Skip to main content

Marine Extreme Habitats

  • Chapter
  • First Online:
The Marine Microbiome

Part of the book series: The Microbiomes of Humans, Animals, Plants, and the Environment ((MHAPE,volume 3))

  • 2195 Accesses

Abstract

Extreme environments, habitats at the edge of survivability, can be found in most marine systems. These include habitats subjected to high radiation, high pressure, high or low temperatures, limited nutrient availability, or that contain high concentrations of salts, petroleum, or other toxic substances. Using this definition, the majority of the deep ocean and the marine deep subsurface—systems that harbor the most extensive microbiomes on Earth—would be classified as extreme. Because the microbial inhabitants of the deep sea, the subsurface, and the oceanic crust are discussed elsewhere in this book, this chapter will focus on hydrothermal vents and deep hypersaline anoxic basins, which have attracted the attention of the scientific community in recent decades due to their potential implications for astrobiology and biotechnology. Each of these two systems is characterized by the coexistence of multiple stressors (i.e., physicochemical parameters close to the limit of supporting life on Earth). The microorganisms inhabiting hydrothermal vents and deep hypersaline anoxic basins are called “polyextremophiles” and have attracted the attention of researchers who wish to gain knowledge about the adaptations to multiple extremes and the underlying mechanisms of the evolution of these marine microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Initial estimation of the abundance of Bacteria and Archaea in Galapagos Rift reached 109 cells ml–1 (Corliss et al. 1979). Subsequent studies at the same system reported abundances 105–106 cells ml–1 (Jannasch and Wirsen 1979; Karl et al. 1980). These abundances are 2–3-fold higher compared to the deep sea.

  2. 2.

    For the taxonomy of Bacteria and Archaea in this chapter primarily the taxonomy used by the authors in the original papers is followed. For groups that have been reclassified such as the former class of Proteobacteria that are now a new phylum Campylobacterota the appropriate citation is provided and the newer classification is used.

  3. 3.

    Former Methanococcus

  4. 4.

    Several forms of RuBisCO genes have been identified; only forms I and II have been enzymatically shown to fixate CO2. The following discussion only refers to these two forms. The form III RuBisCO detected in hyperthermophilic Euryarchaeota inhabiting vent systems is involved in AMP metabolism (Sato et al. 2007).

  5. 5.

    The interface layer between the normoxic sea water and the brine is also called halocline, chemocline, redoxycline, or oxycline. The terms “interface” or “halocline” are more commonly used in the literature.

  6. 6.

    In coastal ponds and solar salterns characterized by high rates of evaporation and sequential precipitation of the constituent salts of seawater the brine remaining after precipitation of the major salt NaCl—called a “bittern” owing to its bitter taste—is highly enriched in MgCl2.

References

  • Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H, Siam R (2014) Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol 5:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Adam N, Perner M (2018a) Microbially mediated hydrogen cycling in deep-sea hydrothermal vents. Front Microbiol 9:2873

    Article  PubMed  PubMed Central  Google Scholar 

  • Adam N, Perner M (2018b) Novel hydrogenases from deep-sea hydrothermal vent metagenomes identified by a recently developed activity-based screen. ISME J 12:1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerman N, Butterfield D, Huber J (2013) Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 4:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, Raguénès G, Cueff V, Cambon-Bonavita M-A (2002) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323

    Google Scholar 

  • Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita M-A, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315

    Google Scholar 

  • Alazard D, Dukan S, Urios A, Verhé F, Bouabida N, Morel F, Thomas P, Garcia J-L, Ollivier B (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178

    Google Scholar 

  • Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Amend JP, McCollom TM, Hentscher M, Bach W (2011) Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta 75:5736–5748

    Article  CAS  Google Scholar 

  • Anderson RE, Beltrán MT, Hallam SJ, Baross JA (2013) Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. FEMS Microbiol Ecol 83:324–339

    Article  CAS  PubMed  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008a) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008b) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Google Scholar 

  • Antunes A, Alam I, El Dorry H, Siam R, Robertson A, Bajic VB, Stingl U (2011a) Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake. J Bacteriol 193:4551–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011b) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  PubMed  Google Scholar 

  • Antunes A, Olsson-Francis K, McGenity TJ (2020) Exploring deep-sea brines as potential terrestrial analogues of oceans in the icy moons of the outer solar system. Curr Issues Mol Biol 38:123–162

    Article  PubMed  Google Scholar 

  • Atkins MS, Anderson OR, Wirsen CO (1998) Effect of hydrostatic pressure on the growth rates and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent and a deep shelf region. Mar Ecol Prog Ser 171:85–95

    Article  Google Scholar 

  • Atkins MS, Teske A, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411

    Article  CAS  PubMed  Google Scholar 

  • Backer H, Schoell M (1972) New Deeps with Brines and Metalliferous Sediments in the Red Sea. Nat Phys Sci 240:153–158

    Article  Google Scholar 

  • Bar-Even A, Flamholz A, Noor E, Milo R (2012) Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim Biophys Acta Bioenerg 1817:1646–1659

    Article  CAS  Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter K-O, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160:306–311

    Article  CAS  Google Scholar 

  • Beinart RA, Sanders JG, Faure B, Sylva SP, Lee RW, Becker EL, Gartman A, Luther GW, Seewald JS, Fisher CR, Girguis PR (2012) Evidence for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal vent symbioses. Proc Natl Acad Sci USA 109:E3241–E3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-Hydroxypropionate/4-Hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782

    Article  CAS  PubMed  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  CAS  PubMed  Google Scholar 

  • Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Miner Depos 26:217–227

    Article  CAS  Google Scholar 

  • Boden R, Scott KM, Williams J, Russel S, Antonen K, Rae AW, Hutt LP (2017) An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospira. Int J Syst Evol Microbiol 67:1140–1151

    Article  CAS  PubMed  Google Scholar 

  • Bonch-Osmolovskaya EA (1994) Bacterial sulfur reduction in hot vents. FEMS Microbiol Rev 15:65–77

    Article  CAS  Google Scholar 

  • Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, Rizzi A, Yakimov M, Marty D, De Lange GJ, Van der Wielen P, Bolhuis H, McGenity TJ, Polymenakou PN, Malinverno E, Giuliano L, Corselli C, Daffonchio D (2009) Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA 106:9151–9156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, Qian PY (2013) Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 79:3425–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazelton W, Nelson B, Schrenk M (2012) Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front Microbiol 2:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinkhoff T, Muyzer G (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing Archaebacteria. Syst Appl Microbiol 13:24–28

    Google Scholar 

  • Byrne N, Strous M, Crépeau V, Kartal B, Birrien J-L, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A (2009) Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME J 3:117–123

    Article  CAS  PubMed  Google Scholar 

  • Camerlenghi A (1990) Anoxic basins of the eastern Mediterranean: geological framework. Mar Chem 31:1–19

    Article  CAS  Google Scholar 

  • Campbell BJ, Cary SC (2004) Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 70:6282–6289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    Article  CAS  PubMed  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359

    Article  CAS  Google Scholar 

  • Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste P, Foucher JP, Woodside J (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Res Part I Oceanogr Res Pap 50:941–958

    Article  CAS  Google Scholar 

  • Charnock H (1964) Anomalous bottom water in the Red Sea. Nature 203:591–591

    Article  Google Scholar 

  • Cho BC, Park JS, Xu K, Choi JK (2008) Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. J Eukaryot Microbiol 55:417–426

    Article  PubMed  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galápagos rift. Science 203:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Corre E, Reysenbach A-L, Prieur D (2001) ɛ-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335

    CAS  PubMed  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D’Auria G, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hübner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Garcin J, McKew B, Golyshin PN, Lampadariou N, Polymenakou P, Calore D, Cenedese S, Zanon F, Hoog S, Party BS (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature 440:203–220

    Article  CAS  PubMed  Google Scholar 

  • Dahl C, Friedrich C, Kletzin A (2008) Sulfur oxidation in prokaryotes. eLS. Wiley, Chichester

    Google Scholar 

  • Dahle H, Roalkvam I, Thorseth IH, Pedersen RB, Steen IH (2013) The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney. Environ Microbiol Rep 5:282–290

    Article  CAS  PubMed  Google Scholar 

  • de Angelis MA, Lilley MD, Baross JA (1993) Methane oxidation in deep-sea hydrothermal plumes of the endeavour segment of the Juan de Fuca Ridge. Deep Sea Res Part I Oceanogr Res Pap 40:1169–1186

    Article  CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  CAS  PubMed  Google Scholar 

  • De Lange GJ, Middelburg JJ, Van der Weijden CH, Catalano G, Luther GW, Hydes DJ, Woittiez JRW, Klinkhammer GP (1990) Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Mar Chem 31:63–88

    Article  CAS  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon A, Lever M, Lloyd KG, Albert DB, Sogin ML, Teske A (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71:4592–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick GJ (2019) The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 17:271–283

    Article  CAS  PubMed  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte CM, Røstad A, Michoud G, Barozzi A, Merlino G, Delgado-Huertas A, Hession BC, Mallon FL, Afifi AM, Daffonchio D (2020) Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Sci Rep 10:910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb V (2016) Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr Opin Microbiol 31:169–175

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb VP, Bernhard JM (2013) Heterotrophic protists in hypersaline microbial mats and deep hypersaline basin water columns. Life (Basel) 3:346–362

    CAS  PubMed Central  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgcomb V, Orsi W, Leslin C, Epstein SS, Bunge J, Jeon S, Yakimov MM, Behnke A, Stoeck T (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167

    Article  PubMed  Google Scholar 

  • Edgcomb VP, Orsi W, Breiner H-W, Stock A, Filker S, Yakimov MM, Stoeck T (2011) Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea. Deep Sea Res Part I Oceanogr Res Pap 58:1040–1048

    Article  CAS  Google Scholar 

  • Edgcomb VP, Pachiadaki MG, Mara P, Kormas KA, Leadbetter ER, Bernhard JM (2016) Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME J 10:2643–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsaied HE, Hayashi T, Naganuma T (2004) Molecular Analysis of deep-sea hydrothermal vent aerobic methanotrophs by targeting genes of 16S rRNA and particulate methane monooxygenase. Mar Biotechnol 6:503–509

    Article  CAS  Google Scholar 

  • Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68:3085–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing Microbial mat communities. PLoS One 2:e667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esau L, Zhang G, Sagar S, Stingl U, Bajic VB, Kaur M (2019) Mining the deep Red-Sea brine pool microbial community for anticancer therapeutics. BMC Complement Altern Med 19:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29:363–379

    Article  CAS  Google Scholar 

  • Farias P, Espírito Santo C, Branco R, Francisco R, Santos S, Hansen L, Sorensen S, Morais PV (2015) Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields. Appl Environ Microbiol 81:2534–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feazel LM, Spear JR, Berger AB, Harris JK, Frank DN, Ley RE, Pace NR (2008) Eucaryotic diversity in a hypersaline microbial mat. Appl Environ Microbiol 74:329–332

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Science Tech./Springer, Madison, WI

    Book  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins dos Santos VAP, Yakimov MM, Timmis KN, Golyshin PN (2005) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12:895–904

    Article  CAS  PubMed  Google Scholar 

  • Fiala G, Woese CR, Langworthy TA, Stetter KO (1990) Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch Microbiol 154:120–126

    Google Scholar 

  • Filker S, Stock A, Breiner H-W, Edgcomb V, Orsi W, Yakimov MM, Stoeck T (2013) Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea. Microbiologyopen 2:54–63

    Article  CAS  PubMed  Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol 14:277–289

    Article  Google Scholar 

  • Fortunato CS, Huber JA (2016) Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J 10:1925–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortunato CS, Larson B, Butterfield DA, Huber JA (2018) Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ Microbiol 20:769–784

    Article  CAS  PubMed  Google Scholar 

  • Frank KL, Rogers DR, Olins HC, Vidoudez C, Girguis PR (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank KL, Rogers KL, Rogers DR, Johnston DT, Girguis PR (2015) Key factors influencing rates of heterotrophic sulfate reduction in active seafloor hydrothermal massive sulfide deposits. Front Microbiol 6:1449

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  CAS  PubMed  Google Scholar 

  • Fukumori Y, Yamanaka T (1979) Flavocytochrome c of Chromatium vinosum: some enzymatic properties and subunit structure. J Biochem 8:1405–1414

    Article  Google Scholar 

  • Galambos D, Anderson RE, Reveillaud J, Huber JA (2019) Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ Microbiol 21:4395–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach AL (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    Google Scholar 

  • Govenar B (2012) Energy transfer through food webs at hydrothermal vents. Oceanography 25:246–255

    Article  Google Scholar 

  • Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777

    Article  CAS  PubMed  Google Scholar 

  • Grosche A, Sekaran H, Pérez-Rodríguez I, Starovoytov V, Vetriani C (2015) Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:1144–1150

    Google Scholar 

  • Guan Y, Hikmawan T, Antunes A, Ngugi D, Stingl U (2015) Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol 166:688–699

    Article  PubMed  Google Scholar 

  • Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni M-T (2005) A Membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J Biol Chem 280:42004–42015

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Jannasch HW (1973) Photosynthetic production and dark-assimilation of CO2 in the Black Sea. Internationale Revue der gesamten Hydrobiologie und Hydrographie 58:625–632

    Article  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, De Lima AF, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Perner M (2014) The role of hydrogen for Sulfurimonas denitrificans’ metabolism. PLoS One 9:e106218

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen M, Perner M (2016) Hydrogenase gene distribution and H2 consumption ability within the Thiomicrospira lineage. Front Microbiol 7:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauer G, Rogerson A (2005) Heterotrophic Protozoa from Hypersaline Environments. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 519–539

    Google Scholar 

  • Heitzer RD, Ottow JCG (1976) New denitrifying bacteria isolated from Red Sea sediments. Mar Biol 37:1–10

    Article  Google Scholar 

  • Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S (2021) Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 10:e58371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama H, Sunamura M, Takai K, Nunoura T, Noguchi T, Oida H, Furushima Y, Yamamoto H, Oomori T, Horikoshi K (2007) Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl Environ Microbiol 73:7642–7656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63:1073–1082

    Google Scholar 

  • Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64:989–999

    Google Scholar 

  • Hu Q, Wang S, Lai Q, Shao Z, Jiang L (2021a) Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int J Syst Evol Microbiol 71:1466–5026

    Google Scholar 

  • Hu SK, Herrera EL, Smith AR, Pachiadaki MG, Edgcomb VP, Sylva SP, Chan EW, Seewald JS, German CR, Huber JA (2021b) Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. PNAS 118 (29) e2102674118; https://doi.org/10.1073/pnas.2102674118

  • Huber H, Diller S, Horn C, Rachel R (2002a) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865

    Google Scholar 

  • Huber JA, Butterfield DA, Baross JA (2002b) Temporal changes in archaeal diversity and chemistry in a Mid-Ocean Ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber JA, Butterfield DA, Baross JA (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43:393–409

    Article  CAS  PubMed  Google Scholar 

  • Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  PubMed  Google Scholar 

  • Hügler M, Sievert SM (2010) Beyond the Calvin Cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci 3:261–289

    Google Scholar 

  • Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic co2 fixation via the reductive tricarboxylic acid cycle by members of the ε subdivision of Proteobacteria. J Bacteriol 187:3020–3027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hügler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92

    Article  PubMed  CAS  Google Scholar 

  • Hügler M, Gärtner A, Imhoff JF (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73:526–537

    PubMed  Google Scholar 

  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805

    Google Scholar 

  • Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482

    Google Scholar 

  • Jannasch HW (1995) Microbial interactions with hydrothermal fluids. In: Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union (AGU), Washington DC, pp 273–296

    Google Scholar 

  • Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29:592–598

    Article  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 35:422–424

    Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach A-L, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213Tas Methanococcus fervens sp. nov. Int J Syst Evol Microbiol 49:583–589

    Google Scholar 

  • Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach A-L, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765–772

    Google Scholar 

  • Jelen B, Giovannelli D, Falkowski PG, Vetriani C (2018) Elemental sulfur reduction in the deep-sea vent thermophile, Thermovibrio ammonificans. Environ Microbiol 20:2301–2316

    Article  CAS  PubMed  Google Scholar 

  • Jesser KJ, Fullerton H, Hager KW, Moyer CL (2015) Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō’ihi Seamount, Hawai’i). Appl Environ Microbiol 81:2976–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Lyu J, Shao Z (2017) Sulfur metabolism of Hydrogenovibrio thermophilus strain s5 and its adaptations to deep-sea hydrothermal vent environment. Front Microbiol 8:2513

    Article  PubMed  PubMed Central  Google Scholar 

  • Johannessen KC, Vander Roost J, Dahle H, Dundas SH, Pedersen RB, Thorseth IH (2017) Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields. Geochim Cosmochim Acta 202:101–123

    Article  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Google Scholar 

  • Jongsma D, Fortuin AR, Huson W, Troelstra SR, Klaver GT, Peters JM, van Harten D, de Lange GJ, ten Haven L (1983) Discovery of an anoxic basin within the Strabo Trench, eastern Mediterranean. Nature 305:795–797

    Article  Google Scholar 

  • Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent sediments. Science 258:1756–1757

    Article  PubMed  Google Scholar 

  • Joye SB, MacDonald IR, Montoya JP, Peccini M (2005) Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2:295–309

    Article  CAS  Google Scholar 

  • Karisiddaiah SM (2000) Diverse methane concentrations in anoxic brines and underlying sediments, eastern Mediterranean Sea. Deep Sea Res Part I Oceanogr Res Pap 47:1999–2008

    Article  CAS  Google Scholar 

  • Karl DM, Wirsen CO, Jannasch HW (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science 207:1345–1347

    Article  CAS  Google Scholar 

  • Kato S, Yanagawa K, Sunamura M, Takano Y, Ishibashi J, Kakegawa T, Utsumi M, Yamanaka T, Toki T, Noguchi T, Kobayashi K, Moroi A, Kimura H, Kawarabayasi Y, Marumo K, Urabe T, Yamagishi A (2009) Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environ Microbiol 11:3210–3222

    Article  CAS  PubMed  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Kucera RB, Jack WE (1993) Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem 268:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Schada von Borzyskowski L, Erb TJ, Stahl DA, Berg IA (2014) Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 111:8239–8244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kouris A, Kim Juniper S, Frébourg G, Gaill F (2007) Protozoan–bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge. Mar Ecol 28:63–71

    Article  Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 13:2250–2268

    Article  PubMed  Google Scholar 

  • La Cono V, Bortoluzzi G, Messina E, La Spada G, Smedile F, Giuliano L, Borghini M, Stumpp C, Schmitt-Kopplin P, Harir M, O’Neill WK, Hallsworth JE, Yakimov M (2019) The discovery of Lake Hephaestus, the youngest athalassohaline deep-sea formation on Earth. Sci Rep 9:1679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam P, Cowen JP, Jones RD (2004) Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microbiol Ecol 47:191–206

    Article  CAS  PubMed  Google Scholar 

  • LaRock PA, Lauer RD, Schwarz JR, Watanabe KK, Wiesenburg DA (1979) Microbial biomass and activity distribution in an anoxic, hypersaline basin. Appl Environ Microbiol 37:466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laybourn-Parry J, Quayle W, Henshaw T (2002) The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biol 25:542–552

    Article  Google Scholar 

  • Legin E, Ladrat C, Godfroy A, Barbier G, Duchiron F (1997) Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie 320:893–898

    Google Scholar 

  • Lever MA, Teske AP (2015) Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microbiol 81:1426–1441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • L’Haridon S, Cilia V, Messner P, Raguénès G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 48:701–711

    Google Scholar 

  • L’Haridon S, Reysenbach A-L, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935

    Google Scholar 

  • Lin TJ, El Sebae G, Jung J-H, Jung D-H, Park C-S, Holden JF (2016) Pyrodictium delaneyi sp. nov., a hyperthermophilic autotrophic archaeon that reduces Fe(III) oxide and nitrate. Int J Syst Evol Microbiol 66:3372–3376

    Google Scholar 

  • Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Alperin MJ, Teske A (2011) Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Environ Microbiol 13:2548–2564

    Article  CAS  PubMed  Google Scholar 

  • Longnecker K, Reysenbach A-L (2001) Expansion of the geographic distribution of a novel lineage of ɛ-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293

    CAS  PubMed  Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res 24:857–863

    Article  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  CAS  Google Scholar 

  • Luther GW, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816

    Article  CAS  PubMed  Google Scholar 

  • Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hügler M, Albrecht D, Robidart J, Bench S, Feldman RA, Hecker M, Schweder T (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    Article  CAS  PubMed  Google Scholar 

  • McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL (2011) Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl Environ Microbiol 77:5445–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ (2010) Methanogens and methanogenesis in hypersaline environments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 665–680

    Chapter  Google Scholar 

  • McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N, Seewald JS, Sievert SM (2018) Primary productivity below the seafloor at deep-sea hot springs. Proc Natl Acad Sci USA 115:6756–6761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, Amann R, Meyerdierks A (2017) Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J 11:1545–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlino G, Barozzi A, Michoud G, Ngugi DK, Daffonchio D (2018) Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol 94:fiy085

    Google Scholar 

  • Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA 99:5632–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AR (1964) High salinity in sea water. Nature 203:590–591

    Article  CAS  Google Scholar 

  • Minic Z, Thongbam PD (2011) The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 9:719–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mino S, Kudo H, Arai T, Sawabe T, Takai K, Nakagawa S (2014) Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum. Int J Syst Evol Microbiol 64:3195–3201

    Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, L’Haridon S, Jeanthon C, Hippe H, Stackebrandt E, Bonch-Osmolovskaya EA (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304

    Google Scholar 

  • Miyazaki J, Ikuta T, Watsuji T, Abe M, Yamamoto M, Nakagawa S, Takaki Y, Nakamura K, Takai K (2020) Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica. ISME J 14:1273–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed YM, Ghazy MA, Sayed A, Ouf A, El-Dorry H, Siam R (2013) Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool. Sci Rep 3:3358

    Article  PubMed  PubMed Central  Google Scholar 

  • Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach A-L, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233

    Google Scholar 

  • Mußmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5:e230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murdock SA, Juniper SK (2019) Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environ Microbiol 21:3796–3815

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  CAS  PubMed  Google Scholar 

  • Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, Kamanda Ngugi D, Göker M, Klenk H-P, Bajic V, Stingl U (2016) Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep 6:19181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Nakagawa S, Inagaki F, Takai K, Horikoshi K (2004) Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol Lett 232:145–152

    Article  CAS  PubMed  Google Scholar 

  • Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C (2005) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7:118–132

    Article  CAS  PubMed  Google Scholar 

  • Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H, Bajic V, Stingl U (2015) Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9:396–411

    Article  CAS  Google Scholar 

  • Nigro LM, Hyde AS, MacGregor BJ, Teske A (2016) Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome. Front Microbiol 7:1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Nigro LM, Elling FJ, Hinrichs K-U, Joye SB, Teske A (2020) Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin. PLoS One 15:e0231676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296:143–145

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2006) Halophilic microorganisms and their environments. Springer, Dordrecht

    Google Scholar 

  • Oren A (2013) Life in magnesium- and calcium-rich hypersaline environments: salt stress by chaotropic ions. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Springer, Dordrecht, pp 215–232

    Chapter  Google Scholar 

  • Pachiadaki MG, Yakimov MM, LaCono V, Leadbetter E, Edgcomb V (2014) Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J 8:2478–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachiadaki MG, Taylor C, Oikonomou A, Yakimov MM, Stoeck T, Edgcomb V (2016) In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res Pt II Top Stud Oceanogr 129:223–231

    Article  Google Scholar 

  • Park JS, Simpson AGB (2010) Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles. Environ Microbiol 12:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Simpson AGB, Lee WJ, Cho BC (2007) Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist 158:397–413

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Simpson AGB, Brown S, Cho BC (2009) Ultrastructure and molecular phylogeny of two Heterolobosean Amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. Protist 160:265–283

    Article  CAS  PubMed  Google Scholar 

  • Patterson DJ, Simpson AGB (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur J Protistol 32:423–448

    Article  Google Scholar 

  • Pérez-Rodríguez I, Ricci J, Voordeckers JW, Starovoytov V, Vetriani C (2010) Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 60:1182–1186

    Google Scholar 

  • Pérez-Rodríguez I, Grosche A, Massenburg L, Starovoytov V, Lutz RA, Vetriani C (2012) Phorcysia thermohydrogeniphila gen. nov., sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2388–2394

    Google Scholar 

  • Perner M, Seifert R, Weber S, Koschinsky A, Schmidt K, Strauss H, Peters M, Haase K, Imhoff JF (2007) Microbial CO2 fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S). Environ Microbiol 9:1186–1201

    Article  CAS  PubMed  Google Scholar 

  • Perner M, Gonnella G, Hourdez S, Böhnke S, Kurtz S, Girguis P (2013) In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ Microbiol 15:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 1:319–335

    Article  CAS  PubMed  Google Scholar 

  • Petersen JM, Dubilier N (2010) Symbiotic methane oxidizers. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1977–1996

    Chapter  Google Scholar 

  • Petersen JM, Ramette A, Lott C, Cambon-Bonavita M-A, Zbinden M, Dubilier N (2010) Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ Microbiol 12:2204–2218

    CAS  PubMed  Google Scholar 

  • Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Syst Appl Microbiol 14:245–253

    Google Scholar 

  • Polz MF, Distel DL, Zarda B, Amann R, Felbeck H, Ott JA, Cavanaugh CM (1994) Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl Environ Microbiol 60:4461–4467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polzin J, Arevalo P, Nussbaumer T, Polz MF, Bright M (2019) Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc Royal Soc B 286:20181281

    Article  CAS  Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Reed AJ, Dorn R, Van Dover CL, Lutz RA, Vetriani C (2009) Phylogenetic diversity of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps. Deep Sea Res Pt II Top Stud Oceanogr 56:1665–1674

    Article  CAS  Google Scholar 

  • Reysenbach A-L, Banta AB, Boone DR, Cary SC, Luther GW (2000a) Microbial essentials at hydrothermal vents. Nature 404:835–835

    Article  CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Longnecker K, Kirshtein J (2000b) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross DA, Whitmarsh RB, Ali SA, Boudreaux JE, Coleman R, Fleisher RL, Girdler R, Manheim F, Matter A, Nigrini C, Stoffers P, Supko PR (1973) Red Sea drillings. Science 179:377–380

    Article  CAS  PubMed  Google Scholar 

  • Ruby EG, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. Strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russ L, Kartal B, Op Den Camp H, Sollai M, Le Bruchec J, Caprais J-C, Godfroy A, Sinninghe Damsté J, Jetten M (2013) Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol 4:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagar S, Esau L, Hikmawan T, Antunes A, Holtermann K, Stingl U, Bajic VB, Kaur M (2013a) Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea. BMC Complement Altern Med 13:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagar S, Esau L, Holtermann K, Hikmawan T, Zhang G, Stingl U, Bajic VB, Kaur M (2013b) Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement Altern Med 13:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai S, Takaki Y, Miyazaki M, Ogawara M, Yanagawa K, Miyazaki J, Takai K (2019) Methanofervidicoccus abyssi gen. nov., sp. nov., a hydrogenotrophic methanogen, isolated from a hydrothermal vent chimney in the Mid-Cayman Spreading Center, the Caribbean Sea. Int J Syst Evol Microbiol 69:1225–1230

    Google Scholar 

  • Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR (2013) Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J 7:1556–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato T, Atomi H, Imanaka T (2007) Archaeal type III RuBisCOs function in a pathway for amp metabolism. Science 315:1003

    Article  CAS  PubMed  Google Scholar 

  • Sauvadet A-L, Gobet A, Guillou L (2010) Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ Microbiol 12:2946–2964

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Al-Farawati R, Botz R (2015) Geochemical classification of brine-filled Red Sea deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Berlin, pp 219–233

    Google Scholar 

  • Schrenk MO, Kelley DS, Bolton SA, Baross JA (2004) Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ Microbiol 6:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PSG, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hügler M, Kerfeld CA, Klotz MG, Kong WW, Land M, Lapidus A, Larimer FW, Longo DL, Lucas S, Malfatti SA, Massey SE, Martin DD, McCuddin Z, Meyer F, Moore JL, Ocampo LH Jr, Paul JH, Paulsen IT, Reep DK, Ren Q, Ross RL, Sato PY, Thomas P, Tinkham LE, Zeruth GT (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:e383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahak Y, Arieli B, Padan E, Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299:127–130

    Article  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28:223–235

    Article  CAS  PubMed  Google Scholar 

  • Shokes RF, Trabant PK, Presley BJ, Reid DF (1977) Anoxic, hypersaline basin in the Northern Gulf of Mexico. Science 196:1443–1446

    Article  CAS  PubMed  Google Scholar 

  • Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246

    Google Scholar 

  • Skennerton CT, Ward LM, Michel A, Metcalfe K, Valiente C, Mullin S, Chan KY, Gradinaru V, Orphan VJ (2015) Genomic reconstruction of an uncultured hydrothermal vent gammaproteobacterial methanotroph (Family Methylothermaceae) indicates multiple adaptations to oxygen limitation. Front Microbiol 6:1425

    Article  PubMed  PubMed Central  Google Scholar 

  • Small EB, Gross ME (1985) Preliminary observations of protistan organisms, especially ciliates, from the 21°N hydrothermal vent site. Bull Biol Soc Wash 6:401–410

    Google Scholar 

  • Sojo V, Herschy B, Whicher A, Camprubí E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197

    Article  CAS  PubMed  Google Scholar 

  • Søndergaard D, Pedersen CNS, Greening C (2016) HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 6:34212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorokin DY, Kublanov IV, Yakimov MM, Rijpstra WIC, Sinninghe Damsté JS (2016) Halobacteriaceae—click to open names for life widget. Int J Syst Evol Microbiol 66:2377–2381

    Article  CAS  PubMed  Google Scholar 

  • Steinle L, Knittel K, Felber N, Casalino C, de Lange G, Tessarolo C, Stadnitskaia A, Sinninghe Damsté JS, Zopfi J, Lehmann MF, Treude T, Niemann H (2018) Life on the edge: active microbial communities in the Kryos MgCl2-brine basin at very low water activity. ISME J 12:1414–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepnov AA, Fredriksen L, Steen IH, Stokke R, Eijsink VGH (2019) Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field. PLoS One 14:e0222216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of Archaebacteria. Science 236:822

    Article  CAS  PubMed  Google Scholar 

  • Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JD, Quinn JP, Timson DJ, Patil SV, Singhal RS, Antón J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351

    Article  CAS  PubMed  Google Scholar 

  • Stevenson A, Hamill PG, O’Kane CJ, Kminek G, Rummel JD, Voytek MA, Dijksterhuis J, Hallsworth JE (2017) Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ Microbiol 19:687–697

    Google Scholar 

  • Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34

    Article  PubMed  Google Scholar 

  • Stock A, Filker S, Yakimov M, Stoeck T (2013) Deep hypersaline anoxic basins as model systems for environmental selection of microbial plankton. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Springer, Dordrecht, pp 499–515

    Chapter  Google Scholar 

  • Stohr R, Waberski A, Völker H, Tindall BJ, Thomm M (2001) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862

    Google Scholar 

  • Stokke R, Reeves EP, Dahle H, Fedøy A-E, Viflot T, Lie Onstad S, Vulcano F, Pedersen RB, Eijsink VGH, Steen IH (2020) Tailoring hydrothermal vent biodiversity toward improved biodiscovery using a novel in situ enrichment strategy. Front Microbiol 11:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166

    Article  CAS  Google Scholar 

  • Sylvan J, Sia T, Haddad A, Briscoe L, Toner B, Girguis P, Edwards K (2013) Low temperature geomicrobiology follows host rock composition along a geochemical gradient in Lau Basin. Front Microbiol 4:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095

    Google Scholar 

  • Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson KH, Horikoshi K (2003a) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174

    CAS  PubMed  Google Scholar 

  • Takai K, Nakagawa S, Sako Y, Horikoshi K (2003b) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954

    Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004a) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100

    Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004b) Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32

    Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189

    Google Scholar 

  • Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56:1725–1733

    Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson:1998 Marjory Stephenson Prize Lecture. Microbiology 144:2377–2406

    Article  CAS  PubMed  Google Scholar 

  • Tivey MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50–65

    Article  Google Scholar 

  • Trüper HG (1969) Bacterial sulfate reduction in the Red Sea hot brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer, Berlin, pp 263–271

    Chapter  Google Scholar 

  • Tuovila BJ, Dobbs FC, LaRock PA, Siegel BZ (1987) Preservation of ATP in hypersaline environments. Appl Environ Microbiol 53:2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle JH, Jannasch HW (1979) Microbial dark assimilation of CO2 in the Cariaco Trench. Limnol Oceanogr 24:746–753

    Article  CAS  Google Scholar 

  • Tuttle JH, Wirsen CO, Jannasch HW (1983) Microbial activities in the emitted hydrothermal waters of the Galápagos rift vents. Mar Biol 73:293–299

    Article  Google Scholar 

  • Van Cappellen P, Viollier E, Roychoudhury A, Clark L, Ingall E, Lowe K, Dichristina T (1998) Biogeochemical cycles of manganese and iron at the oxic−anoxic transition of a stratified marine basin (Orca Basin, Gulf of Mexico). Environ Sci Technol 32:2931–2939

    Article  CAS  Google Scholar 

  • Vander Roost J, Daae FL, Steen IH, Thorseth IH, Dahle H (2018) Distribution patterns of iron-oxidizing zeta- and beta-proteobacteria from different environmental settings at the Jan Mayen Vent Fields. Front Microbiol 9:3008

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, Party BS (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  CAS  PubMed  Google Scholar 

  • Van Dover CL, Fry B, Grassle JF, Humphris S, Rona PA (1988) Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar Biol 98:209–216

    Article  Google Scholar 

  • Varrella S, Tangherlini M, Corinaldesi C (2020) Deep hypersaline anoxic basins as untapped reservoir of polyextremophilic prokaryotes of biotechnological interest. Mar Drugs 18:91

    Article  CAS  PubMed Central  Google Scholar 

  • Vetriani C, Speck MD, Ellor SV, Lutz RA, Starovoytov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181

    Article  CAS  PubMed  Google Scholar 

  • Vidussi F, Claustre H, Manca BB, Luchetta A, Marty J-C (2001) Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res Oceans 106:19939–19956

    Article  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignais PM (2008) Hydrogenases and H+-reduction in primary energy conservation. In: Schäfer G, Penefsky HS (eds) Bioenergetics: energy conservation and conversion. Springer, Berlin, pp 223–252

    Chapter  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  • Vuoristo KS, Fredriksen L, Oftebro M, Arntzen MØ, Aarstad OA, Stokke R, Steen IH, Hansen LD, Schüller RB, Aachmann FL, Horn SJ, Eijsink VGH (2019) Production, characterization, and application of an alginate lyase, AMOR_PL7A, from hot vents in the Arctic Mid-Ocean Ridge. J Agric Food Chem 67:2936–2945

    Article  CAS  PubMed  Google Scholar 

  • Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, Woyke T, Klotz MG, Hugenholtz P (2017) Comparative genomic analysis of the Class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 8:682

    Google Scholar 

  • Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, Woyke T, Klotz MG, Hugenholtz P (2018) Addendum: comparative genomic analysis of the Class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol 9:772

    Google Scholar 

  • Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P (2020) Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 70:5972–6016

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xiao X, Jiang L, Peng X, Zhou H, Meng J, Wang F (2009) Diversity and abundance of ammonia-oxidizing archaea in hydrothermal vent chimneys of the Juan de Fuca Ridge. Appl Environ Microbiol 75:4216–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang J, Lee OO, Dash S, Lau SCK, Al-Suwailem A, Wong TYH, Danchin A, Qian P-Y (2011) Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME J 5:1652–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson SW, Waterbury JB (1969) The sterile hot brines of the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer, Berlin, pp 272–281

    Chapter  Google Scholar 

  • Weiss RF, Lonsdale P, Lupton JE, Bainbridge AE, Craig H (1977) Hydrothermal plumes in the Galapagos Rift. Nature 267:600–603

    Article  Google Scholar 

  • Williams DL, Von Herzen RP, Sclater JG, Anderson RN (1974) The Galapagos spreading centre: lithospheric cooling and hydrothermal circulation. Geophys J Int 38:587–608

    Article  Google Scholar 

  • Wirsen CO, Tuttle JH, Jannasch HW (1986) Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site. Mar Biol 92:449–456

    Article  CAS  Google Scholar 

  • Wirsen CO, Brinkhoff T, Kuever J, Muyzer G, Molyneaux S, Jannasch HW (1998) Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64:4057–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Li M, Ding J-F, Gu J-D, Luo Z-H (2014) Bacteria dominate the ammonia-oxidizing community in a hydrothermal vent site at the Mid-Atlantic Ridge of the South Atlantic Ocean. Appl Microbiol and Biotechnol 98:7993–8004

    Article  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007a) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (Eastern Mediterranean). Orig Life Evol Biosph 37:177–188

    Article  PubMed  Google Scholar 

  • Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, Golyshin PN, Giuliano L (2007b) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 1:743–755

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, Borghini M, Monticelli LS, Rojo D, Barbas C, Golyshina OV, Ferrer M, Golyshin PN, Giuliano L (2013) Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 3:3554

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, La Cono V, Spada GL, Bortoluzzi G, Messina E, Smedile F, Arcadi E, Borghini M, Ferrer M, Schmitt-Kopplin P, Hertkorn N, Cray JA, Hallsworth JE, Golyshin PN, Giuliano L (2015) Microbial community of the deep-sea brine Lake Kryos seawater–brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol 17:364–382

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Liu Y, Pan J, Cron BR, Toner BM, Anantharaman K, Breier JA, Dick GJ, Li M (2020) Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. ISME J 14:3136–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang G-C, Elling FJ, Nigro LM, Samarkin V, Joye SB, Teske A, Hinrichs K-U (2016) Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta 187:1–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pachiadaki .

Editor information

Editors and Affiliations

Ethics declarations

The bibliography on the microbiology of vents and deep hypersaline anoxic basins is extensive including several books chapters and review articles. Important work might have been unintentionally omitted.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pachiadaki, M., Edgcomb, V. (2022). Marine Extreme Habitats. In: Stal, L.J., Cretoiu, M.S. (eds) The Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-90383-1_14

Download citation

Publish with us

Policies and ethics