Skip to main content

Hydrochemical Characteristics of Mid-Low Sections of North Patagonia Rivers, Argentina

  • Chapter
  • First Online:
Environmental Assessment of Patagonia's Water Resources

Abstract

The chemical composition of water in the mid-low sections of the three main rivers of Patagonia (Colorado, Negro and Chubut rivers) is an important proxy for the understanding of the water cycle in the region. River water samplings were done in summer and winter campaigns at Colorado (15 sites), Negro (18 sites) and Chubut (17 sites). Hydrochemical variables: pH, conductivity, salinity, and ion concentrations were measured. The data processing included regular hydrochemical diagrams, multivariate statistical analysis and saturation indexes calculation. The three rivers have two different sections: one inland section having the continental hydrochemical fingerprint and an estuarine section, with a markedly seawater mixing effect. Most water samples of the inland sites belong to the Mg2+–Ca2+–HCO3 type in the Negro and Chubut rivers and to the Ca2+–SO42− type in the Colorado River. In contrast, the prevailing hydrochemical facies was the Na–Cl type at estuarine sites. In general, rock weathering was the main hydrogeochemical process controlling chemistry composition of rivers, being the dissolution of gypsum, carbonate and silicate minerals the primary contributors. The inland section has a different composition for each river, which is related to differences in the rock-composition at the sources and chemical reactions during downstream flow. The Colorado River also showed the highest average values in salinity, conductivity and dissolved ions. Basin geology and brackish discharges from Curacó River during the high rainfall season contributed to explain the ionic concentration in Colorado River, in particular the excess of calcium and sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrameto M, Torres M, Ruffini G (2017) Nutrients distributions in an estuary of the Argentine coast. WIT Trans Ecol Environ 216:277–283

    Article  CAS  Google Scholar 

  • APHA, American Public Health Association. (1998) Standard methods for the examination of water and wastewater. Water Environment Federation, Washington

    Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, The Netherlands

    Google Scholar 

  • Back W (1960) Hydrochemical facies and ground-water flow patterns in Northern Atlantic Coastal Plain. AAPG Bull 44:1244–1245

    Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews. Clim Chang 6:151–169

    Google Scholar 

  • Baumann GO, Vital M, Glok-Galli M, Grondona S, Massone H, Martinez DE (2019) Hydrogeochemical modeling and dedolomitization processes in the Patagonian Boulders and Patagonia Formation in the eastern Patagonia, Argentina. Environ Earth Sci 78:1–16

    Article  CAS  Google Scholar 

  • Brunet F, Gaiero D, Probst J, Depetris PJ, Gauthier Lafaye F, Stille P (2005) δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol Process 19:3321–3344

    Article  CAS  Google Scholar 

  • Cai W-J, Guo X, Chen C-TA, Dai M, Zhang L, Zhai W, Lohrenz SE, Yin K, Harrison PJ, Wang Y (2008) A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res 28:1538–1549

    Article  Google Scholar 

  • Cai Y, Shim M, Guo L, Shiller A (2016) Floodplain influence on carbon speciation and fluxes from the lower Pearl River, Mississippi. Geochim Cosmochim Acta 186:189–206

    Article  CAS  Google Scholar 

  • Carol ES, Kruse EE (2012) Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata Estuary, Argentina. J South Am Earth Sci 37:113–121

    Article  CAS  Google Scholar 

  • COIRCO, Comité Interjurisdiccional del Río Colorado (2017) Análisis estadístico de los parámetros fisicoquímicos, metales y metaloides. Estación piloto “Buta Ranquil”. Universidad Nacional del Sur, Argentina (in Spanish)

    Google Scholar 

  • Cole JJ (2013) The carbon cycle: with a brief introduction to global biogeochemistry. In: Weathers KC, Strayer DL, Likens GE (eds) Fundamentals of ecosystem science. Academic Press, New York, pp 109–135

    Chapter  Google Scholar 

  • Cook PL, Aldridge K, Lamontagne S, Brookes J (2010) Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system. Biogeochemistry 99:49–63

    Article  CAS  Google Scholar 

  • Coronato A, Coronato F, Mazzoni E, Vázquez M (2008) The physical geography of Patagonia and Tierra del Fuego. Dev Quat Sci 11:13–55

    Google Scholar 

  • Coronato A, Mazzoni E, Vázquez M, Coronato F (2017) Patagonia. Una síntesis de su geografía física. Ediciones Universidad Nacional de la Patagonia Austral, Santa Cruz, Argentina (in Spanish)

    Google Scholar 

  • CWQG, Canadian Water Quality Guidelines for the Protection of Aquatic Life (2012) Nitrate Ion. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Davies J, Barchiesi S, Ogali CJ, Welling R, Dalton J, Laban P (2016) Water in drylands: adapting to scarcity through integrated management. IUCN, Gland, Switzerland

    Book  Google Scholar 

  • Depetris PJ (1980) Hydrochemical aspects of the Negro river, Patagonia, Argentina. Earth Surf Process 5:181–186

    Article  CAS  Google Scholar 

  • Depetris PJ, Gaiero DM, Probst JL, Hartmann J, Kempe S (2005) Biogeochemical output and typology of rivers draining Patagonia’s Atlantic seaboard. J Coast Res 21:835–844

    Article  Google Scholar 

  • Durfor CN, Becker E (1964) Public water supplies of the 100 largest cities in the United States. US Government Printing Office, Washington

    Google Scholar 

  • Folguera A, Etcheverría M, Zárate M, Miranda F, Faroux A, Getino P (2015) Hoja Geológica 3963-I, Río Colorado. Provincias de La Pampa, Buenos Aires y Río Negro. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires (in Spanish)

    Google Scholar 

  • Gaiero DM, Probst J, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623

    Article  CAS  Google Scholar 

  • Gaitán JJ, Bran DE, Oliva GE (2020) Patagonian Desert. In: Goldstein M, DellaSala D (eds) Encyclopedia of the world’s biomes. Elsevier, pp 163–180

    Chapter  Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  CAS  Google Scholar 

  • He S, Xu YJ (2018) Freshwater-saltwater mixing effects on dissolved carbon and CO2 outgassing of a coastal river entering the northern Gulf of Mexico. Est Coast 41:734–750

    Article  CAS  Google Scholar 

  • Hem JD, Demayo A, Smith RA (1990) Hydrogeochemistry of rivers and lakes. In: Wolman MG, Rigss HC (eds) The geology of North America. Geological Society of America, USA, pp 189–231

    Google Scholar 

  • Hernández MA, González N, Hernández L (2008) Late cenozoic geohydrology of extra-Andean Patagonia, Argentina. Dev Quat Sci 11:497–509

    Google Scholar 

  • Hua K, Xiao J, Li S, Li Z (2020) Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustain Cities Soc 52:101827

    Google Scholar 

  • Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li W, Zhang L, Liu Y, Yu H, He Y, Xie Y, Guan X, Ji M, Lin L, Wang S, Yan H, Wang G (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55:719–778

    Article  Google Scholar 

  • Isla F, Espinosa M, Rubio B, Escandell A, Gerpe M, Miglioranza K, Rey D, Vilas F (2015) Avulsion at a drift-dominated mesotidal estuary: the Chubut River outlet, Patagonia, Argentina. J Hydrol 529:632–639

    Article  CAS  Google Scholar 

  • Isla F, Miglioranza K, Ondarza P, Shimabukuro V, Menone M, Espinosa M, Quiroz Londoño M, Ferrante A, Aizpún J, Moreno V (2010) Sediment and pollutant distribution along the Negro River: Patagonia, Argentina. Int J River Basin Manag 8:319–330

    Article  Google Scholar 

  • Isla F, Toldo E (2013) ENSO impacts on Atlantic watersheds of South America. Quat Environ Geosci 4:34–41

    Google Scholar 

  • Jiang Y, Gui H, Yu H, Wang M, Fang H, Wang C, Fang H, Chen C, Zhang Y, Huang Y (2020) Hydrochemical characteristics and water quality evaluation of rivers in different regions of cities: a case study of Suzhou city in northern Anhui Province, China. Water 12:950

    Article  CAS  Google Scholar 

  • Kampstra P (2015) Beanplot: visualization via beanplots. R package version 1.2. https://cran.r-project.org/package=beanplot. Accessed 15 June 2020

  • Li P, Zhang Y, Yang N, Jing L, Yu P (2016) Major ion chemistry and quality assessment of groundwater in and around a mountainous tourist town of China. Expos Health 8:239–252

    Article  CAS  Google Scholar 

  • Li Z, Xiao J, Evaristo J, Li Z (2019) Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei River of China. Environ Pollut 254:113006

    Google Scholar 

  • Lurman D, Aragón M, Sánchez R, Ancía V (2007) Variables a considerar para una estimación de las pérdidas económicas por causa de la salinización del río Colorado y su cuantificación. CORFO-INTA 1:1–11 (in Spanish)

    Google Scholar 

  • Mazzoni E, Vázquez M (2009) Desertification in Patagonia. In: Latrubesse E (ed) Geomorphology of natural and human-induced disasters in South America. Elsevier, Amsterdarm, pp 351–377. https://doi.org/10.1016/S0928-2025(08)10017-7

  • Miglioranza KS, Gonzalez M, Ondarza PM, Shimabukuro VM, Isla FI, Fillmann G, Aizpún J, Moreno VJ (2013) Assessment of Argentinean Patagonia pollution: PBDEs, OCPs and PCBs in different matrices from the Río Negro basin. Sci Total Environ 452:275–285

    Article  Google Scholar 

  • Narciso V, Santamaría G, Zanettini J (2004) Hoja Geológica 3769-I, Barrancas. Provincias de Mendoza y Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires (in Spanish)

    Google Scholar 

  • Nullo FE, Stephens G, Combina A, Dimieri L, Baldauf P, Bouza P, Zanettini JC, Leanza HA (2005) Hoja Geológica 3569-III/3572-IV Malargüe, provincia de Mendoza. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, Buenos Aires (in Spanish)

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MMH, Wagner H (2015) Vegan: community ecology package. R package version 2.3-0. https://cran.r-project.org/package=vegan. Accessed 16 June 2020

  • Parkhurst DL, Appelo C (1999) User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour Invest Rep 99–312

    Google Scholar 

  • Paruelo JM, Jobbágy EG, Oesterheld M, Golluscio RA, Aguiar MR (2007) The grasslands and steppes of Patagonia and the Río de la Plata plains. In: Veblen T, Young K, Orme A (eds) The physical geography of South America. Oxford University Press, New York, pp 232–248

    Google Scholar 

  • Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399

    Article  Google Scholar 

  • Pasquini AI, Depetris PJ, Gaiero DM, Probst J-L (2005) Material sources, chemical weathering, and physical denudation in the Chubut River basin (Patagonia, Argentina): implications for Andean rivers. J Geol 113:451–469

    Article  CAS  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Eos, Tran Am Geophys Union 25:914–928

    Article  Google Scholar 

  • R Development Core Team R (2015) Language and environmental for statistical computing. R Foundation for Statistical Computing: Viena, Austria. www.r-project.org. Accessed 15 June 2020

  • Romero P, González M (2016) Relación entre caudales y precipitación en algunas cuencas de la Patagonia norte. Rev Geol Apl Ingen Ambiente 36:7–13 (in Spanish)

    Google Scholar 

  • Sheldon F, Fellows CS (2010) Water quality in two Australian dryland rivers: spatial and temporal variability and the role of flow. Mar Fresh Res 61:864–874

    Article  CAS  Google Scholar 

  • Stiff HAJ (1951) The interpretation of chemical water analysis by means of patterns. J Pet Technol 3:15–13

    Article  Google Scholar 

  • Weaver CE (1931) Paleontology of the Jurassic and Cretaceous of west central Argentina. University of Washington press, Seattle

    Google Scholar 

  • Wu G, Li L, Ahmad S, Chen X, Pan X (2013) A dynamic model for vulnerability assessment of regional water resources in arid areas: a case study of Bayingolin, China. Water Resour Manage 27:3085–3101

    Article  Google Scholar 

  • WWAP, World Water Assessment Programme (2019) The United Nations world water development report 2019: leaving no one behind. UNESCO, Paris

    Google Scholar 

  • Yang Q, Li Z, Ma H, Wang L, Martín JD (2016) Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environ Pollut 218:879–888

    Article  CAS  Google Scholar 

  • Zambrano J, Urien C (1970) Geological outline of the basins in Southern Argentina and their continuation off the Atlantic shore. J Geophys Res 75:1363–1396

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge F. Isla, R. Fayó, J. Bedmar and M. Taglioretti for their assistance with field sampling, and G. Bernava for hydrochemical analysis. This study was funded by the Agencia Nacional de Promoción Científica y Tecnológica ANPCyT (grant number PICT 1146/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vélez-Agudelo, C., Martínez, D.E., Quiroz-Londoño, O.M., Espinosa, M.A. (2021). Hydrochemical Characteristics of Mid-Low Sections of North Patagonia Rivers, Argentina. In: Torres, A.I., Campodonico, V.A. (eds) Environmental Assessment of Patagonia's Water Resources. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-89676-8_7

Download citation

Publish with us

Policies and ethics