Skip to main content

Recent Advancements in Mycoremediation

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

The anthropogenic activities and other unintentional causes have imposed a strain on the ecosystem and natural resources. Bioremediation is a rapidly emerging field of science that deals with eco-friendly methods and approaches to clean such environmental pollutants. Both natural resources and inorganic contaminants including radioactive compounds may be transformed or detoxified by microorganisms. Fungi are an important candidate in bioremediation studies. They play a significant role in environmental cleaning through their versatile metabolic and enzymatic activities. Their biomass comprises a high proportion of cell wall materials with good metal-binding characteristics. Because of their negatively charged cell walls, they can serve as a cation exchanger in the metal-contaminated sites. Furthermore, fungal biomasses act as biosorption materials and therefore, have higher practical utility in wastewater treatment plants. In this regard, the present chapter highlights the significance of fungal-based bioremediation approaches for making the environment clean and sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad I, Ansari MI, Aqil F (2006) Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J Exp Biol 44:73–76

    CAS  PubMed  Google Scholar 

  • Ahmed M, Ismail S, Mabrouk S (1998) Residues of some chlorinated hydrocarbon pesticides in rain water, soil and ground water, and their influence on some soil microorganisms. Environ Int 24:665–670

    Article  CAS  Google Scholar 

  • AI-Jawhari IF (2016) Bioremediation of anthracene by aspergillus Niger and Penicillium funiculosm. Int Res J Bio Sci 5(6):1–11

    Google Scholar 

  • AI-Jawhari IF, AI-Sead KG (2016) Fate of herbicide Granstar (Tribenuron methyl) in wheat field in AI-Nasiriya governorate. Int Res J Bio Sci 5(8):22–37

    Google Scholar 

  • Al-Hawash AB, Alkooranee JT, Abbood HA, Zhang J, Sun J, Zhang X, Ma F (2017) Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnol Rep 17:104–109. https://doi.org/10.1016/j.btre.2017.12.006

    Article  Google Scholar 

  • Al-Hawash AB, Zhang X, Ma F(2019) Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiol 8(1):1–14. https://doi.org/10.1002/mbo3.619

  • Alvarez PJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57(10):2981–2985. https://doi.org/10.1128/aem.57.10.2981-2985.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amakiri MA (1982) Microbial degradation of soil applied herbicides. Nij J Microbiol 2:17–21

    Google Scholar 

  • Anastasi EM, Wohlsen TD, Stratton HM, Katouli M (2013) Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection. Water Res 47(17):6670–6679

    Article  CAS  PubMed  Google Scholar 

  • Archana A, Jaitly AK (2015) Role of myco-communities in the field of heavy metal remediation. Biolife 3(1):77–108

    Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García­Río L (2008) The mobility and degradation of pesticides in soils and the pollution of ground-water resources. Agric Ecosyst Environ 123(4):247–260

    Article  Google Scholar 

  • Balaguru P, Hariharan V, Manivel R, Trakroo M (2016) Measuring respiratory pressures with mercury manometer in low economic health care settings–an analytical study. J Clin Diagnostic Res 10:CC12

    Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63:389–394

    Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajor-cajuinto Ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and bio-sorption kinetics analysis. Microchem J 72:63–76

    Article  CAS  Google Scholar 

  • Bending MP, Anderron A, Ander P, Stenström J, Torstensson L (2001) Establishment of white-rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation system intended for degradation of pesticides. World J Microbiol Biotechnol 17:627–633

    Article  Google Scholar 

  • Bending G, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021a) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338

    Article  PubMed  Google Scholar 

  • Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021b) Binding interaction of glyphosate oxidoreductase and C-P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 5:409:124927

    Google Scholar 

  • Bujacz B, Wieczorek P, Krzysko-lupicka T, Golab Z, Lejczak B, Kavfarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61(8):2905–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, Ali S, Yang J, Shen K, Chen X (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166:1226–1231

    Article  CAS  PubMed  Google Scholar 

  • Choo J, Sabri NBM, Tan D, Mujahid A, Müller M (2015) Heavy metal resistant endophytic fungi isolated from Nypa fruticans. Ocean Sci J 50:445–453

    Article  CAS  Google Scholar 

  • Cruz CCV, da Costa ACA, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour Technol 91:249–257

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernández-Perrino FJ, Gutiérrez­Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261–270

    Article  Google Scholar 

  • Dash B, Sahu N, Singh AK, Gupta SB, Soni R (2021) Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil. Folia Microbiol 66:189–196

    Article  CAS  Google Scholar 

  • Debbarma P, Raghuwanshi S, Singh J, Suyal DC, Zaidi MGH, Goel R (2017) Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3Biotech 7(178):1–9. https://doi.org/10.1007/s13205-017-0789-3

  • Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y, Zhang R (2011) Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185:717–724

    Article  CAS  PubMed  Google Scholar 

  • Deng Q, Ramsköld D, Reinius B, Sandberg R (2014) Single-cell RNA-Seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(193):193–196

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekar NN, Rahul G, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25:1129–1135. https://doi.org/10.4014/jmb.1410.10036

    Article  CAS  PubMed  Google Scholar 

  • Edwards CA (1986) In: Van Hofsten B, Eckstrom G (eds) Agrochemicals as environmental­pollutants. In control of pesticide applications and residues in food. A guide and directory. Swedish Science Press, Uppsala

    Google Scholar 

  • EEA (European Environment Agency) (2003) Europe’s environment: the third assessment. State of Environment report No 1/2003. Copenhagen

    Google Scholar 

  • Elguetaa S, Santosa C, Limab N, Diezc MC (2016) Atrazine dissipation in a biobed system inoculated with immobilized white-rot fungi. Arch Agron Soil Sci 62:1451–1461

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2009) How to feed the world in 2050. FAO, Rome. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Ferner DJ (2001) Toxicity, heavy metals. Med J 2:1

    Google Scholar 

  • Fomina M, Charnock JM, Hillie S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9(7):1696–1710

    Article  CAS  PubMed  Google Scholar 

  • Fourest E, Roux J-C (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  CAS  Google Scholar 

  • Gan J, Koskinen WC (1998) Pesticide fate and behaviour in soil at elevated concentrations. In: Kearney PC (ed) Pesticide remediation in soils and water. Wiley, Chichester, pp 59–84

    Google Scholar 

  • Gholami-Shabani M, Imani A, Shams-Ghahfarokhi M, Gholami-Shabani Z, Pazooki A, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016a) Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J Iran Chem Soc 9:1–10. https://doi.org/10.1007/s13738-016-0923-x

    Article  CAS  Google Scholar 

  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016b) Biogenic approach using sheep milk for the synthesis of platinum nanoparticles: the role of milk protein in platinum reduction and stabilization. Int J Nanosci Nanotechnol 12:199–206

    Google Scholar 

  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Razaghi-abyaneh M (2016c) Microbial enzymes: current features and potential applications in nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-42990-8_5

    Chapter  Google Scholar 

  • Giri K, Rai JPN, Pandey S, Mishra G, Kumar R, Suyal DC (2017a) Performance evaluation of isoproturon-degrading indigenous bacterial isolates in soil microcosm. Chem Ecol 33(9):817-825. https://doi.org/10.1080/02757540.2017.1393535

  • Giri K, Suyal DC, Mishra G, Pandey S, Kumar R, Meena DK, Rai JPN (2017b) Biodegradation of isoproturon by Bacillus pumilus K1 isolated from foothill agroecosystem of north west Himalaya. Proc Natl Acad Sci India Sect B-Biol Sci 87(3):839–848. https://doi.org/10.1007/s40011-015-0667-x

    Article  CAS  Google Scholar 

  • Goel R, Zaidi MGH, Soni R, Kusumlata SYS (2008) Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int Biodeterior Biodegrad 61(2):167–172

    Article  CAS  Google Scholar 

  • Graeme M (2005) Resistance management – pesticide rotation. Ontario Ministry of Agriculture, Food and Rural Affairs

    Google Scholar 

  • Gupta P (2004) Pesticide exposure-Indian scene. J Dent Technol 198:118–119

    Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad NF (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7:999–1005

    Google Scholar 

  • Howarth RW (2006) Atmospheric deposition and nitrogen pollution in coastal marine ecosystems. In: Visgilio GR, Whitelaw DM (eds) Acid in the environment: lessons learned and future prospects. Springer, New York, pp 97–116

    Google Scholar 

  • Huang X-D, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytore-mediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  • IARC (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. World Health Organization, International Agency for Research on Cancer. https://monographs.iarc.fr/ENG/Monographs/vol58/mono58.pdf

  • Il’yasova D, Schwartz GG (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207:179–186

    Article  PubMed  Google Scholar 

  • INECAR (2000) Institute of Environmental Conservation and Research. Position paper against mining in Rapu-Rapu, Published by INECAR, Ateneo de Naga University, Philippines. www.adnu.edu.ph/Institutes/Inecar/pospaper1.asp

  • Juhler R, Sorensen S, Larsen L (2001) Analysing transformation products of herbicide residues in environmental samples. Water Res 35:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74. https://doi.org/10.1016/j.jes.2016.08.023

    Article  CAS  Google Scholar 

  • Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Heal Part A 41:2399–2428

    Article  CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soils and water, Wiley series in agrochemicals and plant protection. Kluwer Academic, Dordrecht

    Google Scholar 

  • Klimeka S, Marini L, Hofmann M, Isselstein J (2001) Additive partitioning of plant diversity with respect to grassland management regime, fertilisation and abiotic factors. Basic Appl Ecol 9:626–634

    Article  Google Scholar 

  • Kookana RS, Di HJ, Aylmore L (1998) Degradation rates of eight pesticides in surface and subsurface soils under laboratory and field conditions. Soil Sci 163:404–411

    Article  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Krzysko-Lupicka T, Stroff W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Environ Microbiol 48:549–552

    CAS  Google Scholar 

  • Kumar P, Dash B, Suyal DC, Gupta SB, Singh AK, Chowdhury T, Soni R (2021) Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol. https://doi.org/10.1007/s00284-021-02602-w

  • Kumar M, Bhatt G, Duffy CJ (2008) An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models. Int J Geogr Inf Sci 23(12):1569–1596

    Article  Google Scholar 

  • Lei A-P, Hu Z-L, Wong Y-S, Tam NF-Y (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98:273–280

    Article  CAS  PubMed  Google Scholar 

  • Lenntech Water Treatment (2004) Lenntech water treatment and air purification. Water Treatment, Lenntech, Rotterdamseweg. www.excelwater.com/thp/filters/water-purification.htm

  • Li H-Y, Li D-W, He C-M, Zhou Z-P, Mei T, Xu H-M (2012a) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in China. Fungal Ecol 5:309–315

    Article  Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012b) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Li X, Li W, Chu L, White JF Jr, Xiong Z, Li H (2016) Diversity and heavy metal tolerance of endo-phytic fungi from Dysphania ambrosioides, a hyperaccumulator from Pb–Zn contaminated soils. J Plant Interact 11:186–192

    Article  CAS  Google Scholar 

  • Lipok J, Dombrovska L, Wieczorek P, Kafarski P (2003) The ability of fungi isolated from stored carrot seeds to degrade organophosphonate herbicides. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticide in air, plant, soil and water system, proceeding of the XII symposium pesticide chemistry. Piacenza

    Google Scholar 

  • Liu YY, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749 (Martens R (1976) Degradation of endosulfan by soil microorganisms. Appl Environ Microbiol 31:853–858)

    Google Scholar 

  • Loebenstein G, Thottappilly G (2007) Agricultural research management. Springer, Dordrecht MA (Millennium Ecosystem Assessment) (2005) Ecosystem services and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC, 68 pp. Web site: http://www.millenniumassessment.org/en/index.aspx)

  • Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part a: PAHs in air. Polish J Environ Stud 8:131–136

    CAS  Google Scholar 

  • Mann H (1990) Biosorption of heavy metals by bacterial biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, FL, pp 93–138

    Google Scholar 

  • Maurya NS, Mital AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro-fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521

    Article  CAS  PubMed  Google Scholar 

  • Mauti GO, Onguso J, Kowanga DK, Mauti EM (2016) Biodegradation activity of Aspergillus niger lipase isolates from a tropical country garage. J Sci Innov Res 5(1):15–18

    Article  Google Scholar 

  • Meena K, Sarita S (2017) Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresour Bioprocess 4(32):1–9. https://doi.org/10.1186/s40643-017-0162-8

    Article  Google Scholar 

  • Michael DA, Solveig T, Chiara D, Xiao W, Shihan X, Mario AM, Wenyuan G, Segun GJ, Lorenozo P (2020) Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Micro 8(1912):1–19. https://doi.org/10.3390/microorganisms8121912

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242. https://doi.org/10.1016/j.biortech.2014.04.085

    Article  CAS  PubMed  Google Scholar 

  • Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619

    Article  CAS  PubMed  Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraleedharan TR, Leela L, Venkobachar C (1991) Biosorption: an attractive alternative for metal removal and recovery. Curr Sci 61:379–385

    CAS  Google Scholar 

  • Ndimele PE (2010) A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13:715

    Article  CAS  PubMed  Google Scholar 

  • Nerud F, Baldrian J, Gabriel J, Ogbeifun D (2003) Nonenzymic degradation and decolorization of recalcitrant compounds. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Dordrecht, pp 29–48

    Google Scholar 

  • OECD (2012) Water quality and agriculture – meeting the policy challenge. OECD studies on water. OECD Publishing, Paris

    Book  Google Scholar 

  • Ogwuegbu MO, Ijioma MA (2003) Effects of certain heavy metals on the population due to mineral exploitation. In: International conference on scientific and environmental issues. University of Ado Ekiti, Ekiti State, pp 8–10

    Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the Copperbelt Province of Zambia. J Environ 1:66–67

    Google Scholar 

  • Önder M, Ceyhan E, Kahraman A (2011) Effects of agricultural practices on environmental. In: International conference on biology, environment and chemistry (ICBEC), vol 24 © IACSIT Press, Singapore

    Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham

    Book  Google Scholar 

  • Rahman MM, Jusoh I, Husaini A, Seman IA, Sing NN (2014) Biodegradation and ligninolytic enzymes profiles of the newly synthesized organotin (IV)-treated non durable tropical wood species. J Biochem Technol 5:743–750

    Google Scholar 

  • Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rial-Otero R, Cancho-Grande B, Arias-Estévez M, López-Periago E, Simal-Gándara J (2003) Procedure for the measurement of soil inputs of plant-protection agents washed off through vineyard canopy by rainfalls. J Agric Food Chem 51(17):5041–5046

    Article  PubMed  Google Scholar 

  • Rhodes A, Skea J, Hannon M (2014) The global surge in energy innovation. Energies 7(9):5601–5623. https://doi.org/10.3390/en7095601

    Article  Google Scholar 

  • Sandhu SS, Shakya M, Deshmukh L, Aharwal RP, Kumar S (2016) Determination of hydrocarbon degrading potentiality of indigenous fungal isolates. Int J Environ Sci 6(6):1163–1172

    CAS  Google Scholar 

  • Scott SL (2003) Biodegradability and toxicity of total petroleum hydrocarbon leachate from land treatment units. M.S. California Polytechnic State University

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Singh SK, Srivastava PK, Singh D, Han D, Gautam SK, Pandey AC (2015) Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district, India. Environ Geochem Health 37(1):157–180

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Singh D, Rai P, Suyal DC, Saurabh S, Soni R, Giri K, Yadav AN (2021) Fungi in remediation of hazardous wastes: current status and future. In: Yadav AN (ed) Recent trends in mycological research, fungal biology. Springer Nature, Cham

    Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Su C (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skept Critics 3:24

    Google Scholar 

  • Surovtseva EG, Ivoilov VS, Belyaev SS (1997) Degradation of the aromatic fraction of oil by an association of gram-positive and gram-negative bacteria. Microbiology 66:65–69

    CAS  Google Scholar 

  • Talaro KP, Talaro A (2002) Foundations in microbiology, 4th edn. McGraw Hill, New York

    Google Scholar 

  • Ting FAN, Yunguo L, Baoying F, Guangming Z, Chunping Y, Ming Z, Haizhou Z, Zhenfeng T, Xin W (2008) Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J Hazard Mater 160:655–661

    Article  Google Scholar 

  • Udedi SS (2003) From Guinea worm scourge to metal toxicity in Ebonyi state. Chem Niger New Millenn Unfold 2:13–14

    Google Scholar 

  • Vankar PS, Bajpai D (2008) Phyto-remediationof chrome-VI of tannery effluent by Trichoderma species. Desalination 222:255–262

    Article  CAS  Google Scholar 

  • Walls M (2006) Agriculture and environment. The standing committee on agricultural research (SCAR) foresight group. 22 strani. http://ec.europa.eu/research/agriculture/scar/pdf/scar_foresight_environment_en.pdf

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant– microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Wunch KG, Alworth WL, Bennet JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154:75–79

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Yang HB, Tan N, Wu FJ, Liu HJ, Sun M, She ZG, Lin YC (2012) Biosorption of uranium (VI) by a mangrove endophytic fungus fusarium sp.# ZZF51 from the South China Sea. J Radioanal Nucl Chem 292:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Zboniska E, Lejczak B, Kafarski (1992) Organophosphonate utilization by the wild - type strain of Pseudomonas fluorescens. Appl Environ Microbiol 58(9):2993–2999

    Article  Google Scholar 

  • Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int Environ Pol 18:423–433

    Article  CAS  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1(2):85–93

    Article  Google Scholar 

  • Zhang JH, Xue QH, Gao H, Ma X, Wang P (2016) Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J Chem Technol Biotechnol 91(4):865–875

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

AI-Jawhari, I.F.H. (2022). Recent Advancements in Mycoremediation. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_6

Download citation

Publish with us

Policies and ethics