Skip to main content

Thermochemical Conversion of Lignocellulosic Waste to Activated Carbon: A Potential Resource for Industrial Wastewater Treatment

  • Chapter
  • First Online:
Rapid Refrigeration and Water Protection

Abstract

In the last decade, the amount of contaminated water resources has increased dramatically with the rapid growth in industrial sectors. Additionally, the growth in world population and the effects of climate changes have also increased the water contamination levels in several areas. Thus, there is a crucial need for effective and eco-friendly water treatment materials. The current available water treatment methods and materials have multiples drawbacks that limit their usability. Materials such as metal oxide nanoparticles, carbon nanotubes, and polymer membranes are used widely in the water treatment field. However, the efficiency of these materials is limited by the complexity of the water contaminants. Therefore, highly efficient activated carbon is introduced as a proper approach to treat contaminated water. Typically, activated carbon is produced from different types of biomass. Hence, activated carbon can be produced almost everywhere. Currently, Lignocellulosic biomass is provided as a reliable renewable resource that can be used to produce activated carbon. Indeed, Lignocellulosic biomass can be utilized to produce several materials such as biogases, biofuels, and biochar. Activated carbon is produced from biomass using different thermal conversion technologies such as pyrolysis, anaerobic digestion, torrefaction hydrothermal processing, and gasification. Historically, pyrolysis technology is used for hundreds of years to produce biofuel and char from woody biomass. This chapter focuses on the different reaction phases during pyrolysis and the effect of the reaction conditions on biomass to produce activated carbon. Moreover, the impact of technological development on the energy density of the lignocellulosic residues is covered in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu L, Xiu Y, Liu F, Liang Y, Wang S (2020) Research progress in conversion of CO2 to valuable fuels. Molecules 25(16):3653. https://doi.org/10.3390/molecules25163653

    Article  CAS  Google Scholar 

  2. Xia C, Cai L, Zhang H, Zuo L, Shi SQ, Lam SS (2021) A review on the modeling and validation of biomass pyrolysis with a focus on product yield and composition. Biofuel Res J 8(1):1296–1315. https://doi.org/10.18331/brj2021.8.1.2

  3. Stąsiek J, Szkodo M (2020) Thermochemical conversion of biomass and municipal waste into useful energy using advanced HiTAG/HiTSG technology. Energies 13(16):4218. https://doi.org/10.3390/en13164218

    Article  CAS  Google Scholar 

  4. Idriss IM, Ahmed MM, Grema AS, Baba D (2017) Modeling and simulation of pyrolysis process for a beech wood material. Arid Zone J Eng 13(6):710–717

    Google Scholar 

  5. Saif AGH, Wahid SS, Ali MR (2020) Pyrolysis of sugarcane bagasse: the effects of process parameters on the product yields. Mater Sci Forum 1008:159–167. https://doi.org/10.4028/www.scientific.net/msf.1008.159

    Article  Google Scholar 

  6. Papari S, Hawboldt K (2015) A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev 52:1580–1595. https://doi.org/10.1016/j.rser.2015.07.191

    Article  CAS  Google Scholar 

  7. Januszewicz K, Kazimierski P, Klein M, Kardaś D, Łuczak J (2020) Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 13(9):2047. https://doi.org/10.3390/ma13092047

    Article  CAS  Google Scholar 

  8. Aqsha A, Tijani MM, Moghtaderi B, Mahinpey N (2017) Catalytic pyrolysis of straw biomasses (wheat, flax, oat and barley) and the comparison of their product yields. J Anal Appl Pyrol 125:201–208. https://doi.org/10.1016/j.jaap.2017.03.022

    Article  CAS  Google Scholar 

  9. Mulimani HV (2017) Production of solid fuel biochar from de-oiled seed cake by pyrolysis. IOSR J Mech Civ Eng 14(02):57–61. https://doi.org/10.9790/1684-1402035761

    Article  Google Scholar 

  10. Sipra AT, Gao N, Sarwar H (2018) Municipal solid waste (MSW) pyrolysis for bio-fuel production: a review of effects of MSW components and catalysts. Fuel Process Technol 175:131–147. https://doi.org/10.1016/j.fuproc.2018.02.012

    Article  CAS  Google Scholar 

  11. Świechowski K, Syguła E, Koziel JA, Stępień P, Kugler S, Manczarski P, Białowiec A (2020) Low-temperature pyrolysis of municipal solid waste components and refuse-derived fuel—process efficiency and fuel properties of carbonized solid fuel. Data 5(2):48. https://doi.org/10.3390/data5020048

    Article  Google Scholar 

  12. Lofrano G, Brown J (2010) Wastewater management through the ages: a history of mankind. Sci Total Environ 408(22):5254–5264. https://doi.org/10.1016/j.scitotenv.2010.07.062

    Article  CAS  Google Scholar 

  13. Parkash V, Singh S (2020) A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10):3945. https://doi.org/10.3390/su12103945

    Article  CAS  Google Scholar 

  14. Panwar NL, Paul AS (2020) An overview of recent development in bio-oil upgrading and separation techniques. Environ Eng Res 26(5):200382–0. https://doi.org/10.4491/eer.2020.382

  15. Mizik T, Gyarmati G (2021) Economic and sustainability of biodiesel production—a systematic literature review. Clean Technol 3(1):19–36. https://doi.org/10.3390/cleantechnol3010002

    Article  Google Scholar 

  16. Popp J, Kot S, Lakner Z, Oláh J (2018) Biofuel use: peculiarities and implications. J Secur Sustain Issues 7(3). https://doi.org/10.9770/jssi.2018.7.3(9)

  17. Sarkar JK, Wang Q (2020) Different pyrolysis process conditions of south asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13(8):1970. https://doi.org/10.3390/en13081970

    Article  CAS  Google Scholar 

  18. Pawar A, Panwar NL, Salvi BL (2020) Comprehensive review on pyrolytic oil production, upgrading and its utilization. J Mater Cycles Waste Manage 22(6):1712–1722. https://doi.org/10.1007/s10163-020-01063-w

    Article  CAS  Google Scholar 

  19. Jahirul M, Rasul M, Chowdhury A, Ashwath N (2012) Biofuels production through biomass pyrolysis —a technological review. Energies 5(12):4952–5001. https://doi.org/10.3390/en5124952

    Article  CAS  Google Scholar 

  20. Xu Z, Xiao X, Fang P, Ye L, Huang J, Wu H, Tang Z, Chen D (2020) Comparison of combustion and pyrolysis behavior of the peanut shells in air and N2: kinetics thermodynamics and gas emissions. Sustainability 12(2):464. https://doi.org/10.3390/su12020464

    Article  CAS  Google Scholar 

  21. Tanneberger T, Schimek S, Paschereit CO, Stathopoulos P (2019) Combustion efficiency measurements and burner characterization in a hydrogen-oxyfuel combustor. Int J Hydrogen Energy 44(56):29752–29764. https://doi.org/10.1016/j.ijhydene.2019.05.055

    Article  CAS  Google Scholar 

  22. Chunbao X, Baoqiang L, Shushen P, Madhumita BR, Mohammad ST (2018) 1.19 Biomass energy, vol 19, 1st edn. Elsevier Inc., pp 770–794. https://doi.org/10.1016/B978-0-12-809597-3.00121-8

  23. Gvero P, Papuga S, Mujanic I, Vaskovic S (2016) Pyrolysis as a key process in biomass combustion and thermochemical conversion. Therm Sci 20(4):1209–1222. https://doi.org/10.2298/tsci151129154g

    Article  Google Scholar 

  24. Gądek W, Mlonka-Mędrala M, Prestipino M, Evangelopoulos P, Kalisz S, Yang W (2016) Gasification and pyrolysis of different biomasses in lab scale system: a comparative study. In: E3S Web of Conferences, vol 10, 00024. https://doi.org/10.1051/e3sconf/20161000024

  25. Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manage 89:83–91. https://doi.org/10.1016/j.enconman.2014.09.058

    Article  CAS  Google Scholar 

  26. Chowdhury Z, Krishnan B, Sagadevan S, Rafique R, Hamizi N, Abdul Wahab Y, Khan A, Johan R, Al-douri Y, Kazi S, Tawab Shah S (2018) Effect of temperature on the physical, electro-chemical and adsorption properties of carbon micro-spheres using hydrothermal carbonization process. Nanomaterials 8(8):597. https://doi.org/10.3390/nano8080597

    Article  CAS  Google Scholar 

  27. Montoya Arbeláez JI, Chejne Janna F, Garcia-Pérez M (2015) Fast pyrolysis of biomass: a review of relevant aspects. Part I: parametric study. DYNA 82(192):239–248. https://doi.org/10.15446/dyna.v82n192.44701

  28. Panchasara H, Ashwath N (2021) Effects of pyrolysis bio-oils on fuel atomisation—a review. Energies 14(4):794. https://doi.org/10.3390/en14040794

    Article  CAS  Google Scholar 

  29. Fogarassy C, Toth L, Czikkely M, Finger DC (2019) Improving the efficiency of pyrolysis and increasing the quality of gas production through optimization of prototype systems. Resources 8(4):182. https://doi.org/10.3390/resources8040182

    Article  Google Scholar 

  30. Álvarez-Chávez BJ, Godbout S, Le Roux T, Palacios JH, Raghavan V (2019) Bio-oil yield and quality enhancement through fast pyrolysis and fractional condensation concepts. Biofuel Res J 6(4):1054–1064. https://doi.org/10.18331/brj2019.6.4.2

  31. Dellarose Boer F, Valette J, Commandre JM, Thevenon MF (2021) Slow pyrolysis of sugarcane bagasse for the production of char and the potential of its by-product for wood protection. J Renew Mater 9(1):97–117. https://doi.org/10.32604/jrm.2021.013147

  32. Varma AK, Shankar R, Mondal P (2012) A review on pyrolysis of biomass and the impacts of operating conditions on product yield, quality, and upgradation. Springer, pp 227–259. https://doi.org/10.1007/978-981-13-1307-3_10

  33. David E (2020) Evaluation of hydrogen yield evolution in gaseous fraction and biochar structure resulting from walnut shells pyrolysis. Energies 13(23):6359. https://doi.org/10.3390/en13236359

    Article  CAS  Google Scholar 

  34. Williams CL, Emerson RM, Tumuluru JK (2017) Biomass compositional analysis for conversion to renewable fuels and chemicals. Energy Convers Manage. https://doi.org/10.5772/65777

    Article  Google Scholar 

  35. Clauser NM, González G, Mendieta CM, Kruyeniski J, Area MC, Vallejos ME (2021) Biomass waste as sustainable raw material for energy and fuels. Sustainability 13(2):794. https://doi.org/10.3390/su13020794

    Article  CAS  Google Scholar 

  36. Zhang S, Yang X, Zhang H, Chu C, Zheng K, Ju M, Liu L (2019) Liquefaction of biomass and upgrading of bio-oil: a review. Molecules 24(12):2250. https://doi.org/10.3390/molecules24122250

    Article  CAS  Google Scholar 

  37. Fahmi R, Bridgwater A, Donnison I, Yates N, Jones J (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7):1230–1240. https://doi.org/10.1016/j.fuel.2007.07.026

    Article  CAS  Google Scholar 

  38. Demirbas A (2004) Current technologies for the thermo-conversion of biomass into fuels and chemicals. Energy Sources 26(8):715–730. https://doi.org/10.1080/00908310490445562

    Article  CAS  Google Scholar 

  39. Demirbaş A (1997) Calculation of higher heating values of biomass fuels. Fuel 76(5):431–434. https://doi.org/10.1016/s0016-2361(97)85520-2

    Article  Google Scholar 

  40. Bridgwater A (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73. https://doi.org/10.1016/s1364-0321(99)00007-6

    Article  CAS  Google Scholar 

  41. Zanzi R, Bai X, Capdevila P, Bjornbom E (2001) Pyrolysis of biomass in the presence of steam for preparation of activated carbon, liquid and gaseous products. In: 6th World Congress of Chemical Engineering, pp 23–27

    Google Scholar 

  42. Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544(1–2):191–198. https://doi.org/10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  43. Chen X, Zhang R, Zhao B, Fan G, Li H, Xu X, Zhang M (2020) Preparation of porous biochars by the co-pyrolysis of municipal sewage sludge and hazelnut shells and the mechanism of the nano-zinc oxide composite and Cu(II) adsorption kinetics. Sustainability 12(20):8668. https://doi.org/10.3390/su12208668

    Article  CAS  Google Scholar 

  44. Román S, Libra J, Berge N, Sabio E, Ro K, Li L, Ledesma B, Álvarez A, Bae S (2018) Hydrothermal carbonization: modeling, final properties design and applications: a review. Energies 11(1):216. https://doi.org/10.3390/en11010216

    Article  CAS  Google Scholar 

  45. Hagemann N, Spokas K, Schmidt HP, Kägi R, Böhler M, Bucheli T (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water 10(2):182. https://doi.org/10.3390/w10020182

    Article  CAS  Google Scholar 

  46. Basu P (2013) Biomass gasification, pyrolysis, ad torrefaction practical design and theory, 2nd edn. Elsevier Inc. https://doi.org/10.1017/CBO9781107415324.004

  47. Inagaki M, Kang F (2014) Materials science and engineering of carbon fundamentals, 2nd edn. Elsevier Ltd. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004

  48. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2). https://doi.org/10.1007/s10311-019-00955-0

  49. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  50. Wang B, Zhu C, Zhang Z, Zhang W, Chen X, Sun N, Wei W, Sun Y, Ji H (2016) Facile, low-cost, and sustainable preparation of hierarchical porous carbons from ion exchange resin: An improved potassium activation strategy. Fuel 179:274–280. https://doi.org/10.1016/j.fuel.2016.03.088

    Article  CAS  Google Scholar 

  51. Largitte L, Brudey T, Tant T, Dumesnil PC, Lodewyckx P (2016) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater 219:265–275. https://doi.org/10.1016/j.micromeso.2015.07.005

    Article  CAS  Google Scholar 

  52. Dong L, Liu W, Yu Y, Hou L, Gu P, Chen G (2019) Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. Sci Total Environ 647:1359–1367. https://doi.org/10.1016/j.scitotenv.2018.07.280

    Article  CAS  Google Scholar 

  53. Tchikuala EF, Mourao PAM, Nabais JMV (2017) Removal of phenol by adsorption on activated carbon from aqueous solution. Wastes: Solutions, Treatments and Opportunities. Faculty of Engineering of the University of Porto, Porto, Portugal, pp 1–3

    Google Scholar 

  54. Tsoncheva T, Mileva A, Tsyntsarski B, Paneva D, Spassova I, Kovacheva D, Petrov N (2018) Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass Bioenerg 109:135–146. https://doi.org/10.1016/j.biombioe.2017.12.022

    Article  CAS  Google Scholar 

  55. Zhang H, Gao Z, Liu Y, Ran C, Mao X, Kang Q, Ao W, Fu J, Li J, Liu G, Dai J (2018) Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals. J Hazard Mater 355:128–135. https://doi.org/10.1016/j.jhazmat.2018.04.080

    Article  CAS  Google Scholar 

  56. Li L, Sato Y, Shimizu T (2015) Promoting effect of PKS ash on activated carbon preparation from cypress Sawdust Liuyun. Int Proc Chem, Biol Environ Eng 51:139–142. https://doi.org/10.7763/IPC

    Article  Google Scholar 

  57. Min HS, Abbas M, Kanthasamy R, Abdul Aziz H, Tay CC (2017) Activated Carbon: Prepared From Various Precursors. Ideal International E - Publication Pvt Ltd

    Google Scholar 

  58. Ahmed MJ (2016) Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: review. Process Saf Environ Prot 102:168–182. https://doi.org/10.1016/j.psep.2016.03.010

    Article  CAS  Google Scholar 

  59. Menya E, Olupot P, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des 129:271–296. https://doi.org/10.1016/j.cherd.2017.11.008

    Article  CAS  Google Scholar 

  60. Kecira Z, Benturki A, Daoud M, Benturki O (2018) Effect of chemical activation on the surface properties of apricot stones based activated carbons and its adsorptive properties toward aniline. In: Proceedings of the third international symposium on materials and sustainable development. Springer International Publishing, Springer Nature Switzerland AG, pp 228–240. https://doi.org/10.1007/978-3-319-89707-3_27

  61. Rashidi NA, Yusup S (2017) A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J 314:277–290. https://doi.org/10.1016/j.cej.2016.11.059

    Article  CAS  Google Scholar 

  62. Niksiar A, Nasernejad B (2017) Activated carbon preparation from pistachio shell pyrolysis and gasification in a spouted bed reactor. Biomass Bioenerg 106:43–50. https://doi.org/10.1016/j.biombioe.2017.08.017

    Article  CAS  Google Scholar 

  63. Jeguirim M, Belhachemi M, Limousy L, Bennici S (2018) Adsorption/reduction of nitrogen dioxide on activated carbons: textural properties versus surface chemistry—a review. Chem Eng J Biochem Eng J 347:493–504. https://doi.org/10.1016/j.cej.2018.04.063

    Article  CAS  Google Scholar 

  64. Ogungbenro AE, Quang DV, Al-Ali K, Abu-Zahra MRM (2017) Activated carbon from date seeds for CO2 capture applications. Energy Procedia 114:2313–2321. https://doi.org/10.1016/j.egypro.2017.03.1370

    Article  CAS  Google Scholar 

  65. Gupta TB, Lataye DH (2017) Adsorption of indigo carmine dye onto Acacia nilotica (babool) sawdust activated carbon. J Hazard Toxic Radioact Waste 21(4):04017013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000365

    Article  Google Scholar 

  66. Dass B, Jha P (2015) Batch adsorption of phenol by improved activated Acacia nilotica branches char: equilibrium, kinetic and thermodynamic studies. Int J ChemTech Res 8:269–279

    CAS  Google Scholar 

  67. Zbair M, Ainassaari K, Drif A, Ojala S, Bottlinger M, Pirilä M, Keiski RL, Bensitel M, Brahmi R (2017) Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ Sci Pollut Res 25(2):1869–1882. https://doi.org/10.1007/s11356-017-0634-6

    Article  CAS  Google Scholar 

  68. Ahmed S, Parvaz M, Johari R, Rafat M (2018) Studies on activated carbon derived from neem (Azadirachta indica) bio-waste, and its application as supercapacitor electrode. Mater Res Express 5(4):045601. https://doi.org/10.1088/2053-1591/aab924

  69. Ahmed MJ (2016) Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. J Environ Chem Eng 4(1):89–99. https://doi.org/10.1016/j.jece.2015.10.027

    Article  CAS  Google Scholar 

  70. Din MI, Ashraf S, Intisar A (2017) Comparative study of different activation treatments for the preparation of activated carbon: a mini-review. Sci Prog 100(3):299–312. https://doi.org/10.3184/003685017x14967570531606

    Article  CAS  Google Scholar 

  71. Saygılı H, Guzel F (2018) Novel and sustainable precursor for high-quality activated carbon preparation by conventional pyrolysis: optimization of produce conditions and feasibility in adsorption studies. Adv Powder Technol 29(3):726–736. https://doi.org/10.1016/j.apt.2017.12.014

    Article  CAS  Google Scholar 

  72. Niazi L, Lashanizadegan A, Sharififard H (2018) Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J Clean Prod 185:554–561. https://doi.org/10.1016/j.jclepro.2018.03.026

    Article  CAS  Google Scholar 

  73. Altintig E, Onaran M, Sarı A, Altundag H, Tuzen M (2018) Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater Chem Phys 220:313–321. https://doi.org/10.1016/j.matchemphys.2018.05.077

    Article  CAS  Google Scholar 

  74. Islam MA, Tan IAW, Benhouria A, Asif M, Hameed BH (2015) Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chem Eng J Biochem Eng J 270:187–195

    CAS  Google Scholar 

  75. Wang H, Xie R, Zhang J, Zhao J (2018) Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: mass transfer and equilibrium modelling. Adv Powder Technol 29(1):27–35. https://doi.org/10.1016/j.apt.2017.09.027

    Article  CAS  Google Scholar 

  76. Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys 6:651–658. https://doi.org/10.1016/j.rinp.2016.09.012

    Article  Google Scholar 

  77. Sajjadi SA, Mohammadzadeh A, Tran HN, Anastopoulos I, Dotto GL, Lopičić ZR, Sivamani S, Rahmani-Sani A, Ivanets A, Hosseini-Bandegharaei A (2018) Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J Environ Manage 223:1001–1009. https://doi.org/10.1016/j.jenvman.2018.06.077

    Article  CAS  Google Scholar 

  78. Beltrame KK, Cazetta AL, de Souza PSC, Spessato L, Silva TL, Almeida VC (2018) Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf 147:64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034

    Article  CAS  Google Scholar 

  79. Jaria G, Silva CP, Oliveira JA, Santos SM, Gil MV, Otero M, Calisto V, Esteves VI (2019) Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—a full factorial design. J Hazard Mater 370:212–218. https://doi.org/10.1016/j.jhazmat.2018.02.053

    Article  CAS  Google Scholar 

  80. Shrestha D, Gyawali G, Rajbhandari AR (2009) Preparation and characterization of activated carbon from waste sawdust from saw mill. J Hazard Mater 165:481–485. https://doi.org/10.1016/j.jhazmat.2008.10.011

    Article  CAS  Google Scholar 

  81. Tsoncheva T, Mileva A, Tsyntsarski B, Paneva D, Spassova I, Kovacheva D, Velinov N, Karashanova D, Georgieva B, Petrov N (2018) Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass Bioenerg 109:135–146. https://doi.org/10.1016/j.biombioe.2017.12.022

    Article  CAS  Google Scholar 

  82. Ozbay N, Yargic AS (2016) Comparison of surface and structural properties of carbonaceous materials prepared by chemical activation of tomato paste waste: the effects of activator type and impregnation ratio. J Appl Chem 2016:1–10. https://doi.org/10.1155/2016/8236238

    Article  CAS  Google Scholar 

  83. Li K, Ruan H, Ning P, Wang C, Sun X, Song X, Han S (2018) Preparation of walnut shell-based activated carbon and its properties for simultaneous removal of H2S, COS and CS2 from yellow phosphorus tail gas at low temperature. Res Chem Intermed 44(2):1209–1233. https://doi.org/10.1007/s11164-017-3162-6

    Article  CAS  Google Scholar 

  84. Bian Y, Yuan Q, Zhu G, Ren B, Hursthouse A, Zhang P (2018) Recycling of waste sludge: preparation and application of sludge-based activated carbon. Int J Polym Sci 2018:1–17. https://doi.org/10.1155/2018/8320609

    Article  CAS  Google Scholar 

  85. Maguana Y, El E, N., Bouchdoug, M., & Benchanaa, M. (2018) Study of the influence of some factors on the preparation of activated carbon from walnut cake using the fractional factorial design. J Environ Chem Eng 6(1):1093–1099. https://doi.org/10.1016/j.jece.2018.01.023

    Article  CAS  Google Scholar 

  86. Amin MT, Alazba AA (2017) Comparative study of the absorptive potential of raw and activated carbon Acacia nilotica for Reactive Black 5 dye. Environ Earth Sci 76:581. https://doi.org/10.1007/s12665-017-6927-8

    Article  CAS  Google Scholar 

  87. Rashidi NA, Yusup S (2017) A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J Biochem Eng J 314:277–290. https://doi.org/10.1016/j.cej.2016.11.059

    Article  CAS  Google Scholar 

  88. Shen Y, Fu Y (2018) KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Materials Today Energy 9:397–405. https://doi.org/10.1016/j.mtener.2018.07.005

    Article  Google Scholar 

  89. Wong S, Ngadi N, Inuwa IM, Hassan O (2018) Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J Clean Prod 175:361–375. https://doi.org/10.1016/j.jclepro.2017.12.059

    Article  CAS  Google Scholar 

  90. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MN, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7):1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  91. Briones R, Serrano L, Younes RB, Mondragon I, Labidi J (2011) Polyol production by chemical modification of date seeds. Ind Crops Prod 34(1):1035–1040. https://doi.org/10.1016/j.indcrop.2011.03.012

    Article  CAS  Google Scholar 

  92. Fu X, Yang H, Lu G, Tu Y, Wu J (2015) Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution. Mater Sci Semicond Process 39:362–370. https://doi.org/10.1016/j.mssp.2015.05.034

    Article  CAS  Google Scholar 

  93. Jamshidi M, Ghaedi M, Dashtian K, Ghaedi A, Hajati S, Goudarzi A, Alipanahpour E (2016) Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: artificial neural network modeling and central composite design optimization. Spectrochim Acta Part A Mol Biomol Spectrosc 153:257–267. https://doi.org/10.1016/j.saa.2015.08.024

    Article  CAS  Google Scholar 

  94. Sahu UK, Sahu S, Mahapatra SS, Patel RK (2017) Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As(III) and As(V): material preparation, characterization and adsorption mechanism study. J Mol Liq 243:395–405. https://doi.org/10.1016/j.molliq.2017.08.055

    Article  CAS  Google Scholar 

  95. Anfar Z, Zbair M, Ahsaine HA, Ezahri M, Alem NE (2018) Well-designed WO3/Activated carbon composite for Rhodamine B Removal: synthesis, characterization, and modeling using response surface methodology. Fullers Nanotub Carbon Nanostruct 26(6):389–397. https://doi.org/10.1080/1536383x.2018.1440386

    Article  CAS  Google Scholar 

  96. Tuan TQ, Son NV, Dung HTK, Luong NH, Thuy BT, Anh NTV, Hoa ND, Hai NH (2011) Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J Hazard Mater 192(3):1321–1329. https://doi.org/10.1016/j.jhazmat.2011.06.044

    Article  CAS  Google Scholar 

  97. Khosravi R, Moussavi G, Ghaneian MT, Ehrampoush MH, Barikbin B, Ebrahimi AA, Sharifzadeh G (2018) Chromium adsorption from aqueous solution using novel green nanocomposite: Adsorbent characterization, isotherm, kinetic and thermodynamic investigation. J Mol Liq 256:163–174. https://doi.org/10.1016/j.molliq.2018.02.033

    Article  CAS  Google Scholar 

  98. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  Google Scholar 

  99. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews 4(1):37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  100. Yusuff, A. S. (2018). Optimization of adsorption of Cr(VI) from aqueous solution by Leucaena leucocephala seed shell activated carbon using design of experiment. Appl Water Sci 8(8). https://doi.org/10.1007/s13201-018-0850-3

  101. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621. https://doi.org/10.1016/j.cej.2019.02.119

    Article  CAS  Google Scholar 

  102. Alagumuthu G, Rajan M (2010) Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon. Chem Eng J 158(3):451–457. https://doi.org/10.1016/j.cej.2010.01.017

    Article  CAS  Google Scholar 

  103. Viswanathan G, Jaswanth A, Gopalakrishnan S, Siva Ilango S (2009) Mapping of fluoride endemic areas and assessment of fluoride exposure. Sci Total Environ 407(5):1579–1587. https://doi.org/10.1016/j.scitotenv.2008.10.020

    Article  CAS  Google Scholar 

  104. Namasivayam C, Sangeetha D (2006) Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Biores Technol 97(10):1194–1200. https://doi.org/10.1016/j.biortech.2005.05.008

    Article  CAS  Google Scholar 

  105. Oladipo AA, Ifebajo AO (2018) Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. J Environ Manage 209:9–16. https://doi.org/10.1016/j.jenvman.2017.12.030

    Article  CAS  Google Scholar 

  106. Bernhardt A, Gysi N (2016) World’s worst pollution problems: the toxics beneath our feet. Fabrikstrasse 17:8005. Zurich, Switzerland

    Google Scholar 

  107. Ahmed TF, Sushil M, Krishna M (2012) Impact of dye industrial effluent on physicochemical characteristics of Kshipra River, Ujjain City, India. Int Res J Environ Sci 1:41–45

    Google Scholar 

  108. Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ Monit Assess 183(1–4):151–195. https://doi.org/10.1007/s10661-011-1914-0

    Article  CAS  Google Scholar 

  109. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  110. Danish M, Hashim R, Ibrahim MNM, Sulaiman O (2013) Characterization of physically activated Acacia mangium wood-based carbon for the removal of methyl orange dye. BioResources 8(3). https://doi.org/10.15376/biores.8.3.4323-4339

  111. Wang H, Xie R, Zhang J, Zhao J (2018) Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: mass transfer and equilibrium modeling. Adv Powder Technol 29(1):27–35. https://doi.org/10.1016/j.apt.2017.09.027

    Article  CAS  Google Scholar 

  112. Ahmed MJ (2016) Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: review. J Environ Chem Eng 4(1):89–99. https://doi.org/10.1016/j.jece.2015.10.027

    Article  CAS  Google Scholar 

  113. Hammani H, Boumya W, Laghrib F, Farahi A, Lahrich S, Aboulkas A, El Mhammedi M (2017) Electrocatalytic effect of NiO supported onto activated carbon in oxidizing phenol at graphite electrode: application in tap water and olive oil samples. J Assoc Arab Univ Basic Appl Sci 24(1):26–33. https://doi.org/10.1016/j.jaubas.2017.06.006

    Article  Google Scholar 

  114. Theydan SK, Ahmed MJ (2012) Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies. J Anal Appl Pyrol 97:116–122. https://doi.org/10.1016/j.jaap.2012.05.008

    Article  CAS  Google Scholar 

  115. Chowdhury ZZ, Abd Hamid, SB, Das R, Hasan MR, Zain SM, Khalid K, Uddin, MN (2013) Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 8(4). https://doi.org/10.15376/biores.8.4.6523-6555

  116. González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  CAS  Google Scholar 

  117. El Gamal M, Mousa HA, El-Naas MH, Zacharia R, Judd S (2018) Bio-regeneration of activated carbon: a comprehensive review. Sep Purif Technol 197:345–359. https://doi.org/10.1016/j.seppur.2018.01.015

    Article  CAS  Google Scholar 

  118. Salman JM, Hussein FH (2014) Batch adsorber design for different solution volume/adsorbate mass ratios of bentazon, carbofuran and 2,4-D adsorption on to date seeds activated carbon. J Environ Anal Chem 02(01). https://doi.org/10.4172/2380-2391.1000120

  119. Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073

    Article  CAS  Google Scholar 

  120. Boudrahem N, Delpeux-Ouldriane S, Khenniche L, Boudrahem F, Aissani-Benissad F, Gineys M (2017) Single and mixture adsorption of clofibric acid, tetracycline and paracetamol onto activated carbon developed from cotton cloth residue. Process Saf Environ Prot 111:544–559. https://doi.org/10.1016/j.psep.2017.08.025

    Article  CAS  Google Scholar 

  121. Mansour F, Al-Hindi M, Yahfoufi R, Ayoub GM, Ahmad MN (2017) The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Rev Environ Sci Bio/Technol 17(1):109–145. https://doi.org/10.1007/s11157-017-9456-8

    Article  CAS  Google Scholar 

  122. Chayid MA, Ahmed MJ (2015) Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies. J Environ Chem Eng 3(3):1592–1601. https://doi.org/10.1016/j.jece.2015.05.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the University Malaya, Malaysia for the financial support (Grant IF 065-2021 and IF 073-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaira Zaman Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, A.E., Chowdhury, Z.Z., Faisal, A.N., Das, R., Wahab, Y.A., Ramakrishnan, S. (2022). Thermochemical Conversion of Lignocellulosic Waste to Activated Carbon: A Potential Resource for Industrial Wastewater Treatment. In: Das, R., Saha, B.B. (eds) Rapid Refrigeration and Water Protection. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-93845-1_7

Download citation

Publish with us

Policies and ethics