Skip to main content

Adaptation Strategies of Medicinal Plants in Response to Environmental Stresses

  • Chapter
  • First Online:
Environmental Challenges and Medicinal Plants

Part of the book series: Environmental Challenges and Solutions ((ECAS))

Abstract

During the complete life phase, medicinal plant species encounter varied environmental problems, which have adverse impacts on their growth, productivity, reproductive ability, and survival. These plants develop effective strategies for preventing or tolerating all of these stresses, which helps them to adjust to stressful circumstances. Such types of strategies of adaptation are found at structural, anatomical, hormonal, molecular, and biochemical stages. To adapt and protect themselves from the environment, these plants use different mechanisms including epigenetic memory, molecular crosstalk, ROS (reactive oxygen species) signaling, plant hormone accumulation (such as abscisic acid, jasmonates, ethylene, and salicylic acid), redox status and inorganic ion flux changes, resistance of R-gene, and systemic acquired resistance. A detailed understanding of various strategies used by the plant species to the stress in the environment is needed to enhance the production of crops in stress-like situations. Analyzing plant response to an environmental stress exposes metabolism pathways and other cascades that are activated following a stressful situation. Furthermore, understanding the anatomical and molecular mechanisms of plant species stress response would provide new insights toward the production of genetically engineered species that have high resistance to various stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A et al (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(18):1–38. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant 54(2):201–212

    Article  CAS  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A et al (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Álvarez S, Sánchez-Blanco MJ (2014) Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol 16:757–764

    Article  CAS  PubMed  Google Scholar 

  • Amir HM, Lee Y, Cho JI et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  Google Scholar 

  • Anon S, Fernandez JA, Franco JA et al (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Article  Google Scholar 

  • Ashraf M, Orooj A (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J Arid Environ 64:209–220

    Article  Google Scholar 

  • Ashton PMS, Berlyn GP (1994) A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments. Am J Bot 81(5):589–597

    Article  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC et al (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to field. J Exp Bot 63(10):3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Baralabai VC, Vivekanandan M (1996) Foliar application of electrostatic precipitator dust on growth, stomata and leaf biochemistry in certain legume crops. Rev Brasil Fisiol Veg 8:7–14

    CAS  Google Scholar 

  • Blanco JA (2007) The representation of allelopathy in ecosystem-level forest models. Ecol Model 209:65–77

    Article  Google Scholar 

  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379

    Article  CAS  Google Scholar 

  • Cabuslay GS, Ito O, Alejal AA (2002) Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci 63:815–827

    Article  Google Scholar 

  • Cameron RJ (1970) Light intensity and the growth of Eucalyptus seedlings II. The effect of cuticular waxes on light absorption in leaves of Eucalyptus species. Aust J Bot 18:275–284

    Article  Google Scholar 

  • Chamarthi SK, Sharma HC, Sahrawat KL et al (2010) Physico-chemical mechanisms of resistance to shoot fly, Atherigona soccata in sorghum, Sorghum bicolor. J Appl Entomol 135:446–445

    Article  Google Scholar 

  • Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic 95:39–50

    Article  CAS  Google Scholar 

  • Chelli-Chaabouni A (2014) Mechanisms and adaptation of plants to environmental stress: a case of woody species. In: Ahmad P, Wani M (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_1

    Chapter  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Correia MJ, Coelho D, David MM (2001) Response to seasonal drought in three cultivars of Ceratonia siliqua; leaf growth and water relation. Tree Physiol 21:645–653

    Article  CAS  PubMed  Google Scholar 

  • Croser C, Renault S, Franklin J et al (2001) The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environ Pollut 115:9–16

    Article  CAS  PubMed  Google Scholar 

  • Dang YP, Dalal RC, Buck SR et al (2010) Diagnosis, extent, impacts, and management of subsoil constraints in the northern grains cropping region of Australia. Aust J Soil Res 48:105–119

    Article  Google Scholar 

  • Devi EL, Kumar S, Singh TB et al (2017) Adaptation strategies and defence mechanisms of plants during environmental stress. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_20

    Chapter  Google Scholar 

  • dos Reis SP, Marques DN, Lima AM, de Souza CRB (2016) Plant molecular adaptations and strategies under drought stress. In: Hossain MA et al (eds) drought stress tolerance in plants, vol 2. Springer, New York. https://doi.org/10.1007/978-3-319-32423-4_4

    Chapter  Google Scholar 

  • Egea G, Gonzalez-Real MM, Baille A, Nortes PA, Conesa MR, Ruiz-Salleres I (2012) Effects of water stress on irradiance acclimation of leaf traits in almond trees. Tree Physiol 32(4):450–463

    Article  CAS  PubMed  Google Scholar 

  • Englishloeb GM (1990) Plant drought stress and outbreaks of spider mites—a field-test. Ecology 71:1401–1411

    Article  Google Scholar 

  • Escalante-Pérez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm F, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar ( Populus x canescens ). Planta 229:299–309

    Article  CAS  PubMed  Google Scholar 

  • Escandón M, Cañal MJ, Pascual J, Pinto G, Correia B, Amaral J, Meijón M (2016) Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol 36:63–77

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Farid M, Shakoor MB, Ehsan A, Ali S, Zubair M, Hanif MS (2013) Morphological, physiological and biochemical responses of different plant species to Cd stress. Int J Chem Biochem Sci 3:53–60

    Google Scholar 

  • Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A (2013) Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J Hazard Mater 244–245:555–562

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:1–11

    Article  Google Scholar 

  • Fode B, Siemsen T et al (2008a) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20(11):3122–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fode B, Siemsen T, Thurow C et al (2008b) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress inducible promoters. Plant Cell 20(11):3122–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco JA, Bañón S, Vicente MJ et al (2011) Root development in horticultural plants grown under abiotic stress conditions—a review. J Hortic Sci Biotechnol 86:543–556

    Article  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A et al (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12(3):393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmed P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412

    Chapter  Google Scholar 

  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F (2006) Flooding tolerance of central European tree and shrub species. Forest Ecol Manag 235:1–13

    Article  Google Scholar 

  • Gomes MP, Marques TCLLDSM, Nogueira MDOG et al (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric (Piracicaba, Braz) 68(5):566–573

    Article  CAS  Google Scholar 

  • Gostin IN (2009) Air pollution effects on the leaf structure of some Fabaceae species. Notulae Bot Hort Agrobot Cluj 37(2):57–63

    Google Scholar 

  • Guàrdia M, Fernàndez J, Elena G, Fleck I (2012) Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. Tree Physiol 32(7):829–838. https://doi.org/10.1093/treephys/tps035

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Chakrabarti SK (2013) Effect of heavy metals on different anatomical structures of Bruguiera sexangula. Int J Bioresour Stress Manag 4(4):605–609

    Google Scholar 

  • Handley R, Ekbom B, Agren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292

    Article  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(7258):1026–1030

    Article  CAS  PubMed  Google Scholar 

  • He J, Chen F, Lv Chen S et al (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168:687–693

    Article  CAS  PubMed  Google Scholar 

  • Hendawy SF, Khalid KA (2005) Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J Appl Sci Res 1:147–155

    Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Hook DD (1984) Adaptations to flooding with fresh water. In: Kozlowski TT (ed) Flooding and plant growth. Academic, Orlando, pp 265–294

    Chapter  Google Scholar 

  • Hossain MA, Wani SH, Bhattachajee S, Burritt DJ, Tran LSP (eds) (2016) Drought stress tolerance in plants, Vol 1: physiology and biochemistry. Springer, Cham

    Google Scholar 

  • Hsieh TH, Li CW, Su RC et al (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Qi G, Kong Y et al (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138(4):405–413

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Junghans U, Polle A, Düchting P, Weiller E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29(8):1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Kadioglu A, Terzi A, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kang HG, Kim J, Kim B et al (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180(4):634–641

    Article  CAS  PubMed  Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Khan MR, Khan MW (1996) Interaction of Meloidogyne incognita and coal-smoke pollutants on tomato. Nematropica 26:47–56

    Google Scholar 

  • Khan H, Wani SH (2014) Molecular approaches to enhance abiotic stresses tolerance. In: Wani SH, Malik CP, Hora A, Kaur R (eds) Innovations in plant science and biotechnology. Agrobios (India), Jodhpur, pp 111–152

    Google Scholar 

  • Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55(11):1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00207

  • Korner C (2016) Plant adaptation to cold climates. F1000Research

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68(2):270–334

    Article  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall DJ, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermo-tolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y et al (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesniewska E, Adrian M, Klinguer A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178

    Article  CAS  PubMed  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg E, Runge M (2001) Drought responses at leaf, stem and fi ne root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecol Manag 149:33–46

    Article  Google Scholar 

  • Lodhi MAK (1976) Role of allelopathy as expressed by dominating trees in a lowland forest in controlling the productivity and pattern of herbaceous growth. Am J Bot 63(1):1–8

    Article  CAS  Google Scholar 

  • Marques TCLLSM, Moreira FMS, Siqueira JO (2000) Growth and uptake of metals in tree seedlings in soil contaminated with heavy metals. Pesquisa Agropecuária Bras 35:121–132

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • Micco VD, Aronne G (2002) Plant responses to drought stress. In: Aroca R (ed) Springer. Berlin

    Google Scholar 

  • Mir TA, Jan M, Khare RK, Bhat MH (2021a) Medicinal plant resources: threat to its biodiversity and conservation strategies. In: Aftab T, Hakeem KR (eds) Medicinal and aromatic plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_28

    Chapter  Google Scholar 

  • Mir TA, Jan M, Khare RK (2021b) Ethnomedicinal application of plants in Doodhganga forest range of district Budgam, Jammu and Kashmir, India. Eur J Integr Med 46:101366. https://doi.org/10.1016/j.eujim.2021.101366

    Article  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 49:79–90

    Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo and antioxidative protection and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non overlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag 260:1623–1639

    Article  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (1999) Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. Int J Plant Sci 160(5):837–848

    Article  CAS  PubMed  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of woodformation by auxin in hybrid aspen. Plant Cell 20:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00248

  • O’Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451. https://doi.org/10.3389/fpls.2013.00451

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogunkunle CO, Abdulrahaman AA, Fatoba PO (2013) Influence of cement dust pollution on leaf epidermal features of Pennisetum purpureum and Sida acuta. Environ Exp Biol 11:73–79

    Google Scholar 

  • Onate-Sanchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128(4):1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Kawaoka A, Nishikubo N, Osakabe K (2012) Responses to environmental stresses in woody plants: key to survive and longevity. J Plant Res 125(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JM, Park CJ, Lee SB et al (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pashkovskiy PP, Vankova R, Zlobin IE, Dobrev P, Ivanov YV, Kartashov AV, Kuznetsov VV (2019) Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. Plant Physiol Biochem 140:105–112

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G et al (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013a) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pastor V, Luna E, Ton J, Cerezo M, Garcia-Agustin P, Flors V (2013b) Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Mol Plant Microbe Interact 26:1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Patakas A, Noitsakis B (1997) Cell wall elasticity as a mechanism to maintain favorable water relations during leaf ontogeny in grapevines. Am J Enol Vitic 48(3):352–356

    Google Scholar 

  • Perez-Clemente RM, Vives V, Zandalinas SI et al (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int. https://doi.org/10.1155/2013/654120

  • Plaxton WC (2004) Plant response to stress: biochemical adaptations to phosphate deficiency. Encycl Plant Crop Sci. https://doi.org/10.1081/E-EPCS120010648

  • Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphate starvation response in plants. In: Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New York, pp 349–372

    Google Scholar 

  • Pourkhabbaz A, Rastin N, Olbrich A et al (2010) Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L. Bull Environ Contamin Toxicol 85:251–255. https://doi.org/10.1007/s00128-010-0047-4

    Article  CAS  Google Scholar 

  • Raffaele S, Vailleau F, Leger A et al (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20(3):752–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez P, Torrecillas A, Morales MA et al (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53:113–123

    Article  CAS  Google Scholar 

  • Rozak PR, Seiser RM, Wacholtz WF, Wise RR (2002) Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ 25:421–429

    Article  Google Scholar 

  • Sainger PA, Dhankhar R, Sainger M, Kaushik A, Singh RP (2011) Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicol Environ Saf 74:2284–2291

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52:401–412

    Article  CAS  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanitá di Troppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sayed OH (1996) Adaptational responses of Zygophyllum qatarense Hadidi to stress conditions in a desert environment. J Arid Environ 32:445–452

    Article  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186(2):471–483

    Article  CAS  PubMed  Google Scholar 

  • Shaik R, Ramakrishna W (2014) Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. Plant Physiol 164:481–495

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA et al (2005) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative growth stages at water deficits. Colloids Surf B Biointerfaces 43:221–227

    Article  CAS  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Article  Google Scholar 

  • Siebel HN, Wijk MV, Blom CWPM (1998) Can tree seedlings survive increased flood levels of rivers? Acta Bot Neerl 47(2):219–230

    Google Scholar 

  • Singh M, Kumar J, Singh S et al (2015) Adaptation strategies of plants against heavy metal toxicity: a short review. Biochem Pharmacol (Los Angel) 4:161

    Google Scholar 

  • Stella JC, Riddel J, Piégay H, Gagnage M, Trémélo ML (2013, 2013) Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river. Geomorphology. https://doi.org/10.1016/j.geomorph.2013.01.013

  • Tyler G (1984) The impact of heavy metal pollution on forests: a case study of Gusum, Sweden. Ambio 13(1):18–24

    CAS  Google Scholar 

  • Valdés-Gómez H, Gary C, Cartolaro P, Lolas-Caneo M, Calonnec A (2011) Powdery mildew development is positively influenced by grapevine vegetative growth induced by different soil management strategies. Crop Prot 30:1168–1177

    Article  Google Scholar 

  • Verma RB, Mahmooduzzafar TO, Siddiqi M et al (2006) Foliar response of Ipomea pestigridis L. to coal-smoke pollution. Turk J Bot 30(5):413–417

    Google Scholar 

  • Wang GB, Cao FL (2012) Formation and function of aerenchyma in baldcypress (Taxodium distichum (L.) rich.) and Chinese tallow tree (Sapium sebiferum (L.) Roxb.) under flooding. South Afr J Bot 81:71–78

    Article  Google Scholar 

  • Wani SH, Lone A, da Silva T, Gosal SS (2010) Effects of NaCl stress on callus induction and plant regeneration from mature seeds of rice (Oryza sativa L.). Asian Australas J Biosci Biotechnol 4(1):57–61

    Google Scholar 

  • Wani SH, Gosal SS (2011) Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol Plant 55(3):536–540

    Article  CAS  Google Scholar 

  • Wani SH, Hossain MA (eds) (2015) Managing salinity tolerance in plants: molecular and genomic perspectives. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wani SH, Kumar V (2015) Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics 3:113. https://doi.org/10.4172/2329-8936.1000113

    Article  Google Scholar 

  • Wani SH, Singh NB, Jeberson SM, Sanghera GS, Haribhushan A, Chaudhury BU, Bhat MA (2012) Molecular strategies for identification and deployment of gene(s) for abiotic stress tolerance in crop plants. LS Int J Life Sci 1(2):128–142

    Article  Google Scholar 

  • Wani SH, Sah SK, Hossain MA, Kumar V, Balachandran SM (2016) Transgenic approaches for abiotic stress tolerance in crop plants. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, New York, pp 345–396

    Chapter  Google Scholar 

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081

    Article  PubMed  Google Scholar 

  • Wild A, Schmitt V (1995) Diagnosis of damage to Norway spruce (Picea abies) through biochemical criteria. Physiol Plant 93:375–382

    Article  CAS  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T et al (2006) Sub1A is an ethylene responsive-factor like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  PubMed  Google Scholar 

  • Yadav G, Srivastava PK, Singh VP et al (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cao S, Zheng Y, Jiang Y (2012) Combined salicylic acid and ultrasound treatments for reducing the chilling injury on peach fruit. J Agric Food Chem 60:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Wildhagen H, Tylewicz S, Miskolczi PC, Bhalerao RP, Polle A (2019) Abscisic acid signalling mediates biomass trade-off and allocation in poplar. New Phytol 223:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Huang WD, Liu YP et al (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J Integr Plant Biol 47:959–970

    Article  Google Scholar 

  • Zhao FJ, Lombi E, Breedon T et al (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  • Zhao T, Liang D, Wang P et al (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Gen Genomics 287(5):423–436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jan, M., Mir, T.A., Khare, R.K., Saini, N. (2022). Adaptation Strategies of Medicinal Plants in Response to Environmental Stresses. In: Aftab, T. (eds) Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-92050-0_5

Download citation

Publish with us

Policies and ethics