Skip to main content

On Additive Spanners in Weighted Graphs with Local Error

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

An additive \(+\beta \) spanner of a graph G is a subgraph which preserves distances up to an additive \(+\beta \) error. Additive spanners are well-studied in unweighted graphs but have only recently received attention in weighted graphs [Elkin et al. 2019 and 2020, Ahmed et al. 2020]. This paper makes two new contributions to the theory of weighted additive spanners.

For weighted graphs, [Ahmed et al. 2020] provided constructions of sparse spanners with global error \(\beta = cW\), where W is the maximum edge weight in G and c is constant. We improve these to local error by giving spanners with additive error \(+cW(s,t)\) for each vertex pair (st), where W(st) is the maximum edge weight along the shortest st path in G. These include pairwise \(+(2+\varepsilon )W(\cdot ,\cdot )\) and \(+(6+\varepsilon ) W(\cdot , \cdot )\) spanners over vertex pairs \(\mathcal {P}\subseteq V \times V\) on \(O_{\varepsilon }(n|\mathcal {P}|^{1/3})\) and \(O_{\varepsilon }(n|\mathcal {P}|^{1/4})\) edges for all \(\varepsilon > 0\), which extend previously known unweighted results up to \(\varepsilon \) dependence, as well as an all-pairs \(+4W(\cdot ,\cdot )\) spanner on \(\widetilde{O}(n^{7/5})\) edges.

Besides sparsity, another natural way to measure the quality of a spanner in weighted graphs is by its lightness, defined as the total edge weight of the spanner divided by the weight of an MST of G. We provide a \(+\varepsilon W(\cdot ,\cdot )\) spanner with \(O_{\varepsilon }(n)\) lightness, and a \(+(4+\varepsilon ) W(\cdot ,\cdot )\) spanner with \(O_{\varepsilon }(n^{2/3})\) lightness. These are the first known additive spanners with nontrivial lightness guarantees. All of the above spanners can be constructed in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If there are multiple shortest st paths, then we break ties consistently so that subpaths of shortest paths are also shortest paths.

  2. 2.

    We use \(O_{\varepsilon }(f(n))\) as shorthand for \(O(\text {poly}(\frac{1}{\varepsilon })f(n))\).

  3. 3.

    A vertex pair (st) is satisfied if the spanner inequality (1) holds for that pair, and unsatisfied otherwise.

References

  1. Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. J. ACM (JACM) 64(4), 1–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed, R., Bodwin, G., Darabi Sahneh, F., Kobourov, S., Spence, R.: Weighted additive spanners. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 401–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_32

    Chapter  Google Scholar 

  3. Ahmed, R., Bodwin, G., Hamm, K., Kobourov, S., Spence, R.: Weighted sparse and lightweight spanners with local additive error. arXiv preprint arXiv:2103.09731 (2021)

  4. Ahmed, R., et al.: Graph spanners: a tutorial review. Comput. Sci. Rev. 37, 100253 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ahmed, R., Bodwin, G., Sahneh, F.D., Hamm, K., Kobourov, S., Spence, R.: Multi-level weighted additive spanners. arXiv preprint arXiv:2102.05831 (2021)

  6. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Althöfer, I., Das, G., Dobkin, D., Joseph, D.: Generating sparse spanners for weighted graphs. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 26–37. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52846-6_75

    Chapter  Google Scholar 

  8. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (\(\alpha \), \(\beta \))-spanners. ACM Trans. Algorithms (TALG) 7(1), 5 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Bodwin, G.: A note on distance-preserving graph sparsification. arXiv preprint arXiv:2001.07741 (2020)

  10. Cai, L., Keil, J.M.: Computing visibility information in an inaccurate simple polygon. Int. J. Comput. Geom. Appl. 7(6), 515–538 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor-Hillel, K., Kavitha, T., Paz, A., Yehudayoff, A.: Distributed construction of purely additive spanners. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 129–142. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_10

    Chapter  MATH  Google Scholar 

  12. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, pp. 192–201. ACM (1992)

    Google Scholar 

  13. Chechik, S.: New additive spanners. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 498–512. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  14. Chechik, S., Wulff-Nilsen, C.: Near-optimal light spanners. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 883–892. Society for Industrial and Applied Mathematics (2016)

    Google Scholar 

  15. Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: Proceedings of 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), vol. 20, pp. 209–220 (2013)

    Google Scholar 

  16. Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-optimal motion planning. Int. J. Robot. Res. 33(1), 18–47 (2014)

    Article  Google Scholar 

  17. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths and PRAM distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422 (2019)

  19. Elkin, M., Gitlitz, Y., Neiman, O.: Improved weighted additive spanners. arXiv preprint arXiv:2008.09877 (2020)

  20. Elkin, M., Neiman, O., Solomon, S.: Light spanners. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 442–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_37

    Chapter  Google Scholar 

  21. Elkin, M., Peleg, D.: \((1 + \epsilon ,\beta )\)-spanner constructions for general graphs. SIAM J. Comput. 33(3), 608–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Erdős, P.: Extremal problems in graph theory. In: Proceedings of the Symposium on Theory of Graphs and its Applications, p. 2936 (1963)

    Google Scholar 

  23. Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pp. 9–17. ACM (2016)

    Google Scholar 

  24. Kavitha, T.: New pairwise spanners. Theory Comput. Syst. 61(4), 1011–1036 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kavitha, T., Varma, N.M.: Small stretch pairwise spanners and approximate \(d\)-preservers. SIAM J. Discrete Math. 29(4), 2239–2254 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica 14(4), 305–321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knudsen, M.B.T.: Additive spanners: a simple construction. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 277–281. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_24

    Chapter  Google Scholar 

  28. Le, H., Solomon, S.: A unified and fine-grained approach for light spanners. arXiv preprint arXiv:2008.10582 (2020)

  29. Marble, J.D., Bekris, K.E.: Asymptotically near-optimal planning with probabilistic roadmap spanners. IEEE Trans. Robot. 29(2), 432–444 (2013)

    Article  Google Scholar 

  30. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM (JACM) 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pettie, S.: Low distortion spanners. ACM Trans. Algorithms (TALG) 6(1), 7 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Salzman, O., Shaharabani, D., Agarwal, P.K., Halperin, D.: Sparsification of motion-planning roadmaps by edge contraction. Int. J. Robot. Res. 33(14), 1711–1725 (2014)

    Article  Google Scholar 

  34. Woodruff, D.P.: Additive spanners in nearly quadratic time. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 463–474. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_40

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Michael Elkin, Faryad Darabi Sahneh, and the anonymous reviewers for their discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyan Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, R., Bodwin, G., Hamm, K., Kobourov, S., Spence, R. (2021). On Additive Spanners in Weighted Graphs with Local Error. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics