Skip to main content

Weighted Additive Spanners

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12301))

Included in the following conference series:

Abstract

A spanner of a graph G is a subgraph H that approximately preserves shortest path distances in G. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured multiplicatively. In this work, we investigate whether one can similarly extend constructions of spanners with purely additive error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic \(+2\) and \(+4\) unweighted spanners (both all-pairs and pairwise) to \(+2W\) and \(+4W\) weighted spanners, where W is the maximum edge weight. Specifically, we show that a weighted graph G contains all-pairs (pairwise) \(+2W\) and \(+4W\) weighted spanners of size \(O(n^{3/2})\) and \(O(n^{7/5})\) (\(O(np^{1/3})\) and \(O(np^{2/7})\)) respectively. For a technical reason, the \(+6\) unweighted spanner becomes a \(+8W\) weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that G contains all-pairs (pairwise) \(+8W\) weighted spanners of size \(O(n^{4/3})\) (\(O(np^{1/4})\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Their result is actually a little stronger: W can be the maximum edge weight on the shortest path between the nodes being considered.

References

  1. Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. J. ACM (JACM) 64(4), 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  2. Abboud, A., Bodwin, G., Pettie, S.: A hierarchy of lower bounds for sublinear additive spanners. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 568–576. Society for Industrial and Applied Mathematics (2017)

    Google Scholar 

  3. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181 (1999)

    Article  MathSciNet  Google Scholar 

  4. Althöfer, I., Das, G., Dobkin, D., Joseph, D.: Generating sparse spanners for weighted graphs. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 26–37. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52846-6_75

    Chapter  Google Scholar 

  5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (\(\alpha \), \(\beta \))-spanners. ACM Trans. Algorithms (TALG) 7(1), 5 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bodwin, G.: Linear size distance preservers. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 600–615. Society for Industrial and Applied Mathematics (2017)

    Google Scholar 

  7. Bodwin, G.: A note on distance-preserving graph sparsification. arXiv preprint arXiv:2001.07741, 2020

  8. Bodwin, G., Williams, V.V.: Better distance preservers and additive spanners. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 855–872. Society for Industrial and Applied Mathematics (2016)

    Google Scholar 

  9. Cai, L., Keil, J.M.: Computing visibility information in an inaccurate simple polygon. Int. J. Comput. Geometr. Appl. 7(6), 515–538 (1997)

    Article  MathSciNet  Google Scholar 

  10. Chang, H.-C., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal distance emulator for planar graphs. In: Proceedings of 26th Annual European Symposium on Algorithms (ESA 2018), vol. 112, pp. 16:1–16:17 (2018)

    Google Scholar 

  11. Chechik, S.: New additive spanners. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 498–512. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  12. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: Proceedings of 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), vol. 20, pp. 209–220 (2013)

    Google Scholar 

  14. Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-optimal motion planning. Int. J. Robot. Res. 33(1), 18–47 (2014)

    Article  Google Scholar 

  15. Elkin, M.: Computing almost shortest paths. ACM Trans. Algorithms (TALG) 1(2), 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  16. Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths and PRAM distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422 (2019)

  17. Elkin, M., Peleg, D.: \((1 + \epsilon,\beta )\)-spanner constructions for general graphs. SIAM J. Comput. 33(3), 608–631 (2004)

    Article  MathSciNet  Google Scholar 

  18. Huang, S.-E., Pettie, S.: Lower bounds on sparse spanners, emulators, and diameter-reducing shortcuts. In: Proceedings of 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 26:1–26:12 (2018)

    Google Scholar 

  19. Kavitha, T.: New pairwise spanners. Theory Comput. Syst. 61(4), 1011–1036 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kavitha, T., Varma, N.M.: Small stretch pairwise spanners and approximate \(d\)-preservers. SIAM J. Discrete Math. 29(4), 2239–2254 (2015)

    Article  MathSciNet  Google Scholar 

  21. Knudsen, M.B.T.: Additive spanners: a simple construction. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 277–281. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_24

    Chapter  Google Scholar 

  22. Liestman, A., Shermer, T.: Additive graph spanners. Networks 23, 343–363 (1993)

    Article  MathSciNet  Google Scholar 

  23. Marble, J.D., Bekris, K.E.: Asymptotically near-optimal planning with probabilistic roadmap spanners. IEEE Trans. Robot. 29(2), 432–444 (2013)

    Article  Google Scholar 

  24. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  25. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  Google Scholar 

  26. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM (JACM) 36(3), 510–530 (1989)

    Article  MathSciNet  Google Scholar 

  27. Pettie, S.: Low distortion spanners. ACM Trans. Algorithms (TALG) 6(1), 7 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Salzman, O., Shaharabani, D., Agarwal, P.K., Halperin, D.: Sparsification of motion-planning roadmaps by edge contraction. Int. J. Robot. Res. 33(14), 1711–1725 (2014)

    Article  Google Scholar 

  29. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 802–809. Society for Industrial and Applied Mathematics (2006)

    Google Scholar 

  30. Woodruff, D.P.: Additive spanners in nearly quadratic time. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 463–474. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyan Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, R., Bodwin, G., Darabi Sahneh, F., Kobourov, S., Spence, R. (2020). Weighted Additive Spanners. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics