Skip to main content

Mycoremediation: Fungal-Based Technology for Biosorption of Heavy Metals – A Review

  • Chapter
  • First Online:
Strategies and Tools for Pollutant Mitigation

Abstract

Environmental pollution due to the development of industries in recent times is a great threat to living beings. Different industries released heavy metals into the water body. These heavy metals can be toxic, carcinogenic, and cause threats to human beings and the aquatic environment. So, there is a serious challenge to remove heavy metals from wastewater. Biosorption of heavy metals using fungus or mycoremediation is a widely used technology due to low cost, high biomass, and eco-friendly nature. When compared to fungal biomass with other biosorbents, fungal biomasses are more accessible as a waste product from industry and give economic advantages. Most fungi applied to remove heavy metals are non-pathogenic and can be simply used without any safety issues. Fungal biosorption largely depends on various factors such as pH, metal ion, and biomass concentration and to a limited extent on temperature. This review article focused on collected and disseminated facts on different fungal adsorbents which are important for the removal of heavy metals and offer information about biosorption mechanisms as well as a functional group of fungus involved for the removal of different heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1:19–26. https://doi.org/10.12966/bmb.06.02.2013

    Article  Google Scholar 

  • Aksu Z, Kılıç NK, Ertuğrul S, Dönmez G (2007) Inhibitory effects of chromium (VI) and Remazol Black B on chromium (VI) and dyestuff removals by Trametes versicolor. Enzyme Microb Technol 40:1167–1174

    Article  CAS  Google Scholar 

  • Alothman ZA, Bahkali AH, Khiyami MA, Alfadul SM, Wabaidur SM, Alam M, Alfarhan BZ (2019) Low-cost biosorbents from fungi for heavy metals removal from wastewater. Sep Sci Technol:1–10

    Google Scholar 

  • Alpat S, Alpat SK, Çadirci BH, Özbayrak Ö, Yasa İ (2010) Effects of biosorption parameter: kinetics, isotherm and thermodynamics for Ni (II) biosorption from aqueous solution by Circinella sp. Electron J Biotechnol 13:4–5

    Google Scholar 

  • Aly MM, Alzahrani N, Amashah RH, Jastaniah SD (2018) Bioremediation of hazardous heavy metals from solutions or soil using living or dead microbial biomass. J Pharm Biol Sci 13:75–80

    Google Scholar 

  • Amini M, Younesi H (2009) Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: application of response surface methodology to the optimization of process parameters. Clean Soil Air Water 37:776–786

    Article  CAS  Google Scholar 

  • Anahid S, Yaghmaei S, Ghobadinejad Z (2011) Heavy metal tolerance of fungi. Sci Iran 18:502–508

    Article  CAS  Google Scholar 

  • Asgher M (2012) Biosorption of reactive dyes: a review. Water Air Soil Pollut 223:2417–2435

    Article  CAS  Google Scholar 

  • Asiriuwa OD, Ikhuoria JU, Ilor EG (2013) Myco-remediation potential of heavy metals from contaminated soil. Bull Environ Pharmacol Life Sci 2:16–22

    Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Env Res Pub He 14:1504

    Article  CAS  Google Scholar 

  • Aytar PNAR, Gedikli SERAP, Buruk YELIZ, Cabuk A, Burnak N (2014) Lead and nickel biosorption with a fungal biomass isolated from metal mine drainage: box–Behnken experimental design. Int J Environ Sci Technol 11:1631–1640

    Article  CAS  Google Scholar 

  • Bahafid W, Joutey NT, Asri M, Sayel H, Tirry N, Ghachtouli NE (2017) Yeast biomass: an alternative for bioremediation of heavy metals. In: Morata A, Loira I (eds) Yeast – industrial applications. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.70559

    Chapter  Google Scholar 

  • Bahobil A, Bayoumi RA, Atta HM, El-Sehrawey MM (2017) Fungal biosorption for cadmium and mercury heavy metal ions isolated from some polluted localities in KSA. Int J Curr Microbiol Appl Sci 6:2138–2154

    Article  CAS  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mater 165:670–676

    Article  CAS  Google Scholar 

  • Cai CX, Xu J, Deng NF, Dong XW, Tang H, Liang Y et al (2016) A novel approach to the utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization. Sci Rep 6:36546. https://doi.org/10.1038/srep36546

    Article  CAS  Google Scholar 

  • Cherrad S, Girard V, Dieryckx C, Gonçalves IR, Dupuy JW, Bonneu M, Poussereau N (2012) Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 4:835. https://doi.org/10.1039/C2MT20041D

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Cordero RJ, Vij R, Casadevall A (2017) Microbial melanins for radioprotection and bioremediation. Microb Biotechnol 10:1186

    Article  Google Scholar 

  • Damodaran D, Balakrishnan RM, Shetty VK (2013) The uptake mechanism of cd(II), Cr(VI), cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galeria vittiformis. Biomed Res Int:1–11

    Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264

    Article  CAS  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491

    Article  CAS  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3:195–199

    Google Scholar 

  • Fawzy EM, Abdel Motaal FF, Zayat SAE (2017) Biosorption of heavy metals onto different eco-friendly substrates. J Toxicol Environ Health Sci 9(5):35–44

    CAS  Google Scholar 

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265

    Article  CAS  Google Scholar 

  • Gadd G (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gentry T, Rensing C, Pepper IAN (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Godlewska-Żyłkiewicz B, Sawicka S, Karpińska J (2019) Removal of platinum and palladium from wastewater by means of biosorption on Fungi Aspergillus sp. and yeast Saccharomyces sp. Water 11:1522

    Article  CAS  Google Scholar 

  • Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea J, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas - functional processes and ecological impact. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-87978-7_8

    Chapter  Google Scholar 

  • Hamba Y, Tamiru M (2016) Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian J Nat Appl Sci 5:2

    Google Scholar 

  • Hamza SM, Ahmed HF, Ehab AM, Mohammad FM (2010) Optimization of cadmium, zinc and copper biosorption in an aqueous solution by Saccharomyces cerevisiae. J Am Sci 6:597–604

    Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. https://doi.org/10.1038/nrmicro2519

    Article  CAS  Google Scholar 

  • Hoshino YT, Morimoto S (2008) Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710. https://doi.org/10.1111/j.1747-0765.2008.00289.x

    Article  CAS  Google Scholar 

  • Jarosz-Wilkolazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547

    Article  CAS  Google Scholar 

  • Kabbout R, Taha S (2014) Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Phys Procedia 55:37–444. https://doi.org/10.1016/j.phpro.2014.07.063

    Article  CAS  Google Scholar 

  • Kaewdoung B, Sutjaritvorakul T, Gadd GM, Whalley AJS, Sihanonth P (2016) Heavy metal tolerance and biotransformation of toxic metal compounds by new isolates of wood-rotting fungi from Thailand. Geomicrobiol J 33:283–288

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Kaur H, Rajor A, Kaleka AS (2019) Role of phycoremediation to remove heavy metals from sewage water: review article. J Environ Sci Technol 12:1–9

    Article  CAS  Google Scholar 

  • Khataee AR, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad 83:33–40

    Article  CAS  Google Scholar 

  • Kim EJ, Park S, Hong HJ, Choi YE, Yang JW (2011) Biosorption of chromium (Cr (III)/Cr (VI)) on the residual microalga Nannochloris oculata after lipid extraction for biodiesel production. Bioresour Technol 102:11155–11160

    Article  CAS  Google Scholar 

  • Kumar A, Kumar V, Singh J (2019) Role of fungi in the removal of heavy metals and dyes from wastewater by biosorption processes. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal Biology. Springer, Cham, pp 397–418

    Google Scholar 

  • Kurç MA, Güven K, Korcan E, Güven A, Malkoc S (2016) Lead biosorption by a moderately halophile Penicillium sp. isolated from çamalti saltern in Turkey. Life Sci Biotechnol 5:13–22

    Google Scholar 

  • Madani A, Chergui A, Selatnia A (2015) Biosorption of Fe and Mn ions from aqueous solution by a Pleurotus mutilus fungal biomass. J Chem Pharm Res 7:19–26

    CAS  Google Scholar 

  • Maheswari S, Murugesan AG (2009) Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site. Environ Technol 30:921–926

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2013) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Manna A, Sundaram E, Amutha C, Vasantha VS (2018) Efficient removal of cadmium using edible fungus and its quantitative fluorimetric estimation using (Z)-2-(4H-1, 2, 4-Triazol-4-yl) iminomethylphenol. ACS Omega 3:6243–6250

    Article  CAS  Google Scholar 

  • Meier P, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by Arbuscular Mycorrhizal Fungi. Crit Rev Environ Sci Technol 42:741–775

    Article  CAS  Google Scholar 

  • Meena H, Busi S (2018) Biosorption of dye and heavy metal pollutants by fungal biomass: a sustainable approach. In: Prasad R (eds) Mycoremediation and environmental sustainability. Fungal Biology. Springer, Cham, pp 253–271

    Google Scholar 

  • Mohsenzadeh F, Shahrokhi F (2014) Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102

    Article  CAS  Google Scholar 

  • Mukherjee A, Das D, Mondal SK, Biswas R, Das TK, Boujedaini N, Khuda-Bukhsh AR (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol Environ Saf 73:172–182

    Article  CAS  Google Scholar 

  • Munawar R, Mughal EU, Sadiq A, Mukhtar H, Zafar, MN, Mumtaz, MW, … .. Yousaf Z (2018) Biotechnology: a powerful tool for the removal of cadmium from aquatic systems. Sains Malays 47:27-34.

    Article  CAS  Google Scholar 

  • Okhuoya JA (2011) Mushrooms: what they are and what they do. Inaugural Lecture Ser 114

    Google Scholar 

  • Pakshirajan K, Izquierdo M, Lens PNL (2013) Arsenic (III) removal at low concentrations by biosorption using Phanerochaete chrysosporium pellets. Sep Sci Technol 48:1111–1122

    Article  CAS  Google Scholar 

  • Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat-inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171:1060–1068

    Article  CAS  Google Scholar 

  • Ren B, Zhang Q, Zhang X, Zhao L, Li H (2018) Biosorption of Cr(vi) from aqueous solution using dormant spores of Aspergillus niger. RSC Adv 8:38157–38165

    Article  CAS  Google Scholar 

  • Saad AM, Saad MM, Ibrahim NA, El-Hadedy D, Ibrahim EI, Hassan HM (2019) Evaluation of Aspergillus tamarii NRC 3 biomass as a biosorbent for removal and recovery of heavy metals from contaminated aqueous solutions. Bull Natl Res Cent 43:1–9

    Article  Google Scholar 

  • Sağ Y (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a REVIEW. Sep Purif Methods 30:1–48

    Article  Google Scholar 

  • Salvadori MR, Ando RA, Oller do Nascimento CA, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9(1):e87968. https://doi.org/10.1371/journal.pone.0087968

    Article  CAS  Google Scholar 

  • Samuel MS, Evy AAM, Chidambaram R (2015) Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr (VI) using fungal biomass. PLoS One 10(3):e0116884. https://doi.org/10.1371/journal.pone.0116884

    Article  CAS  Google Scholar 

  • Santhi R, Guru V (2014) Biosorption of hexavalent chromium using Aspergillus niger dead biomass and its optimization studies. Int J Current Microbiol Appl Sci 3:669

    Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650

    Article  CAS  Google Scholar 

  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments – a review. Front Environ Sci 7:66. https://doi.org/10.3389/fenvs.2019.00066

    Article  Google Scholar 

  • Shakya M, Sharma P, Meryem SS, Mahmood Q, Kumar A (2015) Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects. J Environ Eng 142:C6015001. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983

    Article  CAS  Google Scholar 

  • Sharma R, Sharma AK, Kumar R (2016) Removal of Pb by fungus Aspergillus fumigatus. Int J Basic Appl Biol 3:55–59

    CAS  Google Scholar 

  • Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM (2018) Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3Biotech 8:216

    Google Scholar 

  • Siddiquee S, Rovina K, Azad SA (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:384–395

    Article  CAS  Google Scholar 

  • Simonescu CM, Ferdes M (2012) Fungal biomass for Cu (II) uptake from aqueous systems. Pol J Environ Stud 2(1):1831–1839

    Google Scholar 

  • Smily JRMB, Sumithra PA (2017) Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI J Biosci 24:65–71

    Article  Google Scholar 

  • Sun J, Zou X, Ning Z, Sun M, Peng J, Xiao T (2012) Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination. Sci Total Environ 441:258–264

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng:1–31

    Google Scholar 

  • Thenmozhi R, Arumugam K, Nagasathya A, Thajuddin N, Paneerselvam A (2013) Studies on Mycoremedation of used engine oil contaminated soil samples. Adv Appl Sci Res 4:110–118

    CAS  Google Scholar 

  • Thakur Y, Kumar M, Singh S (2015) Microbial biosorption as a green technology for bioremediation of heavy metals. Res J Pharm Biol Chem Sci 6:1717–1724

    CAS  Google Scholar 

  • Thippeswamy B, Shivakumar CK, Krishnappa M (2014) Study on heavy metals biosorption ability of Saccharomyces cerevisiae. Int J Biol Res 2:106–115

    Google Scholar 

  • Tian D, Jiang Z, Jiang L, Su M, Feng Z, Zhang L, Wang S, Zhen L, Hu S (2018) A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environ Microbiol 21:471–479

    Article  CAS  Google Scholar 

  • Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi: applications in environmental biotechnology. J Ind Microbiol 13:126–130

    Article  CAS  Google Scholar 

  • Tsekova K, Christova D, Ianis M (2006) Heavy metal biosorption sites in Penicillium cyclopium. J Appl Sci Environ Manage 10:117–121

    Google Scholar 

  • Uzun Y, Şahan T (2017) Optimization with response surface methodology of biosorption conditions of Hg (II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent. Arch Environ Prot 43:37–43

    Article  Google Scholar 

  • Vankar PS, Bajpai D (2008) Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species. Desalination 222:255–262

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Viraraghavan T, Srinivasan A (2011) Fungal biosorption and biosorbents. In: Microbial biosorption of metals. Springer, Dordrecht, pp 143–158

    Chapter  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegrad:17–40

    Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2018) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Yousefi J, Shahram S, Zadeh N (2015) Effect of contact time and temperature on biosorption of heavy metals from aqueous solution. Int J Rev Life Sci 5:1406–1411

    Google Scholar 

  • Zapotoczny S, Jurkiewicz A, Tylko G, Anielska T, Turnau K (2007) Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol Res 162:219–228

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayele, A., Haile, S., Alemu, D., Tesfaye, T., Kamaraj, M. (2021). Mycoremediation: Fungal-Based Technology for Biosorption of Heavy Metals – A Review. In: Aravind, J., Kamaraj, M., Prashanthi Devi, M., Rajakumar, S. (eds) Strategies and Tools for Pollutant Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-030-63575-6_17

Download citation

Publish with us

Policies and ethics