Skip to main content

Nanoparticles-Based Adsorbents for Water Pollutants Removal

  • Chapter
  • First Online:
Rapid Refrigeration and Water Protection

Part of the book series: Springer Water ((SPWA))

  • 198 Accesses

Abstract

Water pollution can cause severe health hazards in living organisms since most of the contaminants are toxic, mutagenic, and carcinogenic. There is a critical need to decontaminate the water from industrial effluents preceding their discharge into water bodies. The current chapter explores the potential of various nanoparticle-based adsorbents with special reference to nano zero-valent iron (NZVI), iron oxide, titanium, alumina, and silica in the field of adsorptive hosting of inorganic and organic pollutants from aqueous solutions. The nano adsorbents exhibit greater adsorption capacity, rapid adsorption rate, and competence to host various pollutants, recyclability, and reusability when compared to conventional adsorbents. These properties emphasize the relevance of nano adsorbents for the remediation of water contaminated with heavy metal ions, dyes, and chlorinated organic compounds. This chapter gives an overview of the progress and application of bare and functionalized metal and metal oxide nanoparticles for this purpose. Moreover, the mechanism of heavy metal ions, dyes, and organic chlorinated compounds removal by nanoparticles has also been discussed. The present chapter offers advanced information about the imperative characteristics of some metal and metal oxide-based nanoparticles and demonstrates their advantages as adsorbents in water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  2. Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N (2016) Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 391:69–88

    Article  CAS  Google Scholar 

  3. Carroll DO, Sleep B, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resources 51:104–122

    Article  CAS  Google Scholar 

  4. Kumar V, Jain A, Wadhawan S, Mehta SK (2018) Synthesis of biosurfactant-coated magnesium oxide nanoparticles for methylene blue removal and selective Pb2+ sensing. IET Nanobiotechnol 12(3):241–253

    Article  Google Scholar 

  5. Dil EA, Ghaedi M, Asfaram A, Hajati S, Mehrabi F, Goudarzi A (2017) Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: Chemometric optimization and modeling. Ultrason Sonochem 34:677–691

    Article  CAS  Google Scholar 

  6. Mautner A, Kwaw Y, Wieland K, Mvubuc M, Bothac A, Jacob M, John MA, Siqueira G, Bismarck A (2019) Natural fibrenanocellulose composite filters for the removal of heavy metal ions from water. Ind Crops Prod 133:325–332

    Article  CAS  Google Scholar 

  7. Araya M, Mc Goldrick MC, Klevay LM, Strain JJ, Robson P, Nielsen F, Olivares M, Pizarro F, Johnson L, Poirier KA (2001) Determination of an acute no-observed adverse effect level (NOAEL) for copper in water. Regul Toxicol Pharmacol 34:137–145

    Article  CAS  Google Scholar 

  8. Zamani HA, Rajabzadeh G, Firouz A, Ganjali MR (2007) Determination of copper (II) in wastewater by electroplating samples using a PVC membrane copper (II) selective electrode. J Anal Chem 62:1080–1087

    Article  CAS  Google Scholar 

  9. European-Comission (2003) Opinion of the scientific committee on food on the tolerable upper intake level of copper (SCF/CS/NUT/UPPLEV/57 Final)

    Google Scholar 

  10. WHO (2004) Copper in Drinking-Water (WHO/SDE/WSH/03.04/88).

    Google Scholar 

  11. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  12. Jarup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  CAS  Google Scholar 

  13. Pourreza N, Rastegarzadeh S, Larki A (2014) Nano TiO2 modified with 2- mercaptobenzimidazole as an efficient adsorbent for removal of Ag (I) from aqueous solutions. J Ind Eng Chem 20:127–132

    Article  CAS  Google Scholar 

  14. ATSDR (Agency for Toxic Substances and Disease Registry) (2005) Toxicological profile for zinc. (Available online: http://www.atsdr.cdc.gov/toxprofiles/tp60.pdf. Accessed on 20/03/2015)

  15. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 929(3):407–418

    Article  CAS  Google Scholar 

  16. Ghasemi E, Heydari A, Sillanp M (2017) Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd (II) from water and soil environmental samples. Microchem J 131:51–56

    Article  CAS  Google Scholar 

  17. Minh Chu TP, Nguyen NT, Vu TL, Dao TH, Dinh LC, Nguyen HL, Hoang TH, Le TS, Pham TD (2019) Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials 12:450

    Article  CAS  Google Scholar 

  18. Mahmoud HR, Ibrahim SM, El-Molla SA (2016) Textile dye removal from aqueous solutions using cheap MgO nanomaterials: adsorption kinetics, isotherm studies and thermodynamics. Adv Powder Technol 27:223–231

    Article  CAS  Google Scholar 

  19. Jain R, Sharma N, Bhargava M (2003) Electrochemical degradation of rhodamine dye in textile and paper industries effluent. J Sci Ind Res 62:1138–1144

    CAS  Google Scholar 

  20. Patra S, Roy E, Madhuri R, Sharma PK (2016) Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes. J Ind Eng Chem 33:226–238

    Article  CAS  Google Scholar 

  21. Bhagya NP, Prashantha PA, Raveendra RS, Sathyanarayani S, Ananda S, Nagabhushanad BM, Nagabhushanae RH (2016) Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: kinetic and isotherm studies. J Asian Ceramic Soc 4(1):68–74

    Article  Google Scholar 

  22. Syed P, Shabudeen S (2011) Study of the removal of malachite green from aqueous solution by using solid agricultural waste research journal of chemical sciences res. J Chem Sci 1:88–104

    CAS  Google Scholar 

  23. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329

    Article  CAS  Google Scholar 

  24. Kushwaha AK, Gupta N, Chattopadhyaya MC (2010) Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucuscarota. J Chem Pharm Res 2:34–45

    CAS  Google Scholar 

  25. Efome JE, Rana D, Matsuura T, Lan CQ (2019) Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano fibrous metal-organic framework membrane filtration process. Sci Total Environ 674:355–362

    Article  CAS  Google Scholar 

  26. Martína DM, Faccinia M, García MA, Amantia D (2018) Highly efficient removal of heavy metal ions from polluted water using ion selective polyacrylonitrile nanofibers. J Environ Chem Eng 6:236–245

    Article  CAS  Google Scholar 

  27. Naseem K, Begum R, Wu W, Usman M, Irfan A, Al-Sehemi AG, Farooqi ZH (2019) Adsorptive removal of heavy metal ions using polystyrene-poly isopropylmethacrylamide-acrylic acid core/shell gel particles: adsorption isotherms and kinetic study. J Mol Liq 277:522–531

    Article  CAS  Google Scholar 

  28. Yuan X, Anc N, Zhu Z, Sun H, Zhengb J, Jia M, Lud C, Zhang W, Liu N (2018) Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions. Proc Saf Environ Prot 119:320–329

    Article  CAS  Google Scholar 

  29. Cegłowski M, Gierczyk B, Frankowski M, Popend Ł (2018) A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React Funct Polym 131:64–74

    Article  CAS  Google Scholar 

  30. Kwiatkowski M, Broniek E (2017) An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation, Colloids Surf A 529:443–453

    Google Scholar 

  31. Valderrama C, Barios JI, Caetano M, Farran A, Cortina JL (2010) Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hyper crosslinked polymeric resin (MN200). React Funct Polym 70:142–150

    Article  CAS  Google Scholar 

  32. Otero M, Grande CA, Rodrigues AE (2004) Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. React Funct Polym 60:203–213

    Article  CAS  Google Scholar 

  33. Narkiewicz U, Pełech I, Podsiadły M, Cegłowski M, Schroeder G, Kurczewska J (2009) Preparation and characterization of magnetic carbon nanomaterials bearing APTS silica on their surface. J Mater Sci 45:1100–1106

    Article  CAS  Google Scholar 

  34. Jian M, Liu B, Zhang G, Liu R, Zhang X (2015) Adsorptive removal of arsenic from aqueous solution by zeoliticimidazolate framework-8 (ZIF-8) nanoparticles. Colloid Surf A 465:67–76

    Google Scholar 

  35. Wadhawan S, Jain A, Nayyar J, Mehta S K (2020) Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. J Water Process Eng 33:101038

    Google Scholar 

  36. Figueroa RA, MacKay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39:6664–6671

    Article  CAS  Google Scholar 

  37. Mon J, Flury M, Harsh JB (2006) Sorption of four triarylmethane dyes in a sandy soil determined by batch and column experiments. Geoderma 133:217–224

    Article  CAS  Google Scholar 

  38. Wang S, Wang H (2015) Adsorption behavior of antibiotic in soil environment: a critical review. Front Environ Sci Eng 9:565–574

    Article  CAS  Google Scholar 

  39. Maleki A, Hayati B, Najafi F, Gharibi F, Joo SW (2016) Heavy metal adsorption from industrial wastewater by PAMAM/TiO2nanohybrid: preparation, characterization and adsorption studies. J Mol Liq 224:95–104

    Article  CAS  Google Scholar 

  40. Demirbilek C, Dinç CO (2012) Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics. Carbohydr Polym 90:1159–1167

    Article  CAS  Google Scholar 

  41. Bilba N, Bilba D, Moroi G (2004) Synthesis of a polyacrylamidoxime chelating fiber and its efficiency in the retention of palladium ions. J Appl Polym Sci 92:3730–3735

    Article  CAS  Google Scholar 

  42. Gong B (2002) Synthesis of polyacrylaminoimidazole chelating fiber and properties of concentration and separation of trace Au Hg and Pd from samples. Talanta 57:89–95

    Article  CAS  Google Scholar 

  43. Chang X, Su Q, Liang D, Wei X, Wang B (2002) Efficiency and application of poly (acryl dinitro phenyl amidrazone -dinitroacrylphenylhydrazine) chelating fiber for pre-concentrating and separating trace Au(III), Ru(III), In(III), Bi(III), Zr(IV), V(V), Ga(III) and Ti(IV) from solution samples. Talanta 57:253–261

    Article  CAS  Google Scholar 

  44. Deng S, Bai R (2004) Removal of trivalent and hexavalent chromium with aminatedpolyacrylonitrile fibers: performance and mechanisms. Water Res 38:2424–2432

    Article  CAS  Google Scholar 

  45. Deng S, Bai R, Chen JP (2003) Aminatedpolyacrylonitrile fibers for lead and copper removal. Langmuir 19:5058–5064

    Article  CAS  Google Scholar 

  46. Ma N, Yang Y, Chen S, Zhang Q (2009) Preparation of amine group containing chelating fiber for thorough removal of mercury ions. J Hazard Mater 171:288–293

    Article  CAS  Google Scholar 

  47. Martína DM, FacciniaM GMA, Amantiaa D (2018) Highly efficient removal of heavy metal ions from polluted water using ion selective polyacrylonitrile nanofibers. J Environ Chem Eng 6:236–245

    Article  CAS  Google Scholar 

  48. Kim EJ, Lee CS, Chang YY (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5:9628–9634

    Article  CAS  Google Scholar 

  49. Wang X, Ding X, Yao S, Vu X, Feng Q, Wang Z (2014) High super capacitor and adsorption behaviors of flower-like MoS2 nanostructures. J Mater Chem A 2:15958–15963

    Article  CAS  Google Scholar 

  50. Guo YY, Guo H, Wang YP (2014) Designed hierarchical MnO2 microspheres assembled from nanofilms for removal of heavy metal ions. RSC Adv 4:14048–14054

    Article  CAS  Google Scholar 

  51. Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5(19):9628–9634

    Article  CAS  Google Scholar 

  52. Zeng T, Yu Y, Li Z, Zuo J, Kuai Z, Jin Y, Wang Y, Wu A, Peng C (2019) 3D MnO2 nanotubes reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Mater Chem Phys 231:105–108

    Article  CAS  Google Scholar 

  53. Kharissova OV, Dias HVR, Kharisov BI (2015) Magnetic adsorbents based on micro and nano-structured materials. RSC Adv 5(9):6695–6719

    Article  CAS  Google Scholar 

  54. Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93

    Article  CAS  Google Scholar 

  55. Xu PA, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  56. Zhang XM, Liu JY, Kelly SJ, Huang XJ, Liu JH (2014) Biomimetic snowflake shaped magnetic micro-/nanostructures for highly efficient adsorption of heavy metal ions and organic pollutants from aqueous solution. J Mater Chem A 2(30):11759–11767

    Article  CAS  Google Scholar 

  57. Fan H, Mab X, Zhou S, Huang J, Liu Y, Liu Y (2019) Highly efficient removal of heavy metal ions by carboxymethyl cellulose immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydr Polym 213:39–49

    Article  CAS  Google Scholar 

  58. Huang XG, Zhan XZ, Wen CL, Xu F, Luo LJ (2018) Amino-functionalized bacterial cellulose activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution. J Mater Sci Technol 34(5):855–863

    Article  CAS  Google Scholar 

  59. Mahdavi S, Jalali M, Afkhami A (2012) Removal of heavy metals from aqueous solutions using Fe3O4, ZnO and CuO nanoparticles. J Nanopart Res 14:846–863

    Article  CAS  Google Scholar 

  60. Pylypchuk IV, Kessler VG, Seisenbaeva GA (2018) Simultaneous removal of acetaminophen, diclofenac, and Cd(II) by trametes versicolor laccase immobilized on Fe3O4/SiO2-DTPA hybrid nanocomposites. ACS Sustain Chem Eng 6(8):9979–9989

    Article  CAS  Google Scholar 

  61. Yu Y, Li Y, Wang YQ, Zou BF (2018) Self-template etching synthesis of urchin like Fe3O4 microspheres for enhanced heavy metal ions removal. Langmuir 34(32):9359–9365

    Article  CAS  Google Scholar 

  62. Liu Y, Zeng G, Tang L, Cai Y, Pang Y, Zhang Y, Yang G, Zhou Y, He X, He Y (2015) Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J Colloid Interface Sci 448:451–459

    Article  CAS  Google Scholar 

  63. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23:1307–1315

    Article  CAS  Google Scholar 

  64. Gamra MA, Ahmed MA (2015) TiO2 nanoparticles for removal of malachite green dye from waste water. Adv Chem Eng Sci 5:373–388

    Article  CAS  Google Scholar 

  65. Kansal SK, Sood S, Umar A, Mehta SK (2013) Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloys Comp 581(25):392–397

    Article  CAS  Google Scholar 

  66. Sood S, Umar A, Mehta SK, Kansal SK (2015) Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J Colloid Interface Sci 450:213–222

    Article  CAS  Google Scholar 

  67. Sood S, Umar A, Mehta SK, Sinha ASK, Kansal SK (2015) Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles. Ceramic Int 41(3):3533–3540. https://www.sciencedirect.com/science/article/pii/S027288421401743X

  68. Kataria N, Garg VK, Jain M, Kadirvelu K (2016) Preparation, characterization and potential use of flower shaped Zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Adv Powder Technol 27(4):1180–1188

    Article  CAS  Google Scholar 

  69. Saharan P, Chaudhary GR, Lata S, Mehta SK, Mor S (2015) Ultra fast and effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason Sonochem 22:317–325

    Article  CAS  Google Scholar 

  70. Chaudhary GR, Saharan P, Ahmad U, Mehta SK, Mor S (2013) Well-Crystalline ZnO nanostructures for the removal of acridine orange and C. brilliant blue R-250 hazardous dyes, Sci Adv Mater 5(12):1886–1894

    Google Scholar 

  71. Kansal SK, Lamba R, Mehta SK, Umar A (2013) Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles Mater. Lett 106(1):385–389

    CAS  Google Scholar 

  72. Rajabi HR, Arjmand H, Hoseini SJ, Nasrabadi H (2015) Surface modified magnetic nanoparticles as efficient and green sorbents: synthesis, characterization, and application for the removal of anionic dye. J Magn Magn Mater 394:7–13

    Article  CAS  Google Scholar 

  73. Aashima US, Arora A, Gautam S, Singh S, Choudhary RJ, Mehta SK (2019) Magnetically retrievable Ce-doped Fe3O4 nanoparticles as scaffolds for the removal of azo dyes. RSC Adv 9:23129

    Article  CAS  Google Scholar 

  74. Saharan P, Chaudhary GR, Mehta SK, Umar A (2016) Efficient photocatalytic degradation of victoria blue R and fast green FCF dyes using γ-Fe2O3 and Fe3O4 nanoparticles. Nanosci Nanotechnol Lett 8(11):965–971

    Article  Google Scholar 

  75. Chaudhary GR, Saharan P, Kumar A, Mehta SK, Mor S, Ahmad U (2013) Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. J Nanosci Nanotechnol 13(5):3240–3245

    Google Scholar 

  76. Lamba R, Umar A, Mehta SK, Kansal SK (2015) Well-crystalline porous ZnO–SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta 131:490–498

    Article  CAS  Google Scholar 

  77. Lamba R, Umar A, Mehta SK, Kansal SK (2015) ZnO doped SnO2 nanoparticles hetero junction photo-catalyst for environmental remediation. J Alloys Comp 653(25):327–333

    Article  CAS  Google Scholar 

  78. Kaur S, Sharma S, Umar A, Singh S, Mehta SK, Kansal SK (2017) Solar light driven enhanced photocatalytic degradation of brilliant green dye based on ZnS quantum dots. Superlattices Microstruct 103:365–375

    Article  CAS  Google Scholar 

  79. Kaur M, Mehta SK, Kansal SK (2018) Visible light driven photocatalytic degradation of ofloxacin and malachite green dye using cadmium sulphide nanoparticles. J Environ Chem Eng 6(3):3631–3639

    Article  CAS  Google Scholar 

  80. Shukla S, Chaudhary S, Umar A, Chaudhary GR, Kansal SK, Mehta SK (2016) Surfactant functionalized tungsten oxide nanoparticles with enhanced photocatalytic activity. Chem Eng J 288:423–443

    Article  CAS  Google Scholar 

  81. Shukla S, Chaudhary S, Umar A, Chaudhary GR, Mehta SK (2015) Dodecyl ethyl dimethyl ammonium bromide capped WO3 nanoparticles: efficient scaffolds for chemical sensing and environmental remediation. Dalton Trans 44:17251–17260

    Article  CAS  Google Scholar 

  82. Simkovic K, Derco J, Valicova M (2015) Removal of selected pesticides by nano zero-valent iron. Acta Chim Slov 8(2):152–155

    Article  CAS  Google Scholar 

  83. Zhang WX (2003) Nano scale iron particles for environmental remediation: an overview. J Nanopart Res. 5:323–332

    Article  CAS  Google Scholar 

  84. Kanet SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier. Mater Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  85. Sikder MT, Mihara Y, Islam MS, Saito T, Tanaka S, Kurasaki M (2015) Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem Eng J 236:378–387

    Article  CAS  Google Scholar 

  86. Khan MS, Khan AA, Bangash FU, Shah SS, Khan P (2013) Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent, J Chem Soc Pak 35(3)

    Google Scholar 

  87. Arabi S, Sohrabi MR (2014) Removal of methylene blue, a basic dye, from aqueous solutions using nanozerovalent iron Water science and technology. Water Sci Technol 70(1):24–31

    Google Scholar 

  88. Lin TY, Weng HC, Chen YF (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron, separation and purification effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64(1):26–30

    Article  CAS  Google Scholar 

  89. Shojaei S, Khammarnia S, Shojaei S, Sasani M (2017) Removal of reactive red 198 by nanoparticle zero valent iron in the presence of hydrogen peroxide. J Water Environ Nanotechnol 2(2):129–135

    CAS  Google Scholar 

  90. Li S, Wang W, Yi Y, Zhnag LW (2014) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123

    Google Scholar 

  91. Xiao ZH, Xu Y, Yuan M, Jing X, Huang J, Li Q, Sun D (2017) Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. Sep Purif Technol 174:466–473

    Article  CAS  Google Scholar 

  92. Kanet SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  93. Zimmermann AC, Mecabo A, Fagundes T, Rodrigues CA (2010) Adsorption of Cr (VI) using Fe-crosslinked chitosan complex (Ch–Fe). J Hazard Mater 179:192–196

    Google Scholar 

  94. Sikder MT, Miharac Y, Islam MS, Saitod T, Tanaka S, Kurasaki M (2014) Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nano zero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem Eng J 236:378–387

    Article  CAS  Google Scholar 

  95. Arabi S, Sohrabi MR (2014) Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water Sci Technol 70(1):24–31

    Article  CAS  Google Scholar 

  96. Hassan MMA, Hamad HA, Shther DE (2019) Treatment of contaminated water with industrial dyes by using nano zero valent iron (NZVI) and supported on pillared clay. Adv Anal Chem 9(1):1–7

    Google Scholar 

  97. Kansal SK, Sood S, Umar A, Mehta SK (2013) Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloys Compd 581:392–397

    Article  CAS  Google Scholar 

  98. Sood S, Kumar S, Umar A, Kaur A, Mehta SK, Kansal SK (2015) TiO2 quantum dots for the photocatalytic degradation of indigo carmine dye. J Alloys Compd 650:193–198

    Article  CAS  Google Scholar 

  99. Yang Y, Flatebo C, Liang J, Dong P, Yuan J, Wang T, Zhang J, Chen W, Wu J, Ajayan PM, Ci L, Li Q, Lou J (2016) Towards methyl orange degradation by direct sunlight using coupled TiO2 nanoparticles and carbonized cotton T-shirt. Appl Mater Today 3:57–62

    Article  Google Scholar 

  100. Mittal H, Ray SS (2016) A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int J Biol Macromol 88:66–80

    Article  CAS  Google Scholar 

  101. Seisenbaeva GA, Daniel G, Nedelec JM, Gunko YK, Kessler VG (2012) High surface area ordered mesoporous nano-titania by a rapid surfactant-free approach. J Mater Chem 22:20374–20380

    Article  CAS  Google Scholar 

  102. Malhat FM, Youssef A (2014) Selective removal of heavy metal from drinking water using titanium oxide nanowire. Macromol Symp 337:96–101

    Article  CAS  Google Scholar 

  103. Deedar N, Irfan A, Qazi IA (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408

    Article  CAS  Google Scholar 

  104. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem Eng J 220:161–171

    Article  CAS  Google Scholar 

  105. Abbasizadeh S, Keshtkar A, R, Mousavian M A, (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20:1656–1664

    Article  CAS  Google Scholar 

  106. Him C, Tsang A, Zeng KY, Zhao W, Zhang T, Zhan Y, Ruijie X, Leung DYC, Huang H (2019) Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast. Environ Int 125:200–228

    Article  CAS  Google Scholar 

  107. Tsang CHA, Zeng KY, Zhao W, Zhang T, Zhan Y, Xie R, Dennis YC, Huang LH (2019) Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast. Environ Int 125:200–228

    Google Scholar 

  108. Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem E 58:333–343

    Article  CAS  Google Scholar 

  109. Baysal A, Kuznek C, Ozcan M (2018) Starch coated titanium dioxide nanoparticles as a challenging sorbent to separate and pre concentrate some heavy metals using graphite furnace atomic absorption spectrometry, Int J Environ Anal Chem 98(1):45–55

    Google Scholar 

  110. Breault TM, Bartlett BM (2013) Composition dependence of TiO2: (Nb, N)-x compounds on the rate of photocatalytic methylene blue dye degradation. J Phys Chem C 117:8611–8618

    Article  CAS  Google Scholar 

  111. Sood S, Mehta SK, Umar A, Kansal SK (2014) The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles, New. J Chem 38:3127–3136

    CAS  Google Scholar 

  112. Kuvarega AT, Krause RWM, Mamba BB (2011) Nitrogen/palladium Co doped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115:22110–22120

    Article  CAS  Google Scholar 

  113. Sahoo C, Gupta AK, Pillai IMS (2012) Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile waste water. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(10):1428–1438

    Article  CAS  Google Scholar 

  114. Akhbarizadeh R, Shayestefar DMRE (2014) Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD. Mine Water Environ 33:89–96

    Article  CAS  Google Scholar 

  115. Rajput S, Singh LP, Jr CUP, Mohan D (2017) Lead (Pb2+) and copper (Cu2+) remediation from water using Super paramagnetic maghemite (–Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). J Colloid Interface Sci 492:176–190

    Google Scholar 

  116. Watts MP, Coker VS, Parry SA, Pattrick RAD, Thomas RAP, KalinR LJR (2015) Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue. Appl Geochem 54:27–42

    Article  CAS  Google Scholar 

  117. Shan C, Ma Z, Tong M, Ni J (2015) Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4 @SiO2 magnetic nanoparticles. Water Res 69:252–260

    Article  CAS  Google Scholar 

  118. Mahmoud ME, Abdelwahab MS, Abdou AEH (2016) Enhanced removal of lead and cadmium from water by Fe3O4 cross linked-O-phenylenediaminenano-composite. Sep Sci Technol 51:237–247

    Article  CAS  Google Scholar 

  119. Lide DR (1992) Handbook of chemistry and physics. 73rd edn. CRC Press, Boca Raton, FL, pp 12–18

    Google Scholar 

  120. Iconaru SL, Guégan R, Popa CL, MotelicaHeino M, Ciobanu CS, Predoi D (2016) Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl Clay Sci 134:128–135

    Article  CAS  Google Scholar 

  121. Giraldo L, Erto A, Carlos J, Piraján M (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption19(2):465–474

    Google Scholar 

  122. Zhu X, Song T, Lv Z, Ji G (2016) High-efficiency and low-cost α-Fe2O3 nanoparticles coated volcanic rock for Cd (II) removal from wastewater. Process Saf Environ 104:373–381

    Article  CAS  Google Scholar 

  123. Ren T, He P, Niu W, Wu Y, Ai L, Gou X (2013) Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Environ Sci Pollut Res 20:155–162

    Article  CAS  Google Scholar 

  124. Patwardhan SV (2012) Chemistry of aqueous silica nanoparticles surfaces and the mechanism of selective peptide adsorption. J Am Chem Soc 134:6244–6256

    Article  CAS  Google Scholar 

  125. Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X (2012) Nanomaterials as sorbents to remove heavy metal ions in water treatment. J Environ Analyt Toxicol 2:2–7

    Article  Google Scholar 

  126. Takafuji M, Ide S, Ihara H, Xu ZH (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983

    Article  CAS  Google Scholar 

  127. Song J, Kong H, Jang J (2011) Adsorption of heavy metal ions from aqueous solution by polyrhodanine encapsulated magnetic nanoparticles. J Colloid Interface Sci 359:505–511

    Article  CAS  Google Scholar 

  128. Chávez-Guajardo AE, Medina-Llama JC, Maqueira L, Andrade CAS, Alves KGB, Melo CPD (2015) Efficient removal of Cr(VI) and Cu(II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836

    Article  CAS  Google Scholar 

  129. Madrakian T, Afkhami A, Zolfigol MA, Ahmadi M, Koukabi N (2012) Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples. Nano-Micro Lett 4:57–63

    Article  CAS  Google Scholar 

  130. Adeli M, Yamini Y, Faraji M (2017) Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab J Chem 10:S514–S521

    Article  CAS  Google Scholar 

  131. Magnet C, Lomenech C, Hurel C, Reilhac P, Giulieri F, Chaze AM, Persello J, Kuzhir P (2017) Adsorption of nickel ions by oleate-modified magnetic iron oxide nanoparticles. Environ Sci Pollut R 24:7423–7435

    Article  CAS  Google Scholar 

  132. Madrakian T, Afkhami A, Rezvani-jalal N, Ahmadi M (2014) Removal and preconcentration of lead(II), cadmium(II) and chromium(III) ions from wastewater samples using surface functionalized magnetite nanoparticles. J Iran Chem Soc 11:489–498

    Article  CAS  Google Scholar 

  133. Behbahani NS, Rostamizadeh K, Yaftian MR, Zamani A, Ahmadi H (2014) Covalently modified magnetite nanoparticles with PEG: preparation and characterization as nano-adsorbent for removal of lead from wastewater. J Environ Health Sci 12:103

    Google Scholar 

  134. Rahbar N, Jahangiri A, Boumi S, Khodayar MJ (2014) Mercury removal from aqueous solutions with chitosan-coated magnetite nanoparticles optimized using the Box-Behnken design. Jundishapur J Nat Pharm Prod 9(2)

    Google Scholar 

  135. Madrakian T, Afkhami A, ZadpourB AM (2015) New synthetic mercaptoethylaminohomopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. J Ind Eng Chem 21:1160–1166

    Article  CAS  Google Scholar 

  136. Huang SH, ChenD H (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by anamino-functionalized magnetic nano-adsorbent. J Hazard Mater 16:174–179

    Article  CAS  Google Scholar 

  137. Verma M, Tyagi I, Chandra R, Gupta VK (2017) Adsorptive removal of Pb (II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. J Mol Liquids 225:936–944

    Google Scholar 

  138. Fan H, Ma X, Zhou S, Huang J, Liu Y, Liu Y (2019) Highly efficient removal of heavy metal ions by carboxymethylcelluloseimmobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydr Polym 213:39–49

    Article  CAS  Google Scholar 

  139. Gao J, He Y, Zhao X, Ran X, Wuc Y, Su Y, Dai J (2016) Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution. J Colloid Interface Sci 481:220–228

    Article  CAS  Google Scholar 

  140. Liu JF, Shanzhao Z, Binjiang G (2008) Coating of Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  Google Scholar 

  141. Lin C, Lin YS, Ho JM (2016) Adsorption of Reactive Red 2 from aqueous solutions using Fe3O4 nanoparticles prepared by co-precipitation in a rotating packed bed. J Alloy Comp 666:153–158

    Article  CAS  Google Scholar 

  142. Muthukumaran C, Sivakumar VM, Thirumarimurugan M (2016) Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J Taiwan Inst Chem Eng 63:354–362

    Article  CAS  Google Scholar 

  143. He Y, Cheng Z, Qin Y, Xu B, Ning L, Zhou L (2015) Facile synthesis and functionalization of hyperbranched polyglycerol capped magnetic Fe3O4 nanoparticles for efficient dye removal. Mater Lett 151:100–103

    Article  CAS  Google Scholar 

  144. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi MS, Nazmara A, Mahvi H (2016) Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies. J Mag Mag Mater 404:179–189

    Article  CAS  Google Scholar 

  145. Wu R, Liu JH, Zhao L, Zhang X, Xie J, Yu B, Ma X, Yang ST, Wang H, Liu Y (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2:907–913

    Article  CAS  Google Scholar 

  146. Asfaram A, Ghaedi M, Hajati S, Goudarzi A, Dil EA (2017) Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4 nanoparticle-loaded activated carbon. Ultrason Sonochem 34:1–12

    Article  CAS  Google Scholar 

  147. Kotsyuda SS, Tomina VV, Zub YL, Furtat IM, Melnyk IV (2017) Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications. Appl Surf Sci 420:782–791

    Article  CAS  Google Scholar 

  148. Mahmoud ME, Fekry NA, El-Latif MMA (2016) Nanocomposites of nanosilica-immobilized-nanopolyaniline and cross linked nanopolyaniline for removal of heavy metals. Chem Eng J 304:679–691

    Article  CAS  Google Scholar 

  149. Jiang Z, Xie J, Jiang D, Yan Z, Jing J, Liu D (2014) Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO2core–shell nanoparticles: kinetic and thermodynamic profile. Appl Surface Sci 292:301–310

    Article  CAS  Google Scholar 

  150. Giles D, Mohapatra M, Issa TB, Anand S, Singh P (2011) Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manag 92:3011–3022

    Article  CAS  Google Scholar 

  151. Prabhakar R, Samadder SR (2018) Low cost and easy synthesis of aluminium oxide nanoparticles for arsenite removal from groundwater: a complete batch study. J Mol Liquids 250:192–201

    Article  CAS  Google Scholar 

  152. Hojamberdiev M, Daminova SS, Kadirova ZC, Sharipov KT, Mtalo F, Hasegawa M (2018) Ligand-immobilized spent alumina catalyst for effective removal of heavy metal ions from model contaminated water. J Environ Chem Eng 6:4623–4633

    Article  CAS  Google Scholar 

  153. Saadi Z, Saadi R, Fazaeli R (2013) Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured alumina. J Nanostruct Chem 3:1–8

    Article  Google Scholar 

  154. Tabesh S, Davar F, LoghmanEstarki RM (2018) Preparation of Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloys Compd 730:441–449

    Article  CAS  Google Scholar 

  155. Stietiya MH, Wang JJ (2014) Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J Environ Qual 43:498

    Article  CAS  Google Scholar 

  156. Poursani AS, Nilchi A, Hassani AH, Shariat M, Nouri J (2015) A novel method for synthesis of nano Al2O3: Study of adsorption behavior of chromium, nickel, cadmium and lead ions. Int J Environ Sci Technol 12:2003–2014

    Article  CAS  Google Scholar 

  157. Mahdavi S, Jalali M, Afkhami A (2015) Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol Environ Policy 17:85–102

    Article  CAS  Google Scholar 

  158. Patra AK, Dutta BAA (2012) Self-assembled mesoporous Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water. J Hazard Mater 201:170–177

    Article  CAS  Google Scholar 

  159. Wang X, Zhan C, Kong B, Zhu X, Liu J, Xu W, Cai W, Wang H (2015) Self-curled coral like Al2O3 nanoplates for use as an adsorbent. J Colloid Interface Sci 453:244–251

    Article  CAS  Google Scholar 

  160. Nguyen TMT, Do TPT, Hoang TS, Nguyen NV, Pham HD, Nguyen TD, Pham TNM, Le TS, Pham TD (2018) Adsorption of anionic surfactants onto alumina: characteristics, mechanisms, and application for heavy metal removal. Int J Polym Sci 2830286(11)

    Google Scholar 

  161. Pham T D, Tran T T, Le V A, Pham T T, Dao T H, Le T S (2019)Adsorption characteristics of molecular oxytetracycline onto alumina particles: the role of surface modification with an anionic surfactant. J Mol Liquids 287:110900

    Google Scholar 

  162. Pham T, Do TU, Pham TT, Nguyen TAH, Nguyen TKT, Vu ND, Le TS, Vu CM, Kobayashi M (2019) Adsorption of poly (styrenesulfonate) onto different-sized alumina particles: characteristics and mechanisms. Colloid Polym Sci 297:13–22

    Article  CAS  Google Scholar 

  163. Ghaemi N (2016) A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl Surface Sci 364:221–228

    Article  CAS  Google Scholar 

  164. Chu TPM, Nguyen NT, Vu TL, Dao TH, Dinh LC, Nguyen HL, Hoang TH, Le TS, Pham TD (2019) Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Mater 12:450

    Article  CAS  Google Scholar 

  165. Ali S, Abbas Y, Zuhra Z, Butlerc IS (2019) Synthesis of y-alumina (Al2O3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater. Nanoscale Adv 1:2–13

    Google Scholar 

  166. Banerjee S, Dubey S, Gautam RK, Chattopadhyaya MC, Sharma YC (2019) Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab J Chem 12(8):5339–5354

    Article  CAS  Google Scholar 

  167. Huang CC, Lo SL, Lien HL (2015) Vitamin B12-mediated hydro dechlorination of dichloromethane by bimetallic Cu/Al particles. Chem Eng J 273:413–420

    Article  CAS  Google Scholar 

  168. Wang HW, Peng P, Fennell DE (2015) Rapid dechlorination of 1,2,3,4-TCDD by Ag/Fe bimetallic particles. Chem Eng J 273:465–471

    Article  CAS  Google Scholar 

  169. Hong HJ, Farooq W, Yang JS, Yang JW (2010) Separ Sci Technol 45(688):1975–1981

    Article  CAS  Google Scholar 

  170. Chen LH, Huang CC, Lien HL (2008) Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 73:692–697

    Article  CAS  Google Scholar 

  171. Lin CJ, Liou YH, Lo SL (2009) Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Chemosphere 74(2):314–319

    Google Scholar 

  172. Ma L, Ding Z, Gao T, Zhou R, Xu W, Liu J (2004) Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system. Chemosphere 55(9):1207–1212

    Article  CAS  Google Scholar 

  173. Fang W, Xu C, Zheng J, Chen G, Jiang K (2015) Fabrication of Cu–Ag bimetal nanotube-based copper silicates for enhancement of antibacterial activities. RSC Adv 5(694):39612–39619

    Article  CAS  Google Scholar 

  174. Zhang Z, Shen Q, Cissoko N, Wo J, Xu X (2010) Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. J Hazard Mater 182(867):252–258

    Article  CAS  Google Scholar 

  175. Choi JH, Kim YH (2009) Reduction of 2, 4, 6-trichlorophenol with zero-valent zinc and catalyzed zinc. J Hazard Mater 166:984–991

    Article  CAS  Google Scholar 

  176. Yang B, Deng S, Yu G, Lu Y, Zhang H, Xiao J, Chen G, Cheng X, Shi L (2013) Pd/Al bimetallic nanoparticles for complete hydro dechlorination of 3-chlorophenol in aqueous solution. Chem Eng J 219:492–498

    Article  CAS  Google Scholar 

  177. Lin Y, Shih, Mac Farlane J (2015) Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles. Chem Eng J 262:59–67

    Google Scholar 

  178. Nagpal V, Bokare AD, Chikate RC, Rode CV, Paknikar KM (2010) Reductive dechlorination of γ-hexachlorocyclohexane using Fe–Pd bimetallic nanoparticles. J Hazard Mater 175:680–687

    Article  CAS  Google Scholar 

  179. Bleyl S, Kopinke FD, Mackenzie K (2012) Carbo-Iron Synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chem Eng J 191:588–595

    Article  CAS  Google Scholar 

  180. DeVor R, Knighton KC, Aitken B, Maloney P, Holland E, Talalaj L, FidlerR ES, Clausen CA, Geiger CL (2008) Dechlorination comparison of mono-substituted PCBs with Mg/Pd in different solvent systems. Chemosphere 73:896–900

    Article  CAS  Google Scholar 

  181. Yang B, Zhang Y, Deng S, Yu G, Lu Y, Wu J, Xiao J, Chen G, Cheng X, Shi L (2013) Reductive degradation of chlorinated organic pollutants-contaminated water by bimetallic Pd/Al nanoparticles: effect of acidic condition and surfactants. Chem Eng J 234:346–353

    Article  CAS  Google Scholar 

  182. Agarwal S, Al-Abed SR, Dionysiou DD (2009) Impact of organic solvents and common anions on 2-chlorobiphenyl dechlorination kinetics with Pd/Mg. Appl Catal B: Environ 92:17–22

    Article  CAS  Google Scholar 

  183. Yang B, Deng S, Yu G, Zhang H, Wu J, Zhuo Q (2011) Bimetallic Pd/Al particles for highly efficient hydrodechlorination of 2-chlorobiphenyl in acidic aqueous solution. J Hazard Mater 189:76–83

    Article  CAS  Google Scholar 

  184. Kuang Y, Du J, Zhou R, Chen Z, Megharaj M, Naidu R (2015) Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu (II) and monochlorobenzene. J Colloid Interface Sci 447:85–91

    Article  CAS  Google Scholar 

  185. WengX LS, Zhong Y, Chen Z (2013) Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chem Eng J 229:27–34

    Article  CAS  Google Scholar 

  186. Huguet MR, Marshall WD (2009) Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles. J Hazard Mater 169:1081–1087

    Article  CAS  Google Scholar 

  187. Kadu BS, Sathe YD, Ingle AB, Chikate RC, Patil KR, Rode CV (2011) Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl Catal B Environ 104:407–414

    Article  CAS  Google Scholar 

  188. Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928

    Article  CAS  Google Scholar 

  189. Cheng Z, Fu F, Dionysiou DD, Tang B (2016) Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As (III) by mesoporous Fe–Al bimetallic particles Water Res 96:22–31

    Google Scholar 

  190. Bokare AD, Chikate RC, Rode CV, Paknikar KM (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B Environ 79:270–278

    Article  CAS  Google Scholar 

  191. Ma LM, Ding ZG, Gao TY, Zhou RF, Xu WY, Liu J (2004) Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system. Chemosphere 55:1207–1212

    Article  CAS  Google Scholar 

  192. GautamR K, Rawat V, Banerjee S, Sanroman MA, Soni S, Singh SK, Chattopadhyaya MC (2015) Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J Mol Liq 212:227–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Wadhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A., Wadhawan, S., Mehta, S.K. (2022). Nanoparticles-Based Adsorbents for Water Pollutants Removal. In: Das, R., Saha, B.B. (eds) Rapid Refrigeration and Water Protection. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-93845-1_9

Download citation

Publish with us

Policies and ethics