Skip to main content

Orthobiologics for the Treatment of Muscle Lesions

  • Chapter
  • First Online:
Orthobiologics

Abstract

Muscle injuries lead to a functional impairment and to a subsequent considerable absence from training and competition, with potentially significant consequences on the athlete’s season and career. Therefore, the management of muscle tears and the choice of treatment strategy represent a challenging topic. To achieve a quick yet full recovery, there is a continuous search for innovative treatments to improve and accelerate the muscle healing process. As a result of these efforts, several orthobiologic approaches have been introduced for the management of muscle injuries. To gain more insight on the clinical evidence about the available innovative injective treatments is mandatory to improve the outcomes of patients affected by muscle tears. The aim of this chapter is to provide an overview of the main features of muscle injuries and to analyse the scientific evidence about the clinical results of different emerging orthobiologic approaches, with a particular focus on platelet-rich plasma (PRP), in the management of this kind of injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian football league. Am J Sports Med. 2013;41(4):734–41.

    Article  PubMed  Google Scholar 

  2. Lynall RC, Gardner EC, Paolucci J, Currie DW, Knowles SB, Pierpoint LA, et al. The first decade of web-based sports injury surveillance: descriptive epidemiology of injuries in US high school girls’ field hockey (2008-2009 through 2013-2014) and National Collegiate Athletic Association Women’s field hockey (2004-2005 through 2013-2014). J Athl Train. 2018;53(10):938–49.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46(2):112–7.

    Article  PubMed  Google Scholar 

  4. Yu B, Li L. Research in prevention and rehabilitation of hamstring muscle strain injury. J Sport Health Sci. 2017;6(3):253–4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maffulli N, Aicale R, Tarantino D. Classification of muscle lesions. In: Canata GL, d’Hooghe P, Hunt KJ, editors. Muscle and tendon injuries. Berlin: Springer Nature; 2017. p. 95–102.

    Chapter  Google Scholar 

  6. Boutin RD, Fritz RC, Steinbach LS. Imaging of sports-related muscle injuries. Radiol Clin N Am. 2002;40(2):333–62, vii.

    Article  PubMed  Google Scholar 

  7. Garrett WE Jr. Muscle strain injuries: clinical and basic aspects. Med Sci Sports Exerc. 1990;22(4):436–43.

    Article  PubMed  Google Scholar 

  8. Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.

    Article  PubMed  Google Scholar 

  9. Koh ES, McNally EG. Ultrasound of skeletal muscle injury. Semin Musculoskelet Radiol. 2007;11(2):162–73.

    Article  PubMed  Google Scholar 

  10. Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Biceps femoris and semitendinosus—teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study. Br J Sports Med. 2014;48(22):1599–606.

    Article  PubMed  Google Scholar 

  11. Wan X, Qu F, Garrett WE, Liu H, Yu B. The effect of hamstring flexibility on peak hamstring muscle strain in sprinting. J Sport Health Sci. 2017;6(3):283–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garrett WE Jr, Safran MR, Seaber AV, Glisson RR, Ribbeck BM. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med. 1987;15(5):448–54.

    Article  PubMed  Google Scholar 

  13. Palmer WE, Kuong SJ, Elmadbouh HM. MR imaging of myotendinous strain. AJR Am J Roentgenol. 1999;173(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  14. Pollock N, James SL, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48(18):1347–51.

    Article  PubMed  Google Scholar 

  15. Maffulli N, Oliva F, Frizziero A, Nanni G, Barazzuol M, Via AG, et al. ISMuLT Guidelines for muscle injuries. Muscles Ligaments Tendons J. 2013;3(4):241–9.

    Article  PubMed  Google Scholar 

  16. Mueller-Wohlfahrt HW, Haensel L, Mithoefer K, Ekstrand J, English B, McNally S, et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47(6):342–50.

    Article  PubMed  Google Scholar 

  17. Cianforlini M, Coppa V, Grassi M, Gigante A. New strategies for muscular repair and regeneration. In: Canata GL, d’Hooghe P, Hunt KJ, editors. Muscle and tendon injuries. Berlin: Springer Nature; 2017. p. 145–56.

    Chapter  Google Scholar 

  18. Ueblacker P, Haensel L, Mueller-Wohlfahrt HW. Treatment of muscle injuries in football. J Sports Sci. 2016;34(24):2329–37.

    Article  PubMed  Google Scholar 

  19. Barnett AJ, Negus JJ, Barton T, Wood DG. Reattachment of the proximal hamstring origin: outcome in patients with partial and complete tears. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2130–5.

    Article  CAS  PubMed  Google Scholar 

  20. Assis L, Moretti AI, Abrahão TB, de Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci. 2013;28(3):947–55.

    Article  PubMed  Google Scholar 

  21. Hamid MSA, Mohamed Ali MR, Yusof A, George J, Lee LP. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42(10):2410–8.

    Article  Google Scholar 

  22. Hofmann KJ, Paggi A, Connors D, Miller SL. Complete avulsion of the proximal hamstring insertion: functional outcomes after nonsurgical treatment. J Bone Joint Surg Am. 2014;96(12):1022–5.

    Article  PubMed  Google Scholar 

  23. Alonso JM, Edouard P, Fischetto G, Adams B, Depiesse F, Mountjoy M. Determination of future prevention strategies in elite track and field: analysis of Daegu 2011 IAAF championships injuries and illnesses surveillance. Br J Sports Med. 2012;46(7):505–14.

    Article  PubMed  Google Scholar 

  24. Pollock N, Patel A, Chakraverty J, Suokas A, James SL, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in intratendinous (‘c’) acute hamstring injury in elite track and field athletes: clinical application of the British athletics muscle injury classification. Br J Sports Med. 2016;50(5):305–10.

    Article  PubMed  Google Scholar 

  25. Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010;16(8):906–14.

    Article  CAS  PubMed  Google Scholar 

  26. Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop. 2016;3(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–38.

    Article  PubMed  Google Scholar 

  28. Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995;27(7):1022–32.

    Article  CAS  PubMed  Google Scholar 

  29. Toumi H, Best TM. The inflammatory response: friend or enemy for muscle injury? Br J Sports Med. 2003;37(4):284–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao W, Lu H, Wang X, Ransohoff RM, Zhou L. CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J. 2016;30(1):380–93.

    Article  CAS  PubMed  Google Scholar 

  31. Chazaud B, Brigitte M, Yacoub-Youssef H, Arnold L, Gherardi R, Sonnet C, et al. Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc Sport Sci Rev. 2009;37(1):18–22.

    Article  PubMed  Google Scholar 

  32. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012;139(16):2845–56.

    Article  CAS  PubMed  Google Scholar 

  33. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 2011;138(17):3647–56.

    Article  CAS  PubMed  Google Scholar 

  34. Creaney L, Hamilton B. Growth factor delivery methods in the management of sports injuries: the state of play. Br J Sports Med. 2008;42(5):314–20.

    Article  CAS  PubMed  Google Scholar 

  35. Zanon G, Combi A, Benazzo F, Bargagliotti M. The use of PRP in athletes with muscular lesions or classification of PRP preparations. In: Gobbi A, Espregueira-Mendes J, Lane JG, Karahan M, editors. Bio-orthopaedics, a new approach. Berlin: Springer Nature; 2017. p. 239–45.

    Chapter  Google Scholar 

  36. Lehto M, Sims TJ, Bailey AJ. Skeletal muscle injury—molecular changes in the collagen during healing. Res Exp Med (Berl). 1985;185(2):95–106.

    Article  CAS  Google Scholar 

  37. Cole BJ, Seroyer ST, Filardo G, Bajaj S, Fortier LA. Platelet-rich plasma: where are we now and where are we going? Sports Health. 2010;2(3):203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grassi A, Napoli F, Romandini I, Samuelsson K, Zaffagnini S, Candrian C, et al. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Med. 2018;48(4):971–89.

    Article  PubMed  Google Scholar 

  39. Filardo G, Kon E, Roffi A, Di Matteo B, Merli ML, Marcacci M. Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2459–74.

    Article  CAS  PubMed  Google Scholar 

  40. Mishra A, Harmon K, Woodall J, Vieira A. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol. 2012;13(7):1185–95.

    Article  CAS  PubMed  Google Scholar 

  41. Dohan Ehrenfest DM, Bielecki T, Mishra A, Borzini P, Inchingolo F, Sammartino G, et al. In search of a consensus terminology in the field of platelet concentrates for surgical use: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), fibrin gel polymerization and leukocytes. Curr Pharm Biotechnol. 2012;13(7):1131–7.

    Article  PubMed  Google Scholar 

  42. Hamid MS, Yusof A, Mohamed Ali MR. Platelet-rich plasma (PRP) for acute muscle injury: a systematic review. PLoS One. 2014;9(2):e90538.

    Article  PubMed  Google Scholar 

  43. Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM. Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med. 2009;37(6):1135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Visser LC, Arnoczky SP, Caballero O, Egerbacher M. Platelet-rich fibrin constructs elute higher concentrations of transforming growth factor-β1 and increase tendon cell proliferation over time when compared to blood clots: a comparative in vitro analysis. Vet Surg. 2010;39(7):811–7.

    Article  PubMed  Google Scholar 

  45. Gigante A, Del Torto M, Manzotti S, Cianforlini M, Busilacchi A, Davidson PA, et al. Platelet rich fibrin matrix effects on skeletal muscle lesions: an experimental study. J Biol Regul Homeost Agents. 2012;26(3):475–84.

    CAS  PubMed  Google Scholar 

  46. Cianforlini M, Mattioli-Belmonte M, Manzotti S, Chiurazzi E, Piani M, Orlando F, et al. Effect of platelet rich plasma concentration on skeletal muscle regeneration: an experimental study. J Biol Regul Homeost Agents. 2015;29(4 Suppl):47–55.

    CAS  PubMed  Google Scholar 

  47. Engebretsen L, Steffen K, Alsousou J, Anitua E, Bachl N, Devilee R, et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med. 2010;44(15):1072–81.

    Article  PubMed  Google Scholar 

  48. Martinez-Zapata MJ, Orozco L, Balius R, Soler R, Bosch A, Rodas G, et al. Efficacy of autologous platelet-rich plasma for the treatment of muscle rupture with haematoma: a multicentre, randomised, double-blind, placebo-controlled clinical trial. Blood Transfus. 2016;14(2):245–54.

    PubMed  PubMed Central  Google Scholar 

  49. Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, et al. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch hamstring injection therapy study. Br J Sports Med. 2015;49(18):1206–12.

    Article  PubMed  Google Scholar 

  50. Borrione P, Fossati C, Pereira MT, Giannini S, Davico M, Minganti C, et al. The use of platelet-rich plasma (PRP) in the treatment of gastrocnemius strains: a retrospective observational study. Platelets. 2018;29(6):596–601.

    Article  CAS  PubMed  Google Scholar 

  51. Rettig AC, Meyer S, Bhadra AK. Platelet-rich plasma in addition to rehabilitation for acute hamstring injuries in NFL players: clinical effects and time to return to play. Orthop J Sports Med. 2013;1(1):2325967113494354.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hamilton B, Tol JL, Almusa E, Boukarroum S, Eirale C, Farooq A, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943–50.

    Article  PubMed  Google Scholar 

  53. Rossi LA, Molina Rómoli AR, Bertona Altieri BA, Burgos Flor JA, Scordo WE, Elizondo CM. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3319–25.

    Article  PubMed  Google Scholar 

  54. Bubnov R, Yevseenko V, Semeniv I. Ultrasound guided injections of platelets rich plasma for muscle injury in professional athletes. Comparative study. Med Ultrason. 2013;15(2):101–5.

    Article  PubMed  Google Scholar 

  55. Serner A, van Eijck CH, Beumer BR, Hölmich P, Weir A, de Vos RJ. Study quality on groin injury management remains low: a systematic review on treatment of groin pain in athletes. Br J Sports Med. 2015;49(12):813.

    Article  PubMed  Google Scholar 

  56. Gates CB, Karthikeyan T, Fu F, Huard J. Regenerative medicine for the musculoskeletal system based on muscle-derived stem cells. J Am Acad Orthop Surg. 2008;16(2):68–76.

    Article  PubMed  Google Scholar 

  57. van der Made A, Reurink G, Tol J, Marotta M, Rodas G, Kerkhoffs G. Emerging biological approaches to muscle injuries. In: Gobbi A, Espregueira-Mendes J, Lane JG, Karahan M, editors. Bio-orthopaedics, a new approach. Berlin: Springer Nature; 2017. p. 227–38.

    Chapter  Google Scholar 

  58. Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, et al. Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med. 2011;39(9):1912–22.

    Article  PubMed  Google Scholar 

  59. Peçanha R, Bagno LL, Ribeiro MB, Robottom Ferreira AB, Moraes MO, Zapata-Sudo G, et al. Adipose-derived stem-cell treatment of skeletal muscle injury. J Bone Joint Surg Am. 2012;94(7):609–17.

    Article  PubMed  Google Scholar 

  60. Chiu C-H, Chang T-H, Chang S-S, Chang G-J, Chen AC-Y, Cheng C-Y, et al. Application of bone marrow–derived mesenchymal stem cells for muscle healing after contusion injury in mice. Am J Sports Med. 2020;48(5):1226–35.

    Article  PubMed  Google Scholar 

  61. McCullagh KJ, Perlingeiro RC. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev. 2015;84:198–207.

    Article  CAS  PubMed  Google Scholar 

  62. du Souich P, García AG, Vergés J, Montell E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med. 2009;13(8a):1451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Samà D, et al. Purified human plasma glycosaminoglycans reduced NF-kappaB activation, pro-inflammatory cytokine production and apoptosis in LPS-treated chondrocytes. Innate Immun. 2008;14(4):233–46.

    Article  CAS  PubMed  Google Scholar 

  64. Contreras-Muñoz P, Fernández-Martín A, Torrella R, Serres X, De la Varga M, Viscor G, et al. A new surgical model of skeletal muscle injuries in rats reproduces human sports lesions. Int J Sports Med. 2016;37(3):183–90.

    PubMed  Google Scholar 

  65. Bouvière J, Trignol A, Hoang DH, Del Carmine P, Goriot ME, Ben Larbi S, et al. Heparan sulfate mimetics accelerate postinjury skeletal muscle regeneration. Tissue Eng Part A. 2019;25(23–24):1667–76.

    Article  PubMed  Google Scholar 

  66. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, et al. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol. 2004;164(3):1007–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J. The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med. 2001;29(4):394–402.

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, et al. The combined use of losartan and muscle-derived stem cells significantly improves the functional recovery of muscle in a young mouse model of contusion injuries. Am J Sports Med. 2016;44(12):3252–61.

    Article  PubMed  Google Scholar 

  69. Kobayashi T, Uehara K, Ota S, Tobita K, Ambrosio F, Cummins JH, et al. The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury. J Appl Physiol1985. 2013;114(2):262–73.

    Article  CAS  Google Scholar 

  70. Chan YS, Li Y, Foster W, Fu FH, Huard J. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med. 2005;33(1):43–51.

    Article  PubMed  Google Scholar 

  71. Nozaki M, Ota S, Terada S, Li Y, Uehara K, Gharaibeh B, et al. Timing of the administration of suramin treatment after muscle injury. Muscle Nerve. 2012;46(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  72. Foster W, Li Y, Usas A, Somogyi G, Huard J. Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res. 2003;21(5):798–804.

    Article  CAS  PubMed  Google Scholar 

  73. Müller-Wohlfart H-W, Hänsel L, Ueblacker P, Binder A. Conservative treatment of muscle injuries. In: Müller-Wohlfart H-W, Ueblacker P, Haensel L, Garret EW, editors. Muscle injuries in sports. Stuttgart: Georg Thieme Verlag; 2013. p. 268–95.

    Google Scholar 

  74. Brock J, Golding D, Smith PM, Nokes L, Kwan A, Lee PYF. Update on the role of Actovegin in musculoskeletal medicine: a review of the past 10 years. Clin J Sport Med. 2020;30(1):83–90.

    PubMed  Google Scholar 

  75. Søndergård SD, Dela F, Helge JW, Larsen S. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle. Eur J Sport Sci. 2016;16(7):801–7.

    Article  PubMed  Google Scholar 

  76. Lee P, Nokes L, Smith PM. No effect of intravenous Actovegin® on peak aerobic capacity. Int J Sports Med. 2012;33(4):305–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Grassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grassi, A., Dal Fabbro, G., Zaffagnini, S. (2022). Orthobiologics for the Treatment of Muscle Lesions. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics