Google Scholar 

  98. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18

    Article  CAS  PubMed  Google Scholar 

  99. Estill MS, Bolnick JM, Waterland RA, Bolnick AD, Diamond MP, Krawetz SA (2016) Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertil Steril 106(3):629–39 e10

    Article  CAS  PubMed  Google Scholar 

  100. El Hajj N, Haertle L, Dittrich M, Denk S, Lehnen H, Hahn T et al (2017) DNA methylation signatures in cord blood of ICSI children. Hum Reprod 32(8):1761–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marques CJ, Carvalho F, Sousa M, Barros A (2004) Genomic imprinting in disruptive spermatogenesis. Lancet 363(9422):1700–1702

    Article  CAS  PubMed  Google Scholar 

  102. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16(21):2542–2551

    Article  CAS  PubMed  Google Scholar 

  103. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S (2011) Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril 96(2):344–348

    Article  PubMed  Google Scholar 

  104. Chung K, Coutifaris C, Chalian R, Lin K, Ratcliffe SJ, Castelbaum AJ et al (2006) Factors influencing adverse perinatal outcomes in pregnancies achieved through use of in vitro fertilization. Fertil Steril 86(6):1634–1641

    Article  PubMed  Google Scholar 

  105. Kansal Kalra S, Ratcliffe SJ, Milman L, Gracia CR, Coutifaris C, Barnhart KT (2011) Perinatal morbidity after in vitro fertilization is lower with frozen embryo transfer. Fertil Steril 95(2):548–553

    Article  PubMed  Google Scholar 

  106. Kato O, Kawasaki N, Bodri D, Kuroda T, Kawachiya S, Kato K et al (2012) Neonatal outcome and birth defects in 6623 singletons born following minimal ovarian stimulation and vitrified versus fresh single embryo transfer. Eur J Obstet Gynecol Reprod Biol 161(1):46–50

    Article  PubMed  Google Scholar 

  107. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 98(2):368–377

    Article  PubMed  Google Scholar 

  108. Roque M, Lattes K, Serra S, Sola I, Geber S, Carreras R et al (2013) Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril 99(1):156–162

    Article  PubMed  Google Scholar 

  109. Wang Z, Xu L, He F (2010) Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril 93(8):2729–2733

    Article  CAS  PubMed  Google Scholar 

  110. Ma Y, Ma Y, Wen L, Lei H, Chen S, Wang X (2019) Changes in DNA methylation and imprinting disorders in E9.5 mouse fetuses and placentas derived from vitrified eight-cell embryos. Mol Reprod Dev 86(4):404–415

    Article  CAS  PubMed  Google Scholar 

  111. Bakhtari A, Rahmani HR, Bonakdar E, Jafarpour F, Asgari V, Hosseini SM et al (2014) The interfering effects of superovulation and vitrification upon some important epigenetic biomarkers in mouse blastocyst. Cryobiology 69(3):419–427

    Article  CAS  PubMed  Google Scholar 

  112. Azizi E, Ghaffari Novin M, Naji M, Amidi F, Hosseinirad H, Shams MZ (2021) Effect of vitrification on biogenesis pathway and expression of development-related microRNAs in preimplantation mouse embryos. Cell Tissue Bank 22(1):103–114

    Article  CAS  PubMed  Google Scholar 

  113. Handyside AH, Kontogianni EH, Hardy K, Winston RM (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344(6268):768–770

    Article  CAS  PubMed  Google Scholar 

  114. Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive Technology. Electronic address Aao, Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive T (2018) The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril 109(3):429–436

    Article  Google Scholar 

  115. Treff NR, Marin D, Lello L, Hsu S, Tellier L (2020) PREIMPLANTATION GENETIC TESTING: Preimplantation genetic testing for polygenic disease risk. Reproduction 160(5):A13–AA7

    Article  CAS  PubMed  Google Scholar 

  116. Denomme MM, McCallie BR, Parks JC, Booher K, Schoolcraft WB, Katz-Jaffe MG (2018) Inheritance of epigenetic dysregulation from male factor infertility has a direct impact on reproductive potential. Fertil Steril 110(3):419–28 e1

    Article  PubMed  Google Scholar 

  117. Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 1(8486):884–886

    Article  CAS  PubMed  Google Scholar 

  118. Ethics Committee of the American Society for Reproductive Medicine. Electronic address Aao (2018) Fertility preservation and reproduction in patients facing gonadotoxic therapies: an ethics committee opinion. Fertil Steril 110(3):380–386

    Article  Google Scholar 

  119. Ethics Committee of the American Society for Reproductive Medicine. Electronic address aao, Ethics Committee of the American Society for Reproductive M (2018) Planned oocyte cryopreservation for women seeking to preserve future reproductive potential: an ethics committee opinion. Fertil Steril 110(6):1022–1028

    Article  Google Scholar 

  120. Liang Y, Fu XW, Li JJ, Yuan DS, Zhu SE (2014) DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification. Zygote 22(2):138–145

    Article  CAS  PubMed  Google Scholar 

  121. Chen H, Zhang L, Deng T, Zou P, Wang Y, Quan F et al (2016) Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 86(3):868–878

    Article  CAS  PubMed  Google Scholar 

  122. Liu MH, Zhou WH, Chu DP, Fu L, Sha W, Li Y (2017) Ultrastructural changes and methylation of human oocytes vitrified at the germinal vesicle stage and matured in vitro after thawing. Gynecol Obstet Investig 82(3):252–261

    Article  CAS  Google Scholar 

  123. Milroy C, Liu L, Hammoud S, Hammoud A, Peterson CM, Carrell DT (2011) Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril 95(6):2094–2099

    Article  CAS  PubMed  Google Scholar 

  124. Al-Khtib M, Perret A, Khoueiry R, Ibala-Romdhane S, Blachere T, Greze C et al (2011) Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro. Fertil Steril 95(6):1955–1960

    Article  CAS  PubMed  Google Scholar 

  125. Suo L, Meng Q, Pei Y, Fu X, Wang Y, Bunch TD et al (2010) Effect of cryopreservation on acetylation patterns of lysine 12 of histone H4 (acH4K12) in mouse oocytes and zygotes. J Assist Reprod Genet 27(12):735–741

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yan LY, Yan J, Qiao J, Zhao PL, Liu P (2010) Effects of oocyte vitrification on histone modifications. Reprod Fertil Dev 22(6):920–925

    Article  CAS  PubMed  Google Scholar 

  127. Li J, Yang X, Liu F, Song Y, Liu Y (2019) Evaluation of differentially expressed microRNAs in vitrified oocytes by next generation sequencing. Int J Biochem Cell Biol 112:134–140

    Article  CAS  PubMed  Google Scholar 

  128. Sauvat F, Capito C, Sarnacki S, Poirot C, Bachelot A, Meduri G et al (2008) Immature cryopreserved ovary restores puberty and fertility in mice without alteration of epigenetic marks. PLoS One 3(4):e1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M et al (2009) DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 18(20):3769–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Song S, Ghosh J, Mainigi M, Turan N, Weinerman R, Truongcao M et al (2015) DNA methylation differences between in vitro- and in vivo-conceived children are associated with ART procedures rather than infertility. Clin Epigenetics 7:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Katagiri Y, Aoki C, Tamaki-Ishihara Y, Fukuda Y, Kitamura M, Matsue Y et al (2010) Effects of assisted reproduction technology on placental imprinted gene expression. Obstet Gynecol Int 2010

    Google Scholar 

  132. Santos F, Hyslop L, Stojkovic P, Leary C, Murdoch A, Reik W et al (2010) Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod 25(9):2387–2395

    Article  CAS  PubMed  Google Scholar 

  133. Nelissen EC, Dumoulin JC, Daunay A, Evers JL, Tost J, van Montfoort AP (2013) Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum Reprod 28(4):1117–1126

    Article  CAS  PubMed  Google Scholar 

  134. Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103(3):551–563

    Article  PubMed  Google Scholar 

  135. Klemetti R, Gissler M, Hemminki E (2002) Comparison of perinatal health of children born from IVF in Finland in the early and late 1990s. Hum Reprod 17(8):2192–2198

    Article  PubMed  Google Scholar 

  136. Schieve LA, Ferre C, Peterson HB, Macaluso M, Reynolds MA, Wright VC (2004) Perinatal outcome among singleton infants conceived through assisted reproductive technology in the United States. Obstet Gynecol 103(6):1144–1153

    Article  PubMed  Google Scholar 

  137. Shevell T, Malone FD, Vidaver J, Porter TF, Luthy DA, Comstock CH et al (2005) Assisted reproductive technology and pregnancy outcome. Obstet Gynecol 106(5 Pt 1):1039–1045

    Article  PubMed  Google Scholar 

  138. Ghosh J, Mainigi M, Coutifaris C, Sapienza C (2016) Outlier DNA methylation levels as an indicator of environmental exposure and risk of undesirable birth outcome. Hum Mol Genet 25(1):123–129

    Article  CAS  PubMed  Google Scholar 

  139. Hart R, Norman RJ (2013) The longer-term health outcomes for children born as a result of IVF treatment. Part II--mental health and development outcomes. Hum Reprod Update 19(3):244–250

    Article  CAS  PubMed  Google Scholar 

  140. Ceelen M, van Weissenbruch MM, Prein J, Smit JJ, Vermeiden JP, Spreeuwenberg M et al (2009) Growth during infancy and early childhood in relation to blood pressure and body fat measures at age 8-18 years of IVF children and spontaneously conceived controls born to subfertile parents. Hum Reprod 24(11):2788–2795

    Article  PubMed  Google Scholar 

  141. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA (2008) Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab 93(5):1682–1688

    Article  CAS  PubMed  Google Scholar 

  142. Sakka SD, Loutradis D, Kanaka-Gantenbein C, Margeli A, Papastamataki M, Papassotiriou I et al (2010) Absence of insulin resistance and low-grade inflammation despite early metabolic syndrome manifestations in children born after in vitro fertilization. Fertil Steril 94(5):1693–1699

    Article  CAS  PubMed  Google Scholar 

  143. Chen M, Wu L, Zhao J, Wu F, Davies MJ, Wittert GA et al (2014) Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes 63(10):3189–3198

    Article  CAS  PubMed  Google Scholar 

  144. Novakovic B, Lewis S, Halliday J, Kennedy J, Burgner DP, Czajko A et al (2019) Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat Commun 10(1):3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Halliday J, Wilson C, Hammarberg K, Doyle LW, Bruinsma F, McLachlan R et al (2014) Comparing indicators of health and development of singleton young adults conceived with and without assisted reproductive technology. Fertil Steril 101(4):1055–1063

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH 2P50HD068157-06A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sapienza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senapati, S., Mani, S., Ghosh, J., Coutifaris, C., Sapienza, C., Mainigi, M. (2022). Epigenetics and Assisted Reproductive Technologies. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_7

Download citation

Publish with us

Policies and ethics