Skip to main content
Log in

Complete supersymmetry on the lattice and a No-Go theorem

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work a lattice formulation of a supersymmetric theory is proposed and tested that preserves the complete supersymmetry on the lattice. The results of a onedimensional nonperturbative simulation show the realization of the full supersymmetry and the correct continuum limit of the theory. It is proven here that the violation of supersymmetry due to the absence of the Leibniz rule on the lattice can be amended only with a nonlocal derivative and nonlocal interaction term. The fermion doubling problem is also discussed, which leads to another important source of supersymmetry breaking on the lattice. This problem is also solved with a nonlocal realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Giedt, Deconstruction and other approaches to supersymmetric lattice field theories, Int. J. Mod. Phys. A 21 (2006) 3039 [hep-lat/0602007] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. A. Feo, Supersymmetry on the lattice, Nucl. Phys. Proc. Suppl. 119 (2003) 198 [hep-lat/0210015] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  3. D.B. Kaplan, Supersymmetry on the lattice, Eur. Phys. J. ST 152 (2007) 89 [SPIRES].

    Google Scholar 

  4. I. Montvay, Tuning to N = 2 supersymmetry in the SU(2) adjoint Higgs-Yukawa model, Nucl. Phys. B 445 (1995) 399 [hep-lat/9503009] [SPIRES].

    Article  ADS  Google Scholar 

  5. S. Elitzur, E. Rabinovici and A. Schwimmer, Supersymmetric models on the lattice, Phys. Lett. B 119 (1982) 165 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S. Catterall and S. Karamov, A two-dimensional lattice model with exact supersymmetry, Nucl. Phys. Proc. Suppl. 106 (2002) 935 [hep-lat/0110071] [SPIRES].

    Article  ADS  Google Scholar 

  7. D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP 05 (2003) 037 [hep-lat/0206019] [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [SPIRES].

    Article  Google Scholar 

  9. P.H. Dondi and H. Nicolai, Lattice supersymmetry, Nuovo Cim. A 41 (1977) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Nojiri, Continuous ‘translation’ and supersymmetry on the lattice, Prog. Theor. Phys. 74 (1985) 819 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. S. Nojiri, The spontaneous breakdown of supersymmetry on the finite lattice, Prog. Theor. Phys. 74 (1985) 1124 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. J. Bartels and G. Kramer, A lattice version of the Wess-Zumino model, Z. Phys. C 20 (1983) 159 [SPIRES].

    ADS  Google Scholar 

  13. M. Kato, M. Sakamoto and H. So, Taming the Leibniz rule on the lattice, JHEP 05 (2008) 057 [arXiv:0803.3121] [SPIRES].

    Article  ADS  Google Scholar 

  14. G. Bergner, T. Kaestner, S. Uhlmann and A. Wipf, Low-dimensional supersymmetric lattice models, Annals Phys. 323 (2008) 946 [arXiv:0705.2212] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. G. Bergner, Symmetries an the methods of quantum field theory: supersymmetry on a space-time lattice, Ph.D. thesis, Friedrich-Schiller-Universität Jena Jena, Jena, Germany (2009), online at http://www.tpi.uni-jena.de/qfphysics/thesis/georg_bergner_phd.pdf.

  16. J. Wess and B. Zumino, A lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52 [SPIRES].

    ADS  Google Scholar 

  17. T. Kastner, G. Bergner, S. Uhlmann, A. Wipf and C. Wozar, Two-dimensional Wess-Zumino models at intermediate couplings, Phys. Rev. D 78 (2008) 095001 [arXiv:0807.1905] [SPIRES].

    ADS  Google Scholar 

  18. G. Bergner, F. Bruckmann and J.M. Pawlowski, Generalising the Ginsparg-Wilson relation: lattice supersymmetry from blocking transformations, Phys. Rev. D 79 (2009) 115007 [arXiv:0807.1110] [SPIRES].

    ADS  Google Scholar 

  19. A. D’Adda, N. Kawamoto and J. Saito, Formulation of supersymmetry on a lattice as a representation of a deformed superalgebra, arXiv:0907.4137 [SPIRES].

  20. F. Bruckmann and M. de Kok, Noncommutativity approach to supersymmetry on the lattice: SUSY quantum mechanics and an inconsistency, Phys. Rev. D 73 (2006) 074511 [hep-lat/0603003] [SPIRES].

    ADS  Google Scholar 

  21. H.B. Nielsen and M. Ninomiya, No-Go theorem for regularizing chiral fermions, Phys. Lett. B 105 (1981) 219 [SPIRES].

    ADS  Google Scholar 

  22. D. Friedan, A proof of the Nielsen-Ninomiya theorem, Commun. Math. Phys. 85 (1982) 481 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Reisz, A power counting theorem for Feynman integrals on the lattice, Comm. Math. Phys. 116 (1988) 81 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Giedt, R. Koniuk, E. Poppitz and T. Yavin, Less naive about supersymmetric lattice quantum mechanics, JHEP 12 (2004) 033 [hep-lat/0410041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Catterall and E. Gregory, A lattice path integral for supersymmetric quantum mechanics, Phys. Lett. B 487 (2000) 349 [hep-lat/0006013] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. M.F.L. Golterman and D.N. Petcher, A local interactive lattice model with supersymmetry, Nucl. Phys. B 319 (1989) 307 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. L.H. Karsten and J. Smit, The vacuum polarization with SLAC lattice fermions, Phys. Lett. B 85 (1979) 100 [SPIRES].

    ADS  Google Scholar 

  28. J.M. Rabin, Perturbation theory for SLAC lattice fermions, Phys. Rev. D 24 (1981) 3218 [SPIRES].

    ADS  Google Scholar 

  29. L.H. Karsten and J. Smit, Lattice fermions: species doubling, chiral invariance and the triangle anomaly, Nucl. Phys. B 183 (1981) 103 [SPIRES].

    Article  ADS  Google Scholar 

  30. H.S. Sharatchandra, The continuum limit of lattice gauge theories in the context of renormalized perturbation theory, Phys. Rev. D 18 (1978) 2042 [SPIRES].

    ADS  Google Scholar 

  31. D. Kadoh and H. Suzuki, Supersymmetric nonperturbative formulation of the WZ model in lower dimensions, arXiv:0909.3686 [SPIRES].

  32. S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [SPIRES].

    ADS  Google Scholar 

  33. K. Fujikawa, Supersymmetry on the lattice and the Leibniz rule, Nucl. Phys. B 636 (2002) 80 [hep-th/0205095] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S.D. Drell, M. WEinstein and S. Yankielowicz, Variational approach to strong coupling field theory. 1. \( {\phi^4} \) theory, Phys. Rev. D 14 (1976) 487 [SPIRES].

    ADS  Google Scholar 

  35. S.D. Drell, M. WEinstein and S. Yankielowicz, Strong coupling field theories. 2. Fermions and gauge fields on a lattice, Phys. Rev. D 14 (1976) 1627 [SPIRES].

    ADS  Google Scholar 

  36. A. Kirchberg, J.D. Lange and A. Wipf, From the Dirac operator to Wess-Zumino models on spatial lattices, Ann. Phys. 316 (2005) 357 [hep-th/0407207] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Bergner.

Additional information

ArXiv ePrint: 0909.4791v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergner, G. Complete supersymmetry on the lattice and a No-Go theorem. J. High Energ. Phys. 2010, 24 (2010). https://doi.org/10.1007/JHEP01(2010)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)024

Keywords

Navigation