Skip to main content

Engineering Fructan Biosynthesis Against Abiotic Stress

  • Chapter
  • First Online:
Compatible Solutes Engineering for Crop Plants Facing Climate Change

Abstract

Many plant species contain a human health beneficial component called fructans. Fructans are fructose-based polymers sugar and synthesized from sucrose by an enzyme called as fructosyltransferases (FTs). Enhancement in the level of fructan molecules in engineering plants is one of the most critical areas of research. Several studies have been conducted to correlate the fructans content with various abiotic stresses like heat drought, chilling, etc. It has been confirmed that fructans may work as cryoprotectants and can stabilize the plasma membranes during the dehydration after the incorporation of polysaccharide into the lipid headgroup region of the membrane. This mechanism maintains the water level and protects the plant tissues from leakage during abiotic stresses. The level of fructans in certain plant species cannot be easily improved using conventional methods of breeding due to the low genetic diversity of this trait in the germplasm of certain species. However, fructans levels in plants can be enhanced using the biotechnological tools for the biosynthesis of fructans against the abiotic stresses. The abiotic stress tolerance is a complex mechanism of plants, and engineering fructans biosynthesis may protect the plant from stresses incorporation with some other genetic factors. Due to the importance of high fructans content in plants for potential physiological benefits during the stresses, this trait should be taken into mainstream breeding programs at a large-scale for developing abiotic stress tolerance and nutritionally improved crop varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K (1990) Ultrastructural changes during chilling stress. In: Wang CY (ed) Chilling injury of horticultural crops. CRC Press, Boca Raton, pp 71–84

    Google Scholar 

  • Abeynayake SW, Etzerodt TP, Jonavičienė K, Byrne S, Asp T, Boelt B (2015) Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass. Front Plant Sci 6:329

    Article  PubMed  PubMed Central  Google Scholar 

  • Azadi H, Keramati P, Taheri F, Rafiaani P, Teklemariam D, Gebrehiwot K, Hosseininia G, Passel SV, Lebailly P, Witlox F (2018) Agricultural land conversion: reviewing drought impacts and coping strategies. Int J Disa Ris Redu 31:184–195

    Google Scholar 

  • Azevedo Neto ADD, Prisco JT, Enéas-Filho J, Lacerda CFD, Silva JV, Costa PHAD et al (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16(1):31–38

    Article  Google Scholar 

  • Bai LP, Sui FG, Ge TD, Sun ZH, Lu YY, Zhou GS (2006) Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 16(3):326–332

    Article  CAS  Google Scholar 

  • Bartosiewicz B, Jadczyszyn J (2021) The impact of drought stress on the production of spring barley in Poland. Pol J Agron 45:3–11

    Google Scholar 

  • Bertrand M, Schoefs B (1999) Photosynthetic pigment metabolism in plants during stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Dekkar Inc, New York, pp 527–543

    Google Scholar 

  • Bie X, Wang K, She M, Du L, Zhang S, Li J, Gao G, Lin Z, Ye X (2012) Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Reports 31(12):2229–2238

    Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277(9):2022–2037

    Article  PubMed  CAS  Google Scholar 

  • Bukhov NG, Mohanty P (1999) Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. In: Singhal GS, Renger G, Sopory SK et al (eds) Concepts in photobiology. Springer, Dordrecht, pp 617–648

    Chapter  Google Scholar 

  • Castonguay Y, Nadeau P, Lechasseur P, Chouinard L (1995) Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winterhardiness. Crop Sci 35(2):509–516

    Article  CAS  Google Scholar 

  • Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G (2005) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnol J 3(5):459–474

    Article  PubMed  CAS  Google Scholar 

  • Chibbar RN, Jaiswal S, Gangola M, Båga M (2016) Carbohydrate Metabolism. In: Wrigley C, Corke H, Seetharaman K and Faubion J (eds) Encyclopedia of Food Grains. Elsevier Ltd., United Kingdom, vol. 2, pp 161–173. (ISBN 9780123944375)

    Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Springer, Dordrecht pp, pp 347–366

    Google Scholar 

  • Cirillo V, D’Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A (2021) Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology 10(2):139

    Google Scholar 

  • D’Alessandro S, Havaux M (2019) Sensing β-carotene oxidation in photosystem II to master plant stress tolerance. New Phytol 223:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol 67(1-2):151–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environt Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demirevska-Kepova K, Holzer R, Simova-Stoilova L, Feller U (2005) Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, rubisco binding protein and Rubisco activase in wheat leaves. Biol Plant 49(4):521–525

    Article  CAS  Google Scholar 

  • Dias MC, Brüggemann W (2010) Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48(1):96–102

    Article  CAS  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289

    Article  CAS  Google Scholar 

  • Ding Y, Feng R, Wang R, Guo J, Zheng X (2014) A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant Soil 375(1-2):289–301

    Article  CAS  Google Scholar 

  • Dong Y, Zhang Y, Xiao YG, Yan J, Liu JD, Wen WE et al (2016) Cloning of TaSST genes associated with water soluble carbohydrate content in bread wheat stems and development of a functional marker. Theor Appl Genet 129:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42(2):233–239

    Article  CAS  Google Scholar 

  • Einset J, Winge P, Bones A (2007) ROS signaling pathways in chilling stress. Plant Signal Behav 2(5):365–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63(9):3367–3377

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al. (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P et al (eds) Sustainable agriculture, Springer, Dordrecht pp. 153–188

    Google Scholar 

  • Feller U, Anders I, Demirevska K (2008) Degradation of rubisco and other chloroplast proteins under abiotic stress. Gen Appl Plant Physiol 34(1-2):5–18

    CAS  Google Scholar 

  • Gadegaard G, Didion T, Folling M, Storgaard M, Andersen CH, Nielsen KK (2008) Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyltransferase genes 1-SST and 6G-FFT. J Plant Physiol 165(11):1214–1225

    Article  PubMed  CAS  Google Scholar 

  • Galgano F, Caruso M, Condelli N, Favati F (2012) Focused review: agmatine in fermented foods. Front Microbiol 3:1–7

    Article  Google Scholar 

  • Gangola MP, Ramadoss BR (2018) Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH (ed) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Academic Press, Cambridge, pp 17–38

    Chapter  Google Scholar 

  • George S, Parida A (2010) Characterization of an oxidative stress inducible nonspecific lipid transfer protein coding cDNA and its promoter from drought tolerant plant Prosopis juliflora. Plant Mol Biol Rep 28(1):32

    Article  CAS  Google Scholar 

  • Georgieva K (1999) Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulg J Plant Physiol 25(3-4):89–99

    CAS  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2001) Effect of various abiotic stresses on the growth, soluble sugars and water relations of sorghum seedlings grown in light and darkness. Bulg J Plant Physiol 27(1-2):72–84

    CAS  Google Scholar 

  • Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60(18):4620–4627

    Article  PubMed  CAS  Google Scholar 

  • Guo RP, Xin ZY, Wang ZQ, Guo XY, Zhang LT, Wang JZ et al (2015) Effect of drought stress on non-structure carbohydrate metabolism of wheat and its relationship with drought resistance. Acta Agric Bor Sin 30:202–211

    Google Scholar 

  • Hao Z, Singh VP, Xia Y (2018) Seasonal drought prediction: advances, challenges, and future prospects. Rev Geophy 56(1):108–141

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haupt-Herting S, Klug K, Fock HP (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126(1):388–396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A et al (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36:66–71

    Article  PubMed  CAS  Google Scholar 

  • Haynes AP, (1996). Farm profitability and financial viability in the Texas High Plains: the impact of biotechnology and plant stress (Doctoral dissertation, Texas Tech University)

    Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • He XL, Wang JW, Li WX, Chen ZZ, Wu J, Zhao JX, Su JN, Wang ZH, Chen XH (2017) An intronless sucrose: fructan-6-fructosyltransferase (6-SFT) gene from Dasypyrum villosum enhances abiotic tolerance in tobacco. Biologia plantarum 61(2):235–245

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hildebrandt TM (2018) Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Mol Biol 98(1-2):121–135

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK (2002) Cryoprotectin: a plant lipid–transfer protein homologue that stabilizes membranes during freezing. Philos T R Soc B 357(1423):909–916

    Article  CAS  Google Scholar 

  • Hincha DK, Hellwege EM, Heyer AG, Crowe JH (2000) Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur J Biochem 267(2):535–540

    Article  PubMed  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Yoshida M, Humphreys MO, Iizuka M, Kitamura K et al (2008) Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass. New Phytol 178(4):766–780

    Article  PubMed  CAS  Google Scholar 

  • Horacio P, Martinez-Noel G (2013) Sucrose signaling in plants: a world yet to be explored. Plant Signal Behav 8(3):e23316

    Article  CAS  Google Scholar 

  • Hu XJ, Zhang ZB, Xu P, Fu ZY, Hu SB, Song WY (2010) Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. Biol Plant 54(2):213–223

    Article  CAS  Google Scholar 

  • Hurkman WJ (1992) Effect of salt stress on plant gene expression: a review. Plant Soil 146(1-2):145–151

    Article  CAS  Google Scholar 

  • Hussain SS, Raza H, Afzal I, Kayani MA (2012) Transgenic plants for abiotic stress tolerance: current status. Arch Agron Soil Sci 58(7):693–721

    Article  CAS  Google Scholar 

  • Huynh B, Wallwork H, Stangoulis JCR, Graham RD, Willsmore KL, Olson S et al (2008) Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Genet 117:701–709

    Article  PubMed  CAS  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotech 6(2):153–158

    Article  Google Scholar 

  • Joseph SK, Coll KE, Thomas AP, Rubin R, Williamson JR (1985) The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones. J Biological Chem 260(23):12508–12515

    Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J En Appl Sci 2(1):7–10

    CAS  Google Scholar 

  • Kaur N, Gupta A (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88

    Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802

    Article  PubMed  CAS  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12(10):6894–6918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW et al (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Rep 38(2):218–224

    Article  CAS  Google Scholar 

  • Knipp G, Honermeier B (2006) Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. J Plant Physiol 163(4):392–397

    Article  PubMed  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress--contribution of proteomics studies to understanding plant stress response. J Proteome 74(8):1301–1322

    Article  CAS  Google Scholar 

  • Lasseur B, Lothier J, Djoumad A, De Coninck B, Smeekens S, Van Laere A et al (2006) Molecular and functional characterization of a cDNA encoding fructan: fructan 6G-fructosyltransferase (6G-FFT)/fructan: fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). J Exp Bot 57(11):2719–2734

    Article  PubMed  CAS  Google Scholar 

  • Lasseur B, Lothier J, Wiemken A, Van Laere A, Morvan-Bertrand A, Ende WVD et al (2011) Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose: fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne). J Exp Bot 62(6):1871–1885

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ et al (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60(3):462–475

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Yang SU, Pandey G, Kim MS, Hyoung S, Choi D et al (2020) Occurrence of land-plant-specific glycerol-3-phosphate acyltransferases is essential for cuticle formation and gametophore development in Physcomitrella patens. New Phytol 225(6):2468–2483

    Article  PubMed  CAS  Google Scholar 

  • Li HJ, Yang AF, Zhang XC, Gao F, Zhang JR (2007) Improving freezing tolerance of transgenic tobacco expressing sucrose:sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tis Org Cul 89:37–48

    Article  CAS  Google Scholar 

  • Li P, Pan SY, Pei S, Lin YJ, Chiang PC (2016) Challenges and perspectives on carbon fixation and utilization technologies: An overview. Aero Air Quality Res 16(6):1327–1344

    Google Scholar 

  • Li M, He X, Hao D, Wu J, Zhao J, Yang Q, Chen X (2019) 6-SFT, a protein from Leymus mollis, positively regulates salinity tolerance and enhances fructan levels in Arabidopsis thaliana. Int J Mol Sci 20(11):2691

    Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66(13):2007–2023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macedo AF (2012) Abiotic stress responses in plants: metabolism to productivity. In: Ahmed P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 41–61

    Chapter  Google Scholar 

  • Mafakheri A, Siosemardeh AF, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580

    CAS  Google Scholar 

  • Mani A, Sankaranarayanan K (2018) Heavy Metal and Mineral Element-Induced Abiotic Stress in Rice Plant. Developments 149

    Google Scholar 

  • Martin B, Ort DR, Boyer JS (1981) Impairment of photosynthesis by chilling-temperatures in tomato. Plant Physiol 68(2):329–334

    Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163(5):961–969

    Article  CAS  Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D et al (2006) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967

    Article  PubMed  CAS  Google Scholar 

  • Mendiburu F, (2019) Agricolae: Statistical Procedures for Agriculture Research. Available at: https://cran.r-project.org/package:agricolae

  • Mihaljević I, Viljevac Vuletić M, Šimić D, Tomaš V, Horvat D, Josipović M, Zdunić Z, Dugalić K, Vuković D (2021) Comparative study of drought stress effects on traditional and modern apple cultivars. Plants 10(3):561

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125

    Article  PubMed  CAS  Google Scholar 

  • Moon KB, Ko H, Park JS, et al. (2019) Expression of Jerusalem artichoke (Helianthus tuberosus L.) fructosyltransferases, and high fructan accumulation in potato tubers. Appl Biol Chem 62:74

    Google Scholar 

  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164(2):157–167

    Article  PubMed  CAS  Google Scholar 

  • Murata T, (1990) Relation of chilling stress to membrane permeability. Chilling injury of horticultural crops, 201-209

    Google Scholar 

  • Nie GY, Long SP, Baker NR (1992) The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. Physiol Plant 85(3):554–560

    Article  CAS  Google Scholar 

  • Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J et al (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7(4):239

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkash V and Singh S (2020) A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10):3945

    Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64(4):1025–1038

    Google Scholar 

  • Pilon-Smits EA, Ebskamp MJ, Paul MJ, Jeuken MJ, Weisbeek PJ, Smeekens SC (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107(1):125–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37(4):313–317

    Article  CAS  Google Scholar 

  • Pukacka S, Ratajczak E, Kalemba E (2009) Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. J Plant Physiol 166(13):1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z (2018) Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60(9): 805–826

    Google Scholar 

  • Quinn PJ (1988) Effects of temperature on cell membranes. In Symp Soc Exp Biol 42:237–258

    CAS  Google Scholar 

  • Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracov Ser Bot 53(1):47–56

    Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao RSP, Andersen JR, Dionisio G, Boelt B (2011) Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis. J Plant Physiol 168(4):344–351

    Article  PubMed  CAS  Google Scholar 

  • Richter JA, Erban A, Kopka J, Zorb C (2015) Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci 233:107–115

    Google Scholar 

  • Ritsema T, Smeekens SC (2003) Engineering fructan metabolism in plants. J Plant Physiol 160(7):811

    Article  PubMed  CAS  Google Scholar 

  • Roberts DWA (1993) Studies of winter hardiness and related processes in wheat. Bulletin, Lethbridge Research Station

    Google Scholar 

  • Rodriguez M, Canales E, Borras-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Romero C, Bellés JM, Vayá JL, Serrano R, Culiáñez-Macià FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201(3):293–297

    Article  PubMed  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M et al (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahsah Y, Campos P, Gareil M, Zuily-Fodil Y, Pham-Thi AT (1998) Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress. Physiol Plant 104(4):577–586

    Article  CAS  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Drought Stress Tolerance in Plants. Springer, Cha, pp 1–16

    Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  PubMed  CAS  Google Scholar 

  • Savitch LV, Harney T, Huner NPA (2000) Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol Plant 108:270–278

    Article  CAS  Google Scholar 

  • Sedigheh HG, Mortazavian M, Norouzian D, Atyabi M, Akbarzadeh A, Hasanpoor K et al (2011) Oxidative stress and leaf senescence. BMC Res Notes 4(1):477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP et al (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot:1023–1036

    Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28(3):269–277

    Article  CAS  Google Scholar 

  • Singer SD, Zou J, Weselake RJ (2016) Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci 243:1–9

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2001) Transgenic approach towards developing abiotic stress tolerance in plants. Proc Indian Natl Sci Acad B 67(5):265–284

    CAS  Google Scholar 

  • Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52(2):123–129

    Article  CAS  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Kraaijeveld-Smit FJL, Ten Bookum WM, Koevoets PLM, Schat H et al (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144(2):223–232

    Article  CAS  Google Scholar 

  • Sprenger N, Schellenbaum L, van Dun K, Boller T, Wiemken A (1997) Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose: fructan 6-fructosyltransferase. FEBS Lett 400(3):355–358

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zong Y, Yang S, Wang L, Gao J, Wang Y et al (2020) A fructan: the fructan 1-fructosyl-transferase gene from Helianthus tuberosus increased the PEG-simulated drought stress tolerance of tobacco. Hereditas 157:1–8

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2010) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteome 71(4):391–411

    Article  CAS  Google Scholar 

  • Turner LB, Cairns AJ, Armstead IP, Ashton J, Skot K, Whittaker D et al (2006) Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. New Phytol 169:45–58

    Article  PubMed  CAS  Google Scholar 

  • Turner LB, Cairns AJ, Armstead IP, Thomas H, Humphreys MW, Humphreys MO (2008) Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol 179:765–775

    Article  PubMed  CAS  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30(6):967–977

    Article  PubMed  CAS  Google Scholar 

  • Usman B, Muhammad AN, Usama A, Muhammad TA, Rana MA, Kirill SG et al (2020) Transgenic crops for the agricultural improvement in Pakistan: a perspective of environmental stresses and the current status of genetically modified crops. GM crops & amp. FoodReview 11(1):1–29

    Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13(8):409–414

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247

    Google Scholar 

  • Veenstra LD, Jannink J-L, Sorrells ME (2017) Wheat Fructans: a potential breeding target for nutritionally improved, climate-resilient varieties. Crop Sci 57:1624–1640

    Article  CAS  Google Scholar 

  • Verspreet J, Dornez E, Wim VDE, Delcour JA, Courtin CM (2015) Cereal grain fructans: structure, variability and potential health effects. Trends Food Sci Technol 43:32–42

    Article  CAS  Google Scholar 

  • Vijn I, Van Dijken A, Sprenger N, Van Dun K, Weisbeek P, Wiemken A et al (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan: fructan 6G-fructosyltransferase. Plant J 11(3):387–398

    Article  PubMed  CAS  Google Scholar 

  • Vijn I, van Dijken A, Lüscher M, Bos A, Smeets E, Weisbeek P et al (1998) Cloning of sucrose: sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiol 117(4):1507–1513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Blumwald E (2014) Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles. Plant Cell 26(12):4875–4888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang SJ, Yeh KW, Tsai CY (2001) Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Sci 161(4):635–644

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  PubMed  CAS  Google Scholar 

  • Wehmeier KR, Mooradian AD (1994) Autoxidative and antioxidative potential of simple carbohydrates. Free Radic Biol Med 17(1):83–86

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, McIntyre CL, Jenkins CLD, Glassop D, van Herwaarden AF, Shorter R (2008) Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol 146:441–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Z, Wang C, Wang Han ZZ, Wang L, Lan C (2020) Genetic analysis and gene detection of fructan content using DArT molecular markers in spring bread wheat (Triticum aestivum L.) grain. Mol Breeding 40:23

    Article  CAS  Google Scholar 

  • Zengchao H, Fanghua H, Singh VP, Xuan Z (2018) Changes in the severity of compound drought and hot extremes over global land areas. Environ Res Lett 13:124022

    Article  Google Scholar 

  • Zhang Z, Li J, Liu H, Chong K, Xu Y (2015) Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses. Environ Exp Bot 114:92–103

    Article  CAS  Google Scholar 

  • Zhou J, Yang Y, Yu J, Wang L, Yu X, Ohtani M et al (2014) Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. J Plant Res 127(2):347–358

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2): 66–71

    Google Scholar 

  • Zhu, J. K. (2001). Plant salt stress. e LS

    Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2): 313–324

    Google Scholar 

Download references

Acknowledgments

NKV acknowledges receipt of funding support from the Science and Engineering Research Board, New Delhi (Award No. PDF/2016/000012). The authors express sincere thanks to Mr. Ankit Singh for valuable suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhir, G., Vasistha, N.K. (2021). Engineering Fructan Biosynthesis Against Abiotic Stress. In: Wani, S.H., Gangola, M.P., Ramadoss, B.R. (eds) Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-80674-3_6

Download citation

Publish with us

Policies and ethics