Skip to main content

Photosynthetic Light Reactions in Diatoms. I. The Lipids and Light-Harvesting Complexes of the Thylakoid Membrane

  • Chapter
  • First Online:
The Molecular Life of Diatoms

Abstract

Light harvesting and photochemistry is performed by photosystems coupled to specific antennae embedded in the thylakoid membrane, a common principle across diatoms, plants, and green algae. Still, unique features of diatoms within this common principle have been unraveled in recent decades, likely resulting from the complex evolutionary history of diatoms. These unique features are found in (1) the lipid composition of the thylakoid membrane, (2) the spatial organization of the light-harvesting complexes, and (3) their protein and pigment composition. This chapter summarizes current knowledge of these three specific features, with a focus on structural and functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C. meneghiniana :

Cyclotella meneghiniana

Ch. gracilis :

Chaetoceros gracilis

Chl:

Chlorophyll

Dd:

Diadinoxanthin

DGDG:

Digalactosyldiacylglycerol

DGGC:

Diacylglycerylcarboxyhydroxymethylcholine

DGTA:

Diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine

DGTS:

Diacylgyceryl-N-trimethylhomoserine

DHA:

Docosahexaenoic acid

Dt:

Diatoxanthin

EPA:

Eicosapentaenoic acid

FCP:

Fucoxanthin-chlorophyll-protein complex

Fx:

Fucoxanthin

HII:

Inverted hexagonal phase

H. ostrearia :

Haslea ostrearia

ICT:

Intramolecular charge transfer

Lhc:

Light-harvesting complex

MGDG:

Monogalactosyldiacylglycerol

P. tricornutum :

Phaeodactylum tricornutum

PG:

Phosphatidylglycerol

PSI:

Photosystem I

PSII:

Photosystem II

PUFAs:

Polyunsaturated fatty acids

qE:

Energy-dependent quenching

SQDG:

Sulphoquinovosyldiacylglycerol

T. pseudonana :

Thalassiosira pseudonana

XC:

Xanthophyll cycle

References

  • Abida H, Dolch L-J, Meï C, Villanova V, Conte M, Block MA et al (2015) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol 167(1):118–136

    Article  CAS  PubMed  Google Scholar 

  • Alberte RS, Friedman AL, Gustafson DL, Rudnick MS, Lyman H (1981) Light harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment protein complexes. Biochim Biophys Acta 635:304–316

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Funct Plant Biol 26(7):625–639

    Article  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Schnitzler Parker M, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    Article  CAS  PubMed  Google Scholar 

  • Arshad R, Calvaruso C, Boekema EJ, Büchel C, Kouřil R (2021) Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. Plant Physiol 186(4):2124–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C et al (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci U S A 107(42):18214–18219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista JA, Connors RE, Raju BB, Hiller RG, Sharples FP, Gosztola D et al (1999) Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J Phys Chem B 103(41):8751–8758

    Article  CAS  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45(43):13046–13053

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426(6967):630–635

    Article  CAS  PubMed  Google Scholar 

  • Berkaloff C, Caron L, Rousseau B (1990) Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis. Photosynth Res 23:181–193

    Article  CAS  PubMed  Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20(1):1–34

    Article  CAS  PubMed  Google Scholar 

  • Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R (2016) Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci Rep 6:25583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bojko M, Olchawa-Pajor M, Chyc M, Goss R, Schaller-Laudel S, Latowski D. Acclimatization of Thalassiosira pseudonana photosynthetic membranes to environmental temperature changes. In: Proceedings of the 3rd world congress on new technologies. 2017. doi:https://doi.org/10.11159/icepr17.120

  • Bojko M, Olchawa-Pajor M, Goss R, Schaller-Laudel S, Strzałka K, Latowski D (2019) Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. Plant Cell Environ 42:1270–1286

    Article  CAS  PubMed  Google Scholar 

  • Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR et al (2011) Analysis of Lhcsr 3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9(1):e1000577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq M-P, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Article  CAS  PubMed  Google Scholar 

  • Brakemann T, Schlormann W, Marquardt J, Nolte M, Rhiel E (2006) Association of fucoxanthin chlorophyll a/c-binding polypeptides with photosystems and phosphorylation in the centric diatom Cyclotella cryptica. Protist 157(4):463–475

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem J 235(1):25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    Article  PubMed  CAS  Google Scholar 

  • Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    Article  PubMed  CAS  Google Scholar 

  • Büchel C (2020) Light harvesting complexes in chlorophyll c-containing algae. BBA-Bioenergetics 1861:148027

    Article  PubMed  CAS  Google Scholar 

  • Buck JM, Sherman J, Bártulos CR, Serif M, Halder M, Henkel J et al (2019) Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nat Commun 10(1):4167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvaruso C, Rokka A, Aro E-M, Büchel C (2020) Specific Lhc proteins are bound to PSI or PSII supercomplexes in the diatom Thalassiosira pseudonana. Plant Physiol. https://doi.org/10.1104/pp.20.00042

  • Canavate JP, Armada I, Rios JL, Hachero-Cruzado I (2016) Exploring occurrence and molecular diversity of betaine lipids across taxonomy of marine microalgae. Phytochemistry 124:68–78

    Article  CAS  PubMed  Google Scholar 

  • Caron L, Brown J (1987) Chlorophyll-carotinoid protein complexes from the diatom Phaeodactylum tricornutum: spectrophotometric, pigment and polypeptide analyses. Plant Cell Physiol 28:775–785

    Article  CAS  Google Scholar 

  • Cho SH, Thompson G (1987) On the metabolic relationships between monogalactosyldiacylglycerol and digalactosyldiacylglycerol molecular species in Dunaliella salina. J Biol Chem 262(16):7586–7593

    Article  CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2020) Light harvesting in oxygenic photosynthesis: structural biology meets spectroscopy. Science 369(6506):eaay2058

    Article  CAS  PubMed  Google Scholar 

  • Di Valentin M, Buchel C, Giacometti GM, Carbonera D (2012) Chlorophyll triplet quenching by fucoxanthin in the fucoxanthin-chlorophyll protein from the diatom Cyclotella meneghiniana. Biochem Biophys Res Commun 427(3):637–641

    Article  PubMed  CAS  Google Scholar 

  • Dodson VJ, Dahmen JL, Mouget J-L, Leblond JD (2013) Mono- and digalactosyldiacylglycerol composition of the marennine-producing diatom, Haslea ostrearia: comparison to a selection of pennate and centric diatoms. Phycol Res 61(3):199–207

    Article  CAS  Google Scholar 

  • Dodson VJ, Mouget J-L, Dahmen JL, Leblond JD (2014) The long and short of it: temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum. Hydrobiologia 727(1):95–107

    Article  CAS  Google Scholar 

  • Dorrell RG, Gile G, Mccallum G, Méheust R, Bapteste EP, Klinger CM et al (2017) Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. elife 6:e23717

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelken J, Funk C, Adamska I (2012) The extended light-harvesting complex (LHC) protein superfamily: classification and evolutionary dynamics. In: Burnap R, Vermaas W (eds) Functional genomics and evolution of photosynthetic systems, vol 33. Springer, pp 265–284

    Chapter  Google Scholar 

  • Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genomics 260(4):335–345

    Article  CAS  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Fawley MW (1989) A new form of chlorophyll c involved in light-harvesting. Plant Physiol 91(2):727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawley MW, Grossman AR (1986) Polypeptides of a light-harvesting complex of the diatom Phaeodactylum tricornutum are synthesized in the cytoplasm of the cell as precursors. Plant Physiol 81:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flori S, Jouneau P-H, Bailleul B, Gallet B, Estrozi LF, Moriscot C et al (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman AL, Alberte RS (1984) A diatom light-harvesting pigment-protein complex. Plant Physiol 76:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardian Z, Litvín R, Bína D, Vácha F (2014) Supramolecular organization of fucoxanthin–chlorophyll proteins in centric and pennate diatoms. Photosynth Res 121(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Gelzinis A, Butkus V, Songaila E, Augulis R, Gall A, Büchel C et al (2015) Mapping energy transfer channels in fucoxanthin–chlorophyll protein complex. BBA-Bioenergetics 1847(2):241–247

    Article  CAS  PubMed  Google Scholar 

  • Gelzinis A, Augulis R, Büchel C, Robert B, Valkunas L (2021) Confronting FCP structure with ultrafast spectroscopy data: evidence for structural variations. Phys Chem Chem Phys 23(2):806–821

    Article  CAS  PubMed  Google Scholar 

  • Ghazaryan A, Akhtar P, Garab G, Lambrev PH, Büchel C (2016) Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. BBA-Bioenergetics 1857(9):1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J (2010a) Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin-chlorophyll proteins. BBA-Bioenergetics 1797(5):543–549

    Article  CAS  PubMed  Google Scholar 

  • Gildenhoff N, Herz J, Gundermann K, Büchel C, Wachtveitl J (2010b) The excitation energy transfer in the trimeric fucoxanthin–chlorophyll protein from Cyclotella meneghiniana analyzed by polarized transient absorption spectroscopy. Chem Phys 373(1–2):104–109

    Article  CAS  Google Scholar 

  • Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K (2005) Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44(10):4028–4036

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Latowski D, Grzyb J, Vieler A, Lohr M, Wilhelm C, Strzalka K (2007) Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. BBA-Biomembranes 1768(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Nerlich J, Lepetit B, Schaller S, Vieler A, Wilhelm C (2009) The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane. J Plant Physiol 166:1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Greifenhagen A, Bergner J, Volke D, Hoffmann R, Wilhelm C, Schaller-Laudel S (2017) Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants. Planta 245(4):793–806

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Rokka A, Aro EM (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10(12):5338–5353

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi G, Lavaud J, Rousseau B, Etienne AL, Houmard J, Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum - Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272(17):4339–4348

    Article  CAS  PubMed  Google Scholar 

  • Gugliemelli L (1984) Isolation and characterization of pigment-protein particles from the light-harvesting complex of Phaeodactylum tricornutum. Biochim Biophys Acta 766:45–50

    Article  CAS  Google Scholar 

  • Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. BBA-Bioenergetics 1817(7):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. BBA-Bioenergetics 1827(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Wagner V, Mittag M, Büchel C (2019) Fucoxanthin-chlorophyll protein complexes of the centric diatom Cyclotella meneghiniana differ in Lhcx1 and Lhcx6_1 content. Plant Physiol 179:779–1795

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lip Res 45(2):160–186

    Article  CAS  Google Scholar 

  • Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. BBA-Bioenergetics 1847(6–7):534–543

    Article  PubMed  CAS  Google Scholar 

  • Herbstová M, Bína D, Kaňa R, Vácha F, Litvín R (2017) Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S et al (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. BBA-Bioenergetics 1777(4):351–361

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y et al (2013) Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. BBA-Bioenergetics 1827:529–539

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C (2010) Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. J Exp Bot 61:3079–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhas M, Büchel C (2012) Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana. J Exp Bot 63:3673–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122(2):121–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kansy M, Volke D, Sturm L, Wilhelm C, Hoffmann R, Goss R (2020) Pre-purification of diatom pigment protein complexes provides insight into the heterogeneity of FCP complexes. BMC Plant Biol 20(1):456. https://doi.org/10.1186/s12870-020-02668-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern J, Guskov A (2011) Lipids in photosystem II: multifunctional cofactors. J Photochem Photobiol B 104(1):19–34

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H (2014) Diffusion of molecules and macromolecules in thylakoid membranes. BBA-Bioenergetics 1837(4):495–502

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Schöttler MA, Maurer J, Weis E (2004) Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain. BBA-Bioenergetics 1659(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Hall C, Wood M, Herbstová M, Tsabari O, Nevo R et al (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci U S A 108(50):20248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraay GW, Zapata M, Veldhuis MJW (1992) Separation of chlorophylls c1, c2, and c3 of marine phytoplancton by reversed-phase-C18-high-performance liquid chromatography. J Phycol 28:708–712

    Article  CAS  Google Scholar 

  • Krüger TP, Malý P, Alexandre MT, Mančal T, Büchel C, Van Grondelle R (2017) How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms. Proc Natl Acad Sci U S A 114(52):E11063–E11071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367(6464):614–621

    Article  PubMed  Google Scholar 

  • Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M, Kostecka-Gugala A, Strzalka K (2002) Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269(18):4656–4665

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Akerlund HE, Strzalka K (2004) Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43(15):4417–4420

    Article  CAS  PubMed  Google Scholar 

  • Lavaud J, Rousseau B, Etienne AL (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42(19):5802–5808

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Szabo M, Hoffmann R, Garab GZ, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46(34):9813–9822

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved, and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111(1–2):245–257

    Article  CAS  PubMed  Google Scholar 

  • Levitan O, Chen M, Kuang X, Cheong KY, Jiang J, Banal M et al (2019) Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci U S A 116(35):17316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428(6980):287–292

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96(15):8784–8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol 60(4):414–420

    Article  PubMed  Google Scholar 

  • Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions - I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61(1):41–51

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, Salamov A, Sanges R, Toseland A, Ward BJ, Allen AE, Dupont CL, Frickenhaus S, Maumus F, Veluchamy A, Wu T, Barry KW, Falciatore A, Ferrante MI, Fortunato AE, Glöckner G, Gruber A, Hipkin R, Janech MG, Kroth PG, Leese F, Lindquist EA, Lyon BR, Martin J, Mayer C, Parker M, Quesneville H, Raymond JA, Uhlig C, Valas RE, Valentin KU, Worden AZ, Armbrust EV, Clark MD, Bowler C, Green BR, Moulton V, van Oosterhout C, Grigoriev IV (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541(7638):536–540

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Siegenthaler P-A (1998) Lipids in photosynthesis: an overview. In: Siegenthaler PAMN (ed) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic, Dordrecht, pp 1–20

    Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Suzuki T, Okumura A, Narikawa R et al (2012) Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. BBA-Bioenergetics 1817(12):2110–2117

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013a) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117(1–3):281–288

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Akimoto S, Tomo T (2013b) High excitation energy quenching in fucoxanthin chlorophyll a/c-binding protein complexes from the diatom Chaetoceros gracilis. J Phys Chem B 117:6888–6895

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Ueno Y, Shen J-R, Akimoto S (2018) Low-energy chlorophylls in fucoxanthin chlorophyll a/c-binding protein conduct excitation energy transfer to photosystem I in diatoms. J Phys Chem B 123(1):66–70

    Article  PubMed  CAS  Google Scholar 

  • Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y et al (2019a) Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex. Nat Plants 5(8):890–901

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Ueno Y, Akita F, Suzuki T, Dohmae N, Akimoto S, Shen J-R (2019b) Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynth Res 140(2):141–149

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Kato K, Ifuku K, Suzuki T, Kumazawa M, Uchiyama I et al (2020) Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. Nat Commun 11(1):2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson JA, Durnford DG (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106(1–2):57–71

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Palacios MA, Van Amerongen H, Van Grondelle R (2004) Energy-transfer dynamics in the LHCII complex of higher plants: modified redfield approach. J Phys Chem B 108(29):10363–10375

    Article  CAS  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K et al (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4(11):e7743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nymark M, Volpe C, Hafskjold MCG, Kirst H, Serif M, Vadstein O et al (2019) Loss of ALBINO3b insertase results in truncated light-harvesting antenna in diatoms. Plant Physiol 181(3):1257–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DM, Sharma A, Tsirvouli E et al (2021) Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. Plant J 106(1):113–132

    Article  CAS  PubMed  Google Scholar 

  • Oka K, Ueno Y, Yokono M, Shen J-R, Nagao R, Akimoto S (2020) Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Photosynth Res. https://doi.org/10.1007/s11120-020-00714-1

  • Owens T (1988) Light-harvesting antenna systems in the chlorophyll a/c-containing algae. In: Stevens SE, Bryant D (eds) Light-energy transduction in photosynthesis: higher plants and bacterial models. American Society of Plant Physiologists, Rockville, MD, pp 122–136

    Google Scholar 

  • Owens TG, World ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum: I. Isolation and characterization of pigment-protein-complexes. Plant Physiol 80:732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagiannakis E, van Stokkum IHM, Fey H, Büchel C, van Grondelle R (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth Res 86(1–2):241–250

    Article  CAS  PubMed  Google Scholar 

  • Pi X, Zhao S, Wang W, Liu D, Xu C, Han G et al (2019) The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science 365:eaax4406

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Papagiannakis E, Hiller RG, Van Grondelle R (2005) The charge-transfer character of the S0→ S2 transition in the carotenoid peridinin is revealed by Stark spectroscopy. J Phys Chem B 109(32):15589–15597

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Sandberg DJ, Fey H, Birge RR, Büchel C, van Grondelle R (2008) The charge-transfer properties of the S state of fucoxanthin in solution and in fucoxanthin chlorophyll-a/c protein (FCP) based on stark spectroscopy and molecular-orbital theory. J Phys Chem B 112(37):11838–11853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premvardhan L, Bordes L, Beer A, Büchel C, Robert B (2009) Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c proteins from Resonance Raman Spectroscopy. J Phys Chem B 113(37):12565–12574

    Article  CAS  PubMed  Google Scholar 

  • Premvardhan L, Robert B, Beer A, Buchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c(2) proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. BBA-Bioenergetics 1797(8):1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll-a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166(3–4):208–217

    Article  CAS  Google Scholar 

  • Röding A, Boekema E, Büchel C (2018) The structure of FCPb, a light-harvesting complex in the diatom Cyclotella meneghiniana. Photosynth Res 135(1–3):203–211

    Article  PubMed  CAS  Google Scholar 

  • Rousch JM, Bingham SE, Sommerfeld MR (2003) Changes in fatty acid profiles of thermo-intolerant and thermo-tolerant marine diatoms during temperature stress. J Exp Mar Biol Ecol 295(2):145–156

    Article  CAS  Google Scholar 

  • Schaller S, Latowski D, Jemiola-Rzeminska M, Wilhelm C, Strzalka K, Goss R (2010) The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). BBA-Bioenergetics 1797(3):414–424

    Article  CAS  PubMed  Google Scholar 

  • Schaller-Laudel S, Latowski D, Jemiola-Rzeminska M, Strzalka K, Daum S, Bacia K et al (2017) Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata. Physiol Plant 160(3):339–358

    Article  CAS  PubMed  Google Scholar 

  • Schober AF, Rio Bartulos C, Bischoff A, Lepetit B, Gruber A, Kroth PG (2019) Organelle studies and proteome analyses of mitochondria and plastids fractions from the diatom Thalassiosira pseudonana. Plant Cell Physiol 60(8):1811–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720

    Article  CAS  PubMed  Google Scholar 

  • Smith BM, Melis A (1988) Photochemical apparatus organization in the diatom Cylindrotheca fusiformis: photosystem stoichiometry and excitation distribution in cells grown under high and low irradiance. Plant Cell Physiol 29:761–769

    CAS  Google Scholar 

  • Songaila E, Augulis RN, Gelzinis A, Butkus V, Gall A, Büchel C et al (2013) Ultrafast energy transfer from chlorophyll c 2 to chlorophyll a in fucoxanthin–chlorophyll protein complex. J Phys Chem Lett 4(21):3590–3595

    Article  CAS  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. EMBO J 24(5):919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431(7009):689–692

    Article  CAS  PubMed  Google Scholar 

  • Szábo M, Lepetit B, Goss R, Wilhelm C, Mustardy L, Garab G (2008) Structurally flexible macro-organization of the pigment-protein complexes of the diatom Phaeodactylum tricornutum. Photosynth Res 95(2–3):237–245

    Article  PubMed  CAS  Google Scholar 

  • Szábo M, Premvardhan L, Lepetit B, Goss R, Wilhelm C, Garab G (2010) Functional heterogeneity of the fucoxanthins and fucoxanthin-chlorophyll proteins in diatom cells revealed by their electrochromic response and fluorescence and linear dichroism spectra. Chem Phys 373:110–114

    Article  CAS  Google Scholar 

  • Taddei L, Chukhutsina V, Lepetit B, Stella GR, Bassi R, van Amerongen H et al (2018) Dynamic changes between two LHCX-related energy quenching sites control diatom photoacclimation. Plant Physiol 177:953–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thamatrakoln K, Bailleul B, Brown CM, Gorbunov MY, Kustka AB, Frada M et al (2013) Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proc Natl Acad Sci U S A 110(50):20123–20128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaswani HM, Hsu C-P, Head-Gordon M, Fleming GR (2003) Quantum chemical evidence for an intramolecular charge-transfer state in the carotenoid peridinin of peridinin− chlorophyll− protein. J Phys Chem B 107(31):7940–7946

    Article  CAS  Google Scholar 

  • Veith T, Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. BBA-Bioenergetics 1767(12):1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Veith T, Brauns J, Weisheit W, Mittag M, Büchel C (2009) Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. BBA-Bioenergetics 1787(7):905–912

    Article  CAS  PubMed  Google Scholar 

  • Vieler A, Wilhelm C, Goss R, Sub R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150(2):143–155

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yu L-J, Xu C, Tomizaki T, Zhao S, Umena Y et al (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363(6427):eaav0365

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhao S, Pi X, Kuang T, Sui S-F, Shen J-R (2020) Structural features of the diatom photosystem II–light-harvesting antenna complex. FEBS J 287:2191–2200

    Article  CAS  PubMed  Google Scholar 

  • West RG, Bína D, Fuciman M, Kuznetsova V, Litvín R, Polívka T (2018) Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum. BBA-Bioenergetics 1859(5):357–365

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Goss R, Garab G (2020) The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? J Plant Physiol 252:153246

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Pi X, Huang Y, Han G, Chen X, Qin X et al (2020) Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. Nat Commun 11(1):5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Chen D, Xu J, Zhou C (2011) Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS. J Appl Phycol 23(2):271–282

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1993) Positional distribution of fatty acids, and molecular species of polar lipids, in the diatom Phaeodactylum tricornutum. J Gen Microbiol 139(3):465–472

    Article  CAS  PubMed  Google Scholar 

  • Zhu SH, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BBA-Bioenergetics 1797(8):1449–1457

    Article  CAS  PubMed  Google Scholar 

  • Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polívka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6(11):3009–3016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BB acknowledges financial support from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement no. 715579). BL thanks the Deutsche Forschungsgemeinschaft (LE3358/3-2) and the Baden-Württemberg Stiftung (Elite program) for financial support. CB acknowledges support by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 675006 and from the Deutsche Forschungsgemeinschaft, grant Bu 812 10-1. DAC thanks the Canada Research Chairs and Natural Science and Engineering Research Council of Canada for support. JL thanks the Centre National de la Recherche Scientifique-CNRS, the Natural Sciences and Engineering Research Council of Canada-NSERC (Discovery and Northern Supplement grants), the Canada First Research Excellence Fund-Sentinelle Nord, and the strategic research cluster Québec-Océan for their financial support. All authors thank the reviewer for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Büchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büchel, C., Goss, R., Bailleul, B., Campbell, D.A., Lavaud, J., Lepetit, B. (2022). Photosynthetic Light Reactions in Diatoms. I. The Lipids and Light-Harvesting Complexes of the Thylakoid Membrane. In: Falciatore, A., Mock, T. (eds) The Molecular Life of Diatoms. Springer, Cham. https://doi.org/10.1007/978-3-030-92499-7_15

Download citation

Publish with us

Policies and ethics