Skip to main content
Log in

Freshwater-Saltwater Mixing Effects on Dissolved Carbon and CO2 Outgassing of a Coastal River Entering the Northern Gulf of Mexico

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m−2 year−1, respectively, with a mean of 140 mol m−2 year−1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril, G., J.-M. Martinez, L.F. Artigas, P. Moreira-Turcq, M.F. Benedetti, L. Vidal, et al. 2014. Amazon River carbon dioxide outgassing fueled by wetlands. Nature 505: 395–398.

    Article  CAS  Google Scholar 

  • Aitkenhead, J.A., and W.H. McDowell. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles 14: 127–138.

    Article  CAS  Google Scholar 

  • Aitkenhead, J.A., D. Hope, and M.F. Billett. 1999. The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrological Processes 13: 1289–1302.

    Article  Google Scholar 

  • Amiotte Suchet, P., J.L. Probst, and W. Ludwig. 2003. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles 17: 1038.

    Article  Google Scholar 

  • Amon, R.M.W., and R. Benner. 1996. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta 60: 1783–1792.

    Article  CAS  Google Scholar 

  • Aucour, A.M., S.M.F. Sheppard, O. Guyomar, and J. Wattelet. 1999. Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology 159: 87–105.

    Article  CAS  Google Scholar 

  • Aufdenkampe, A.K., E. Mayorga, P.A. Raymond, J.M. Melack, S.C. Doney, S.R. Alin, et al. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53–60.

    Article  Google Scholar 

  • Benner, R., and S. Opsahl. 2001. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River plume. Organic Geochemistry 32: 597–611.

    Article  CAS  Google Scholar 

  • Bianchi, T.S., T. Filley, K. Dria, and P.G. Hatcher. 2004. Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochimica et Cosmochimica Acta 68: 959–967.

    Article  CAS  Google Scholar 

  • Bodin, S., P. Meissner, N.M.M. Janssen, T. Steuber, and J. Mutterlose. 2015. Large igneous provinces and organic carbon burial: controls on global temperature and continental weathering during the Early Cretaceous. Global and Planetary Change 133: 238–253.

    Article  Google Scholar 

  • Borges, A.V., and G. Abril. 2011. Carbon dioxide and methane dynamics in estuaries. In Treatise on Estuarine and Coastal Science - Volume 5: Biogeochemistry, ed. E. Wolanski and D.S. McLusky, 119–161. Waltham: Academic Press.

    Chapter  Google Scholar 

  • Borges, A.V., F. Darchambeau, C.R. Teodoru, T.R. Marwick, F. Tamooh, N. Geeraert, et al. 2015. Globally significant greenhouse gas emissions from African inland waters. Nature Geoscience 8: 637–642.

    Article  CAS  Google Scholar 

  • Brunet, F., D. Gaiero, J.L. Probst, P.J. Depetris, F. Gauthier Lafaye, and P. Stille. 2005. δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrological Processes 19: 3321–3344.

    Article  CAS  Google Scholar 

  • Butman, D., and P.A. Raymond. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4: 839–942.

    Article  CAS  Google Scholar 

  • Cai, W.J. 2003. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophysical Research Letters 30: 1032.

    Google Scholar 

  • Cai, W.-J., and Y. Wang. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha rivers, Georgia. Limnology and Oceanography 43 (4): 657–668.

    Article  CAS  Google Scholar 

  • Cai, W.-J., L.R. Pomeroy, M.A. Moran, and Y. Wang. 1999. Oxygen and carbon dioxide mass balance for the estuarine–intertidal marsh complex of five rivers in the southeastern U.S. Limnology and Oceanography 44 (3): 639–649.

    Article  CAS  Google Scholar 

  • Cai, W.J., X.H. Guo, C.T.A. Chen, M.H. Dai, L.J. Zhang, W.D. Zhai, et al. 2008. A comparative overview of weathering intensity and HCO3 flux in the world’s largest rivers with emphasis on the Changjiang, Huanghe, Zhujiang (pearl) and Mississippi rivers. Continental Shelf Research 28: 1538–1549.

    Article  Google Scholar 

  • Cai, Y., M.J. Shim, L. Guo, and A. Shiller. 2016. Floodplain influence on carbon speciation and fluxes from the lower Pearl River, Mississippi. Geochimica et Cosmochimica Acta 186: 189–206.

    Article  CAS  Google Scholar 

  • Cauwet, G. 2002. DOM in the coastal zone. In Biogeochemistry of marine dissolved organic matter, ed. D.A. Hansell and C.A. Carlson, 579–609. Cambridge: Academic Press.

    Chapter  Google Scholar 

  • Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172–185.

    Article  Google Scholar 

  • Cory, R.M., C.P. Ward, B.C. Crump, and G.W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925–928.

    Article  CAS  Google Scholar 

  • Dai, M., Z. Yin, F. Meng, Q. Liu, and W.J. Cai. 2012. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability 4: 170–178.

    Article  Google Scholar 

  • Dixon, T.H., F. Amelung, A. Ferretti, F. Novali, F. Rocca, R. Dokka, et al. 2006. Space geodesy: Subsidence and flooding in New Orleans. Nature 441: 587–588.

    Article  CAS  Google Scholar 

  • Doi, T., S. Osafune, N. Sugiura, S. Kouketsu, A. Murata, S. Masuda, et al. 2015. Multidecadal change in the dissolved inorganic carbon in a long-term ocean state estimation. Journal of Advances in Modeling Earth Systems 7: 1885–1900.

    Article  Google Scholar 

  • Dubois, K.D., D. Lee, and J. Veizer. 2010. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. Journal of Geophysical Research: Biogeosciences 115: G02018.

    Article  Google Scholar 

  • Etcheber, H., A. Taillez, G. Abril, J. Garnier, P. Servais, F. Moatar, et al. 2007. Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia 588: 245–259.

    Article  CAS  Google Scholar 

  • Fichot, C.G., and R. Benner. 2014. The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Global Biogeochemical Cycles 28: 300–318.

    Article  CAS  Google Scholar 

  • Forsgren, G., M. Jansson, and P. Nilsson. 1996. Aggregation and sedimentation of iron, phosphorus and organic carbon in experimental mixtures of freshwater and estuarine water. Estuarine, Coastal and Shelf Science 43: 259–268.

    Article  CAS  Google Scholar 

  • Fransner, F., J. Nycander, C.M. Mörth, C. Humborg, H.E.M. Meier, R. Hordoir, et al. 2016. Tracing terrestrial DOC in the Baltic Sea—a 3-D model study. Global Biogeochemical Cycles 30: 134–148.

    Article  CAS  Google Scholar 

  • Gao, J.H., Y.P. Wang, S.M. Pan, R. Zhang, J. Li, and F.L. Bai. 2008. Distribution of organic carbon in sediments and its influences on adjacent sea area in the turbidity maximum of Changjiang Estuary in China. Acta Oceanologica Sinica 27: 83–94.

    CAS  Google Scholar 

  • Goolsby, D.A., W.A. Battaglin, B.T. Aulenbach, and R.P. Hooper. 2001. Nitrogen input to the Gulf of Mexico. Journal of Environmental Quality 30: 329–336.

    Article  CAS  Google Scholar 

  • Guo, L., Y. Cai, C. Belzile, and R. Macdonald. 2012. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry 107: 187–206.

    Article  CAS  Google Scholar 

  • Harrison, J.A., N. Caraco, and S.P. Seitzinger. 2005. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochemical Cycles 19: GB4S04.

    Google Scholar 

  • He, S., and Y.J. Xu. 2015. Three decadal inputs of total organic carbon from four major coastal river basins to the summer hypoxic zone of the Northern Gulf of Mexico. Marine Pollution Bulletin 90: 121–128.

    Article  CAS  Google Scholar 

  • He, S., and Y.J. Xu. 2016. Spatiotemporal distributions of Sr and Ba along an Estuarine River with a large salinity gradient to the Gulf of Mexico. Water 2016 (8): 323.

    Article  Google Scholar 

  • He, S., and Y.J. Xu. 2017. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2017.08.024.

  • Hedges, J.I., and R.G. Keil. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49: 81–115.

    Article  CAS  Google Scholar 

  • Hope, D., M.F. Billet, and M.S. Cresser. 1994. A review of the export of carbon in river water: fluxes and processes. Environmental Pollution 84: 301–324.

    Article  CAS  Google Scholar 

  • Hope, D., M.F. Billett, and M.S. Cresser. 1997. Exports of organic carbon in two river systems in NE Scotland. Journal of Hydrology 193: 61–82.

    Article  CAS  Google Scholar 

  • Hu, X., W.J. Cai, N.N. Rabalais, and J. Xue. 2016. Coupled oxygen and dissolved inorganic carbon dynamics in coastal ocean and its use as a potential indicator for detecting water column oil degradation. Deep Sea Research Part II: Topical Studies in Oceanography 129: 311–318.

    Article  CAS  Google Scholar 

  • Huang, W.J., W.J. Cai, Y. Wang, X. Hu, B. Chen, S.E. Lohrenz, et al. 2015. Hopkinson. The response of inorganic carbon distributions and dynamics to upwelling-favorable winds on the northern Gulf of Mexico during summer. Continental Shelf Research 111: 211–222.

    Article  Google Scholar 

  • Humborg, C., C.M. Mörth, M. Sundbom, H. Borg, H. Blenckner, R. Giesler, et al. 2009. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Global Change Biology 16: 1966–1978.

    Article  Google Scholar 

  • Ivins, E.R., R.K. Dokka, and R.G. Blom. 2007. Post-glacial sediment load and subsidence in coastal Louisiana. Geophysical Research Letters 34: L16303.

    Article  Google Scholar 

  • Johnson, M.S., J. Lehmann, S.J. Riha, A.V. Krusche, J.E. Richey, J.P.H.B. Ometto, et al. 2008. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophysical Research Letters 35: L17401.

    Article  Google Scholar 

  • Kempe, S., M. Pettine, and G. Cauwet. 1991. Biogeochemistry of European rivers. In Biogeochemistry of Major World Rivers, SCOPE 42, ed. E.T. Degens, S. Kempe, and J.E. Richey, 169–212. Hoboken: John Wiley.

    Google Scholar 

  • Kim, Y., T.H. Kim, and T. Ergun. 2015. The instability of the Pearson correlation coefficient in the presence of coincidental outliers. Finance Research Letters 13: 243–257.

    Article  Google Scholar 

  • Lambert, T., S. Bouillon, F. Darchambeau, P. Massicotte, and A.V. Borges. 2016. Shift in the chemical composition of dissolved organic matter in the Congo River network. Biogeosciences 13: 5405–5420.

    Article  Google Scholar 

  • Lerman, A., L. Wu, and F.T. Mackenzie. 2007. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry 106: 326–350.

    Article  CAS  Google Scholar 

  • Li, G.J., J. Hartmann, L.A. Derry, A.J. West, C.F. You, X.Y. Long, et al. 2016. Temperature dependence of basalt weathering. Earth and Planetary Science Letters 443: 59–69.

    Article  CAS  Google Scholar 

  • Lucotte, M. 1989. Organic carbon isotope ratios and implications for the maximum turbidity zone of the St Lawrence upper estuary. Estuarine, Coastal and Shelf Science 29: 293–304.

    Article  CAS  Google Scholar 

  • Ludwig, W., J.L. Probst, and S. Kempe. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 1996 (10): 23–41.

    Article  Google Scholar 

  • Mannino, A., and H.R. Harvey. 2001. Terrigenous dissolved organic matter along an estuarine gradient and its flux to the coastal ocean. Organic Geochemistry 31: 1611–1625.

    Article  Google Scholar 

  • Mantoura, R.F.C., and E.M.S. Woodward. 1983. Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochimica et Cosmochimica Acta 47: 1293–1309.

    Article  CAS  Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science 282: 401–450.

    Article  CAS  Google Scholar 

  • Meybeck, M. 1993. Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, & Soil Pollution 70: 443–463.

    Article  CAS  Google Scholar 

  • Moran, M.A., W.M. Sheldon Jr., and J.E. Sheldon. 1999. Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries 22: 55–64.

    Article  CAS  Google Scholar 

  • Mulholland, P.J. 1981. Formation of particulate organic carbon in water from a southeastern swamp-stream. Limnology and Oceanography 26: 790–795.

    Article  CAS  Google Scholar 

  • Mulholland, P.J., G.V. Wilson, and P.M. Jardine. 1990. Hydrogeochemical response of a forested watershed to storms: effects of preferential flow along shallow and deep pathways. Water Resources Research 26: 3021–3036.

    Article  CAS  Google Scholar 

  • Powell, R.T., W.M. Landing, and J.E. Bauer. 1996. Colloidal trace metals, organic carbon and nitrogen in a southeastern U.S. estuary. Marine Chemistry 55: 165–176.

    Article  CAS  Google Scholar 

  • Raymond, P.A., and J.J. Cole. 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24: 312–317.

    Article  CAS  Google Scholar 

  • Raymond, P.A., N.H. Oh, R.E. Turner, and W. Broussard. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449–452.

    Article  CAS  Google Scholar 

  • Raymond, P.A., C.J. Zappa, D. Butman, T.L. Bott, J. Potter, P. Mulholland, A.E. Laursen, et al. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography Fluids and Environments 2: 41–53.

    Article  Google Scholar 

  • Raymond, P.A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, et al. 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.

    Article  CAS  Google Scholar 

  • Roberts, B.J., and S.M. Doty. 2015. Spatial and temporal patterns of benthic respiration and net nutrient fluxes in the Atchafalaya River Delta Estuary. Estuaries and Coasts 38: 1918–1936.

    Article  CAS  Google Scholar 

  • Schlesinger, W.H., and J.M. Melack. 1981. Transport of organic carbon in the world’s rivers. Tellus 33: 172–181.

    Article  CAS  Google Scholar 

  • Schurr, J.M., and J. Ruchti. 1977. Dynamics of O2 and CO2 exchange, photosynthesis, and respiration in rivers from time-delayed correlations with ideal sunlight. Limnology and Oceanography 22: 208–225.

    Article  CAS  Google Scholar 

  • Servais, P., and J. Garnier. 2006. Organic carbon and bacterial heterotrophic activity in the maximum turbidity zone of the Seine estuary (France). Aquatic Sciences 68: 78–85.

    Article  CAS  Google Scholar 

  • Shen, Y., C.G. Fichot, and R. Benner. 2012. Floodplain influence on dissolved organic matter composition and export from the Mississippi-Atchafalaya River system to the Gulf of Mexico. Limnology and Oceanography 57: 1149–1160.

    Article  CAS  Google Scholar 

  • Shilla, D.J., M. Tsuchiya, and D.A. Shilla. 2011. Terrigenous nutrient and organic matter in a subtropical river estuary, Okinawa, Japan: origin, distribution and pattern across the estuarine salinity gradient. Journal of Chemical Ecology 27: 523–542.

    Article  CAS  Google Scholar 

  • Søndergaard, M., C.A. Stedmon, and N.H. Borch. 2003. Fate of terrigenous dissolved organic matter (DOM) in estuaries: aggregation and bioavailability. Ophelia 57: 161–176.

    Article  Google Scholar 

  • Tian, H., W. Ren, J. Yang, B. Tao, W.J. Cai, S.E. Lohrenz, et al. 2015. Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River basin. Global Biogeochemical Cycles 29: 1333–1347.

    Article  CAS  Google Scholar 

  • USACE (United States Army Corps of Engineers). 2010. Calcasieu River and Pass, Louisiana dredged material management plan and supplemental environmental impact statement. http://www.mvn.usace.army.mil/Portals/56/docs/PD/Projects/CalcasieuDMMP/DMMP_SEIS%20Main%20Report-November%2022%202010.pdf. Accessed 16 April 2017.

  • USACE (United States Army Corps of Engineers). (n.d.). The Calcasieu Saltwater Barrier, http://www.mvn.usace.army.mil/Portals/56/docs/PAO/Brochures/CalcasieuSWB.pdf. Accessed 16 April 2017.

  • USDA (United States Department of Agriculture) NRCS (National Resources Conservation Service). 1988. Soil survey of Calcasieu Parish, Louisiana. http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/louisiana/LA019/0/calcasieu.pdf. Accessed 16 April 2017.

  • USDA (United States Department of Agriculture) NRCS (National Resources Conservation Service). 1995. Soil survey of Cameron Parish, Louisiana. http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/louisiana/LA023/0/Cameron.pdf. Accessed 16 April 2017.

  • van Geldern, R., P. Schulte, M. Mader, A. Baier, and J.A.C. Barth. 2015. Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse. Hydrological Processes 29: 3423–3440.

    Article  Google Scholar 

  • Wehr, J.D., S.P. Lonergan, and J.H. Thorp. 1997. Concentrations and controls of dissolved organic matter in a constricted-channel region of the Ohio River. Biogeochemistry 38: 41–65.

    Article  CAS  Google Scholar 

  • Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2: 203–215.

    Article  CAS  Google Scholar 

  • Wu, K., and Y.J. Xu. 2007. Long-term freshwater inflow and sediment discharge into Lake Pontchartrain in Louisiana, USA. Hydrological Sciences Journal 52 (1): 166–180.

    Article  Google Scholar 

  • Xu, Y.J. 2013. Transport and retention of nitrogen, phosphorus and carbon in north America’s largest river swamp basin, the Atchafalaya River Basin. Water 5: 379–393.

    Article  CAS  Google Scholar 

  • Xue, J., W.J. Cai, X. Hu, W.J. Huang, S.E. Lohrenz, and K. Gundersen. 2015. Temporal variation and stoichiometric ratios of organic matter remineralization in bottom waters of the northern Gulf of Mexico during late spring and summer. Journal of Geophysical Research, Oceans 120: 8304–8326.

    Article  CAS  Google Scholar 

  • Zhang, N., D. Kee, and P. Li. 2013. Investigation of the impacts of gulf sediments on Calcasieu Ship Channel and surrounding water systems. Computers & Fluids 77: 125–133.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported through grants from the National Fish and Wildlife Foundation (Project # 8004.12.036402) and the US Department of Agriculture Hatch Funds (Project # LAB94230). The data used are listed in the tables, figures, and supporting information of the paper. Thanks go to the US Geological Survey for making the river discharge and gage height data available for this study and to Syam K. Dodla and Manoch Kongchum for laboratory carbon analysis at the Central Analytical Instruments Research Laboratory, Louisiana State University Agricultural Center. Thanks also go to Yuyan Zhou and Bo Wang for drainage area and water surface area calculations and to Daniel Cohen for proofreading the manuscript. The authors are grateful to many students including, among others, Kaci Fisher, Paula Castello Blindt, Sanjeev Joshi, and Zhen Xu for their outstanding field assistance. Finally, the authors thank the editor and anonymous reviewers for their careful readings of the manuscript and constructive suggestions.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jun Xu.

Additional information

Communicated by Alberto Vieira Borges

Electronic Supplementary Material

ESM 1

(DOCX 1215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Xu, Y.J. Freshwater-Saltwater Mixing Effects on Dissolved Carbon and CO2 Outgassing of a Coastal River Entering the Northern Gulf of Mexico. Estuaries and Coasts 41, 734–750 (2018). https://doi.org/10.1007/s12237-017-0320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0320-4

Keywords

Navigation