Skip to main content

Abstract

Fresh brine samples and mud samples from cores were taken under sterile conditions. Enrichment media for sulfate-reducing and nitrate-reducing bacteria were inoculated with these samples and incubated at room temperature and the respective brine temperature. No positive development was found in cultures inoculated from brines or core muds from the brine area. Only one of five cores from outside the brine area contained sulfate-reducing bacteria, of which two strains were isolated. Water samples from the brine/seawater transition zone in the Atlantis II Deep also resulted in positive enrichments, of which three strains of sulfate-reducing bacteria were isolated. No nitrate-reducing bacteria could be enriched from any of the samples. The isolated Desulfovibrio strains were characterized. Their temperature optima were 35°–40°C. An experiment to train ten different strains of sulfate-reducing bacteria isolated from various marine environments to grow at elevated temperatures and salinities showed that only the sulfate-reducing bacteria from the Atlantis II Deep brine/seawater transition zone grew well at 10 per cent NaCl/44°C and 1/2 concentrated brine/35°C. The probable reasons responsible for the absence of bacterial sulfate reduction in the hot brines themselves and in the brine deep sediments are discussed.

Woods Hole Oceanographic Institution Contribution No. 2189.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas Becking, L. G. M. and I. R. Kaplan: The microbiological origin of the sulphur nodules of Lake Eyre. Trans. Roy. Soc. S. Australia. 79, 52 (1956).

    Google Scholar 

  • Baas Becking, L. G. M. and E. J. F. Wood: Biological processes in the estuarine environment. I. Ecology of the sulphur cycle. Proc. Kon. Ned. Akad. v. Wet. Amsterdam. 58, 160 (1955).

    Google Scholar 

  • Brewer, P. G., C. D. Densmore, R. G. Munns, and R. J. Stanley: Hydrography of the Red Sea brines. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 138-147 (1969).

    Google Scholar 

  • Butlin, K. R., M. E. Adams, and M. Thomas: The isolation and cultivation of sulphate-reducing bacteria. J. Gen. Microbiol. 3, 46 (1949).

    Article  Google Scholar 

  • Campbell, L. L. and J. R. Postgate: Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29, 359 (1965).

    Google Scholar 

  • Claus, D.: Anreicherungen und Direktisolierungen aerober sporenbildender Bakterien. Zentr. Bakt. Parasitenk., I. Abt. Suppl. 1, 337 (1965).

    Google Scholar 

  • Gahl, R. and B. Anderson: Sulphate reducing bacteria in California oil waters. Zentr. Bakt. Parasitenk., II. Abt. 73, 331 (1928).

    Google Scholar 

  • Hartmann, M. and H. Nielsen: Sulfur isotopes in the hot brine and sediment of Atlantis II Deep (Red Sea). Marine Geol. 4, 305 (1966).

    Article  Google Scholar 

  • Hata, Y.: Inorganic nutrition of marine sulfate-reducing bacteria. J. Shimonoseki Coll. Fisheries. 9, 39 (1960).

    Google Scholar 

  • Hof, T.: Investigations concerning bacterial life in strong brines. Rec. Trav. Botan. Neerlandais. 32, 92 (1935).

    Google Scholar 

  • Jannasch, H. W. and W. S. Maddux: A note on bacteriological sampling in seawater. J. Mar. Res. 25, 185 (1967).

    Google Scholar 

  • Johnson, F. H.: The action of pressures and temperature. In: Microbial Ecology, 7th Symp. Soc. Gen. Microbiol., R. E. O. Williams and C. C. Spicer (eds.). University Press, Cambridge, 134 (1957).

    Google Scholar 

  • Kadota, H. and H. Miyoshi: A chemically defined medium for the growth of Desulfovibrio. Mem. Res. Inst. Food. Sci., Kyoto Univ. 22, 20 (1960).

    Google Scholar 

  • Kadota, H. and H. Miyoshi: Organic factors responsible for the stimulation of growth of Desulfovibrio desulfuricans. In: Marine Microbiology, C. H. Oppenheimer (ed.). C. C. Thomas, Springfield, Ill., 442 (1963).

    Google Scholar 

  • Kimata, M., H. Kadota, Y. Hata, and T. Tajima: Studies on the marine sulfate-reducing bacteria. II. Influences of various environmental factors upon the sulfate-reducing activity of marine sulfate-reducing bacteria. Bull. Jap. Soc. Scient. Fish. 21, 113 (1955).

    Article  Google Scholar 

  • Kuznetsova, V. A. and E. S. Pantskhava: Effect of freshening of stratal waters on development of halophilic sulfate reducing bacteria. Mikrobiologiya (Russ.). 31, 129 (1962).

    Google Scholar 

  • Le Gall, J., J. C. Senez, and F. Pichinoty: Fixation de l’azote par les bactéries sulfato-réductricies. Ann. Inst. Pasteur. 96, 223 (1959).

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Fair, and R. J. Randall: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 (1951).

    Google Scholar 

  • Macpherson, R. and J. D. A. Miller: Nutritional studies on Desulfovibrio desulfuricans using chemically defined media. J. Gen. Microbiol. 31, 365 (1963).

    Article  Google Scholar 

  • Mechalas, B. J. and S. C. Rittenberg: Energy coupling in Desulfovibrio desulfuricans. J. Bacteriol. 80, 501 (1960).

    Google Scholar 

  • Miller, A. R., C. D. Densmore, E. T. Degens, J. C. Hathaway, F. T. Manheim, P. F. McFarlin, R. Pocklington, and A. Jokela: Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. Cosmochim. Acta. 30, 341 (1966).

    Article  Google Scholar 

  • Munns, R. G., R. J. Stanley, and C.D. Densmore: Hydrographic observations of the Red Sea brines. Nature. 214, 1215 (1967).

    Article  Google Scholar 

  • Niskin, S. J.: A water sampler for microbiological studies. Deep-Sea Res. 9, 501 (1962).

    Google Scholar 

  • Pachmayr, F.: Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Dissertation, Univ. of Munich (1960).

    Google Scholar 

  • Peck, H. D., Jr.: Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J. Bacteriol. 82, 933 (1961).

    Google Scholar 

  • Peck, H. D., Jr.: Some evolutionary aspects of inorganic sulfur metabolism. Lecture Series on Theoretical and Applied Aspects of Modern Microbiology, Univ. of Maryland, 1 (1966).

    Google Scholar 

  • Postgate, J. R.: Iron and the synthesis of cytochrome C3. J. Gen. Microbiol. 15, 186 (1956).

    Article  Google Scholar 

  • Postgate, J. R.: On the autotrophy of Desulfovibrio desulfuricans. Z. Allg. Mikrobiol. 1, 53 (1960).

    Article  Google Scholar 

  • Postgate, J. R.: Enrichment and isolation of sulphate-reducing bacteria. Zentr. Bakt. Parasitenk., I. Abt. Suppl. 1, 190 (1965).

    Google Scholar 

  • Postgate, J. R. and L. L. Campbell: Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30, 723 (1966).

    Google Scholar 

  • Richards, F. A. and R. F. Vaccaro: The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep-Sea Res. 3, 214 (1956).

    Article  Google Scholar 

  • Rittenberg, S. C.: Studies on marine sulfate-reducing bacteria. Dissertation, Univ. of Calif., Los Angeles, 115 p. (1941).

    Google Scholar 

  • Römer, R. and W. Schwartz: Geomikrobiologische Untersuchungen. V. Verwertung von Sulfatmineralien und Schwermetall-Toleranz bei Desulfurizierern. Z. Allg. Mikrobiol. 5, 122 (1965).

    Article  Google Scholar 

  • Ross, D. A. and E. T. Degens: Shipboard collection of sediment samples collected during CHAIN Cruise 61 from the Red Sea. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 363-367 (1969).

    Google Scholar 

  • Rubentschick, L. I.: Sulfate reducing bacteria. Mikrobiologiya (Russ.). 15, 443 (1946).

    Google Scholar 

  • Saslawsky, A. S.: Zur Frage der Wirkung hoher Salzkonzentrationen auf die biochemischen Prozesse im Limanschlamm. Zentr. Bakt. Parasitenk., II. Abt. 73, 18 (1928).

    Google Scholar 

  • Schlegel, H. G. and H. W. Jannasch: Enrichment cultures. Ann. Rev. Microbiol. 21, 49 (1967).

    Article  Google Scholar 

  • Sisler, F. D. and C. E. ZoBell: Hydrogen utilization by some marine sulfate-reducing bacteria. J. Bacteriol. 62, 117 (1951).

    Google Scholar 

  • Skopintsev, B. A., A. V. Karpov, and O. A. Vershinina: Study of some sulfur compounds in the Black Sea under experimental conditions (in Russian). Trudy Marine Hydrophys. Inst. (MGI), Akad. Nauk SSSR. 16, 89 (1959).

    Google Scholar 

  • Starkey, R. L.: A study of spore formation and other morphological characteristics of Vibrio desulfuricans. Arch. Mikrobiol. 9, 268 (1938).

    Article  Google Scholar 

  • Triiper, H. G. and H. G. Schlegel: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie v. Leeuwenhoek J. Microbiol. Serol. 30, 225 (1964).

    Article  Google Scholar 

  • Watson, S. W. and J. B. Waterbury: The sterile hot brines of the Red Sea. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 272-281 (1969).

    Google Scholar 

  • ZoBell, C. E.: Ecology of sulfate reducing bacteria. In: Sulfate-reducing bacteria, their relation to secondary recovery of oil, Science Symp. St. Bonaventure Univ., New York, 1 (1957).

    Google Scholar 

  • ZoBell, C. E. and F. H. Johnson: The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol. 57, 179 (1949).

    Google Scholar 

  • ZoBell, C. E. and R. Y. Morita: Barophilic bacteria in some deep sea sediments. J. Bacteriol. 73, 563 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trüper, H.G. (1969). Bacterial Sulfate Reduction in the Red Sea Hot Brines. In: Degens, E.T., Ross, D.A. (eds) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-28603-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-28603-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-27120-9

  • Online ISBN: 978-3-662-28603-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics