Skip to main content

Phytoremediation Capacity of Medicinal Plants in Soils Contaminated with Heavy Metals

  • Chapter
  • First Online:
Environmental Challenges and Medicinal Plants

Abstract

Phytoremediation is a set of technologies that reduce, in situ or ex situ, the concentration of various compounds through biochemical processes carried out by plants. Phytoremediation uses plants to remove, reduce, transform, mineralize, degrade, volatilize, or stabilize contaminants present in soil, water, and air. Plants to be used for phytoremediation are selected primarily for their physiological characteristics, such as presence of specific enzymes, tolerance and assimilation of toxic substances, plant growth rates, root depth, and ability to bioaccumulate and/or degrade contaminants. A wide diversity of species has been utilized in phytoremediation. Some of these are known as hyperaccumulators, due to their high capacity to accumulate heavy metals. Phytoremediation offers several advantages, among which are the following: (i) it constitutes a sustainable technology, (ii) it is carried out without the need to transport the contaminated substrate (thus decreasing the dissemination of contaminants through air or water), (iii) it is a set of technologies that are efficiently applied to both organic and inorganic contaminants, and (iv) its cost-effectiveness is driven by conventional agronomic practices, i.e., specialized personnel and energy are not required. The benefits of the practice are also associated with the following: (v) it is minimally harmful to the environment, (vi) it improves the physical and chemical properties of the soil due to the formation of vegetation cover, (vii) it has a high probability of being accepted by the public as the plants involved are often pleasing to the eye, (viii) it does not involve excavation work and heavy traffic, and (ix) it can be employed in water, soil, air, and sediments and allows for the recycling of resources (e.g., water, biomass, metals). Therefore, this chapter aims to (a) select the main medicinal plants with the potential to phytoremediate soils contaminated by heavy metals (e.g., uranium, copper, nickel, cobalt, mercury, cadmium, lead, chromium, zinc, selenium, aluminum, iron, and manganese), (b) report on the tolerance mechanisms of phytoremediation, and (c) indicate the concentration and accumulation levels of toxic heavy metals in medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abollino O, Aceto M, Malandrino M, Mentaste E, Sarzanini C, Barberis R (2002) Distribution and mobility of metals in contaminated sites. chemometric investigation of pollutant profiles. Environ Pollut 119:177

    Article  CAS  PubMed  Google Scholar 

  • Abou-Shanab RAI, Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  PubMed  Google Scholar 

  • Adriano DC (1992) Biogeochemistry of trace metals. Ed. Lewis Publisher, Boca Raton

    Google Scholar 

  • Alvarado S, Guédez M, Marcó L, Graterol N, Anzalone A, Arroyo J, Záray G (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 19:8436–8440

    Article  CAS  Google Scholar 

  • Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crop Prod 19:197–205

    Article  CAS  Google Scholar 

  • Arias MSB, Peña-Cabriales JJ, Alarcón A, Maldonado Vega M (2015) Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium. Int J Phytoremediation 17(5):405–413

    Article  CAS  PubMed  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contributions to science. Institut d’Estudis Catalans Barcelona 2:333–344

    Google Scholar 

  • Banat KM, Howari F, Al-Hamad AA (2005) Heavy metals in urban soils of central Jordan: should we worry about their environmental risks. Environ Res 97:258–273

    Article  CAS  PubMed  Google Scholar 

  • Boonyapookana B, Parkplan P, Techapinyawat S, DeLaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health A 40:117–137

    Article  CAS  Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation. In View series: interface science and technology, 282 p

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Burt R, Wilson MA, Keck TJ, Dougherty BD, Strom DE, Lindahl JA (2003) Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA. Adv Environ Res 8:51–67

    Article  CAS  Google Scholar 

  • Calow P (1993) Handbook of ecotoxicology, vol I. Blackwell Science Ltd., London, UK, p 478

    Google Scholar 

  • Carranza-Álvarez C, Alonso-Castro ÁJ, Maldonado-Miranda JJ, Hernández Morales A (2016) Quantitation of Cd, Pb and Fe in three medicinal plants (Justicia spicigera, Arnica montana and Hamelia pantens) from environmentally diverse locations of Huasteca Potosina, Mexico. Acta Universitaria 26(5):24–30. https://doi.org/10.15174/au.2016.984

    Article  Google Scholar 

  • Chen ZS, Lee DY, Lin CF, Lo SL, W YP (1996) Contamination of rural and urban soils in Taiwan. In: Contaminants and the soil environment in the Australasia-Pacific Region. Kluwer Academic Publishers, Boston, pp 691–709

    Chapter  Google Scholar 

  • Corinne PR, Fang-Jie Z, McGrath SP (2006) Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ Pollut 145:596–605

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jong FMW, De Haes HAU (2001) Development of a field bioassay for the side-effects of herbicides on vascular plants using Brassica napus and Poa annua. Environ Toxicol 16:397–407

    Article  PubMed  Google Scholar 

  • Ehsan M, Santamaría-Delgado K, Alderete-Chavez A, De la Cruz-Landero N, Jaén-Contreras D, Augustine Molumeli P (2009) Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7:390–397

    Article  Google Scholar 

  • EPA (U.S. Environmental Protection Agency) (2000) 40 CFR Parts 141 and 142. National Primary Drinking Water Regulations. Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. Notice of proposed rulemaking. Fed Regist 65(121):38887–38983

    Google Scholar 

  • EPA (U.S. Environmental Protection Agency) (2001) 40 CFR Parts 9, 141 and 142. National Primary Drinking Water Regulations. Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. Final Rule. Fed Regist 66(14):6975–7066

    Google Scholar 

  • Faisal M, Hasnain S (2005) Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947

    Article  CAS  PubMed  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Heavy metals in the plant community of Sao Domingo an abandoned mine in SE Portugal: Possible applications in mine remediation. Environ Int 30:65–72

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli P, Comolli R, Ferre C, Ghiani A, Gentili R, Citterio S (2014) The rotation of white lupin (Lupinus albus L.) with metal accumulating plant crops: A strategy to increase the benefits of soil phytoremediation. J Environ Manag 145:35–42

    Article  CAS  Google Scholar 

  • García I, Dorronsoro C (2005) Contaminación por Metales Pesados. En Tecnología de Suelos. Universidad de Granada. Departamento de Edafología y Química Agrícola. http://edafologia.ugr.es

  • Gerth J, Dankwarth F, Förstner U (2000) Natural attenuation of inorganic pollutants — a critical view. Treat Contam Soil:603–614

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Env Res 3:1–18

    Article  Google Scholar 

  • Godwin B, Thorpe J (2000) Assessment of phytoremediation as an in-situ technique for cleaning oil contaminated sites phase ii final report. Petroleum technology alliance of Canada (PTAC), p 7

    Google Scholar 

  • Han FX, Banin A, Kingery WL, Triplett GB, Zhou LX, Zheng SJ, Ding WX (2003) New approach to studies of heavy metal redistribution in soil. Adv Environ Res 8:113–120

    Article  CAS  Google Scholar 

  • Harvey P, Campanela B, Castro P, Harms H, Lichtfouse E, Schäffner A, Smrcek S, Werck D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res Int 9:29–47

    Article  CAS  PubMed  Google Scholar 

  • Hettiarchchi GM, Pierzynski GM (2002) In situ stabilization of soil lead using phosphorus and manganese oxide: Influence of plant growth. J Environ Qual 31:564–573

    Google Scholar 

  • Hu C, Zhang L, Hamilton D, Zhou W, Yamg T, Zhu D (2007) Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiol 579:211–218

    Article  CAS  Google Scholar 

  • Ingole NW, Bhole AG (2003) Removal of heavy metal from aqueous solution by water hyacinth (Eichhornia Crassipes). Aqua 52:119–128

    Google Scholar 

  • Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23:36–48

    Article  CAS  PubMed  Google Scholar 

  • Jara-Peña E, Gómez J, Montoya H, Chanco M, Mariano M, Cano N (2014) Capacidad fitorremediadora de cinco especies alto andinas de suelos contaminados con metales pesados. Rev Peru Biol 21:145–154

    Article  Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soils and plants, 3rd edn. CRC Press, Inc., Boca Raton. USA, pp 365–413

    Book  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Laperche V, Logan TJ, Gaddam P, Traina SJ (1997) Effect of apatite amendment on plant uptake of Pb from contaminated soil. Environ Sci Technol 31:2745–2753

    Article  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Springer, Berlin, p 513

    Book  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soils. A review of plant/soil metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals, a review of biological mechanisms. J Env Quality 31:109–120

    CAS  Google Scholar 

  • Li Y, Yan-Bin W, Xin G, Yi-Bing S, Gang W (2006) Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin. China J Environ Sci 18:1124–1134

    Article  CAS  Google Scholar 

  • Lucho CA, Álvarez M, Beltrán RI, Prieto F, Poggi H (2005) A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environ Int. On Line: 0160–4120-D 2004. https://doi.org/10.1016/j.envint.2004.08.002

  • Mahler RL (2003) General overview of nutrition for field and container crops. In: Riley LE, Dumroese RK, Landis TD. Tech Coords. National Proceeding: Forest and Conservation Nursery Associations. 2003 June 9–12; Coeur d’Alene, ID; and 2003 July 14–17; Springfield, IL. Proc. RMRS-P-33

    Google Scholar 

  • Martin CW (2000) Heavy metals trends in floodplain sediments and valley fill. Catena 39:53–68

    Article  CAS  Google Scholar 

  • Mitchell RL (1964) Chemistry of the soil. In: Bear FE (ed) Trace elements in soil, New York, Reinhold Publishing Corp., pp 320–368

    Google Scholar 

  • Moriwaka H, Erkin OC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553–1558

    Article  CAS  Google Scholar 

  • Morishita T, Boratynski JK (1992) Accumulation of cadmium and other metals in organs of plants growing around metal smelters in Japan. Soil Sci Plant Nutr 38(4):781–785

    Article  CAS  Google Scholar 

  • Novotny V (1995) Diffuse sources of pollution by toxic metals and impact on receiving waters. In: Heavy metals. Springer-Verlag, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Núñez L, Meas Y, Ortega B, Olguín J (2004) Fitorremediación fundamentos y aplicaciones. Ciencia 55:69–82

    Google Scholar 

  • Ortiz-Cano HG, Trejo-Calzada R, Valdez-Cepeda RD, Arreola-Ávila JG, Flores-Hernández A, López-Ariza B (2009) Fitoextracción de plomo y cadmio en suelos contaminados usando quelite (Amaranthus hybridus L.) y micorrizas. Revista Chapingo Serie Horticultura 15(2):161–168

    Article  Google Scholar 

  • Padmavathiamma PK, Li L (2007) Phytoremediation technology: hyper-accumulation metals in plants water. Air, and Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pagnanelli F, Moscardini E, Giuliano V, Toro L (2004) Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environ Pollut 132:189–201

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pineda HR (2004) Presencia de Hongos Micorrízicos Arbusculares y Contribución de Glomus Intraradices en la Absorción y Translocación de Zinc y Cobre en Girasol (Helianthus Annuus L.) Crecido en un Suelo Contaminado con Residuos de Mina. Tesis de Doctor en Ciencias Universidad de Colima. Tecoman, Colima.

    Google Scholar 

  • Prabha KP, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1):105–126

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Radanović D, Antić-Mladenović S (2012) Uptake, accumulation and distribution of potentially toxic trace elements in medicinal and aromatic plants. Med Aromat Plant Sci Biotechnol 6:54–68

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Rooney CP, Zhao FJ, McGrath SP (2006) Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ Toxicol Chem 25:726–732

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sandrin T, Hoffman DR (2007) Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity speciation, and bioavailability on biodegradation. Int J Mol Sci 14:10197–10228

    Google Scholar 

  • Sauquillo A, Rigol A, Rauret G (2003) Overview of the use of leaching extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal Chem 22:152–159

    Article  CAS  Google Scholar 

  • Sauve S, Henderson W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  CAS  Google Scholar 

  • Selamat SN, Abdullah SRS, Idris M (2014) Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int J Phytoremediation 16(7–8):694–703

    Article  CAS  PubMed  Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Env Pollut 145(1):234–237

    Article  CAS  Google Scholar 

  • Spain A (2003) Implications of microbial heavy metals tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Stevens DP, McLaughlin MJ, Heinrich T (2003) Determining toxicity of lead and zinc run off in soils: salinity effects on metal partitioning and on phytotoxicity. Environ Toxicol Chem 22:3017–3024

    Article  CAS  PubMed  Google Scholar 

  • Subhashini V, Swamy AVVS (2017) Potential of Catharanthus roseus (L.) in phytoremediation of heavy metals. In: Catharanthus roseus. Springer International Publishing, pp 349–364

    Chapter  Google Scholar 

  • Subroto MA, Priambodo S, Indrasti NS (2007) Accumulation of zinc by hairy root cultures of Solanum nigrum. Biotech 6:344–348

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Toppi LS, Vurro E, Rossi L, Marabottini R, Musetti R, Careri M, Maffini M, Mucchino C, Corradini C, Badiani M (2007) Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes. Chemosphere 68:769–780

    Article  CAS  Google Scholar 

  • Tripathi S, Mishra HN (2009) Nutritional changes in powdered red pepper upon in vitro infection of Aspergillus flavus. Braz J Microbiol 40:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Voyslavov T, Georgieva S, Arpadjan S, Tsekova K (2013) Phytoavailability assessment of cadmium and lead in polluted soils and accumulation by Matricaria Chamomilla (Chamomile). Biotechnol Biotechnol Equip 27(4):3939–3943

    Article  CAS  Google Scholar 

  • Wang YP, Chao CC (1992) Effects of vesicular- arbuscular mycorrhizae and heavy metals on the growth of soybean and phosphate and heavy metal uptake by soybean in major soil groups of Taiwan. J Agric Assoc China New Series 157:6–20

    CAS  Google Scholar 

  • Wang YP, Chen ZS, Liu WS, Wu TH, Chaou CC, Li GC, Wang TT (1994) Criteria of soil quality- establishment of heavy metal contents in different categories. Final report of four- year project. Project reports of EPA/ROC. Grant No. EPA-83-E3H1-09-02. 54 pp

    Google Scholar 

  • Wing YA, Yu XZ, Gu JD (2003) Phytoremediation of cyanide and iron cyanide complexes and the mechanisms involved. Appl Environ Biotech 3:53–60

    Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31(5):755–762

    Article  CAS  PubMed  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Tot Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effect of shoot removal and sulfate level. J Plant Physiol 143:8–14

    Article  CAS  Google Scholar 

  • Zhao FJ, Rooney CP, Zhang H, McGrath SP (2006) Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ Toxicol Chem 25:733–742

    Article  CAS  PubMed  Google Scholar 

  • Zornoza P, Millán R, Sierra MJ, Seco A, Esteban E (2010) Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments. J Environ Sci 22(3):421–427

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebert Jair Barrales-Cureño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrera-Cabrera, B.E. et al. (2022). Phytoremediation Capacity of Medicinal Plants in Soils Contaminated with Heavy Metals. In: Aftab, T. (eds) Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-92050-0_17

Download citation

Publish with us

Policies and ethics