Skip to main content

Scalar Fields at Zero and Finite Temperature

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 2004 Accesses

Abstract

Scalar fields describe spinless particles and are often introduced and discussed in introductory textbooks to introduce novel concepts and techniques in quantum field theory. Even more important than their educational value is their role in the electroweak theory, where a scalar field interacts with the fields of leptons, quarks, and gauge bosons. The scalar field is needed for the Higgs mechanism which is essential to explain the mass generation for fermions and electroweak gauge bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should not be confused with the n-point Schwinger functions at zero temperature.

  2. 2.

    In non-linear sigma models, the coupling to the source may look differently.

  3. 3.

    However, for real x the integral (5.75) oscillates around the exponential fit.

References

  1. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, reprint edition (Taylor & Francis, Milton Park, 2019)

    Google Scholar 

  2. L. Brown, Quantum Field Theory (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  3. R. Haag, Local Quantum Physics: Fields, Particles and Algebras (Springer, Berlin, 2012)

    MATH  Google Scholar 

  4. M. Maggiore, A Modern Introduction to Quantum Field Theory (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  5. J. Fröhlich, On the triviality of \(\lambda \phi _d^4\) theories and the approach to the critical point in d ≥ 4 dimensions. Nucl. Phys. B200, 281 (1982)

    Google Scholar 

  6. A. Liddle, D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000); Primordial Density Perturbation (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  7. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  8. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Fröhlich, Schwinger functions and their generating functionals. Helv. Phys. Acta 47, 265 (1974)

    MathSciNet  MATH  Google Scholar 

  11. J. Glimm, A. Jaffe, Quantum Physics: A Functional Integral Point of View (Springer, New York, 1987)

    Book  Google Scholar 

  12. S. Weinberg, Gauge and global symmetries at high temperature. Phys. Rev. D9, 3357 (1974)

    ADS  Google Scholar 

  13. L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D9, 3320 (1974)

    ADS  Google Scholar 

  14. C.W. Bernard, Feynman rules for gauge theories at finite temperature. Phys. Rev. D9, 3312 (1974)

    ADS  Google Scholar 

  15. J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  16. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  17. J.S. Dowker, R. Critchley, Effective Lagrangian and energy-momentum tensor in de Sitter space. Phys. Rev. D13, 3224 (1976)

    ADS  Google Scholar 

  18. S.W. Hawking, Zeta-function regularization of path integrals in curved space. Commun. Math. Phys. 55, 133 (1977)

    Article  ADS  Google Scholar 

  19. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  20. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo 39, 1 (1915)

    Article  Google Scholar 

  21. S. Blau, M. Visser, A. Wipf, Determinants, Dirac operators and one-loops physics. Int. J. Mod. Phys. A4, 1467 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.B. Gilkey, Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem (CRC Press, Boca Raton, 1994)

    Google Scholar 

  23. D.V. Vassilevich, Heat kernel expansion: user’s manual. Phys. Rept. 388, 279 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Blau, M. Visser, A. Wipf, Zeta functions and the Casimir energy. Nucl. Phys. B310, 163 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Elizalde, A. Romeo, Expressions for the zeta function regularized Casimir energy. J. Math. Phys. 30, 1133 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  26. I. Sachs, A. Wipf, Finite temperature Schwinger model. Helv. Phys. Acta 65, 652 (1992)

    MathSciNet  Google Scholar 

  27. E. Corrigan, P. Goddard, H. Osborn, S. Templeton, Zeta function regularization and multi - instanton determinants. Nucl. Phys. B159 , 469 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  28. H.W. Braden, Expansion for field theories on S 1 × Σ. Phys. Rev. D25, 1028 (1982)

    Google Scholar 

  29. L. O’Raifeartaigh, A. Wipf, H. Yoneyama, The constraint effective potential. Nucl. Phys. B271, 653 (1986)

    Article  ADS  Google Scholar 

  30. H. Casimir, On the attraction between two perfectly conducting plates. Proc. Kon. Nederland. Akad. Wetensch. B51, 793 (1948)

    MATH  Google Scholar 

  31. S.K. Lamoreaux, Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5 (1997)

    Google Scholar 

  32. G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (201)

    Google Scholar 

  33. M. Bordag, U. Mohideen, V.M. Mostepanenko, New developments in the Casimir effect. Phys. Rep. 353, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. K.A. Milton, The Casimir Effect (World Scientific, Singapore, 2001)

    Book  Google Scholar 

  35. W.M.R. Simpson, U. Leonardt, Forces of the Quantum Vacuum: An Introduction to Casimir Physics (World Scientific, Singapore, 2015)

    Book  Google Scholar 

  36. J.L. Cardy, I. Peschel, Finite size dependence of the free energy in two-dimensional critical systems. Nucl. Phys. B300, 377 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Wiesendanger, A. Wipf, Running coupling constants from finite size effects. Ann. Phys. 233, 125 (1994)

    Article  ADS  Google Scholar 

  38. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 2021)

    Book  Google Scholar 

  39. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1997)

    MATH  Google Scholar 

  40. R. Balian, From Microphysics to Macrophysics vol. 1 (Springer, Berlin, 2006)

    MATH  Google Scholar 

  41. J.B. Hiriat-Urruty, J.E. Matinez-Legaz, New formulas for the Legendre-Fenchel transform. J. Math. Anal. Appl. 288, 544 (2003)

    Article  MathSciNet  Google Scholar 

  42. K. Symanzik, A modified model of Euclidean quantum field theory. Courant Institute of Mathematical Sciences, IMM-NYU 327 (1964)

    Google Scholar 

  43. K. Symanzik, Euclidean quantum field theory, in Local Quantum Field Theory, ed. by R. Jost (Academic, New York, 1968)

    Google Scholar 

  44. G. Bergner, Complete supersymmetry on the lattice and a No-Go theorem. JHEP 01, 024 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Scalar Fields at Zero and Finite Temperature. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_5

Download citation

Publish with us

Policies and ethics