Skip to main content

Role of PAR-4 in Ceramide-Inducible Effects in Neurodegeneration

  • Chapter
  • First Online:
Tumor Suppressor Par-4

Abstract

Recently, the idea that alterations in sphingolipids metabolism contribute to the pathogenesis of various neurodegenerative diseases has been gaining vast acceptance. Especially ceramide, the precursor of all complex sphingolipids, is thought to be a key sphingolipid metabolite and lipid second messenger. For several decades, research on sphingolipids related to neurodegenerative disease focused on myelin constituents and lipid storage diseases. However, recent advances in methods of mass spectrometric lipid analysis (lipidomics) have greatly advanced the knowledge of sphingolipids in neurodegenerative and psychiatric disorder. This was concomitant with the recognition of ceramide as a as key player in lipid cell signaling and regulation of cell death and survival. There is evidence that ceramide is invoked in a myriad of cellular processes related to neurodegeneration such as autophagy, ER stress, mitochondrial dysfunction, and exosome secretion which leads to neurotoxic protein spreading. However, it is still not clear which additional factors may interact with ceramide to determine the specific outcome of a particular ceramide-induced cell signaling pathway. Several studies have shown that interaction with prostate apoptosis 4 (PAR-4) regulates these cell signaling pathways, particularly for the induction of neuronal apoptosis during neurodegenerative disease. We will discuss the function of PAR-4 in the regulation of ceramide neurotoxicity and neuronal apoptosis induced by intrinsic ceramide and PAR-4/ceramide originating in other cells and transported to neurons via extracellular vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannun YA, Obeid LM (2018) Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19(3):175–191. https://doi.org/10.1038/nrm.2017.107. PubMed PMID: 29165427; PMCID: 5902181

    Article  CAS  PubMed  Google Scholar 

  2. Milhas D, Clarke CJ, Hannun YA (2010) Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 584(9):1887–1894. https://doi.org/10.1016/j.febslet.2009.10.058. Epub 2009/10/28. doi: S0014-5793(09)00846-1 [pii] PubMed PMID: 19857494; PMCID: 2856805

    Article  CAS  PubMed  Google Scholar 

  3. Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A (2020) Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 61(5):636–654. https://doi.org/10.1194/jlr.TR119000427. Epub 2019/12/25. PubMed PMID: 31871065; PMCID: PMC7193971

    Article  CAS  PubMed  Google Scholar 

  4. Sonnino S, Aureli M, Mauri L, Ciampa MG, Prinetti A (2015) Membrane lipid domains in the nervous system. Front Biosci 20:280–302

    Article  CAS  Google Scholar 

  5. Merrill AH Jr, Carman GM (2015) Introduction to thematic minireview series: novel bioactive sphingolipids. J Biol Chem 290(25):15362–15364. https://doi.org/10.1074/jbc.R115.663708. doi: R115.663708 [pii] Epub 2015/05/08. PubMed PMID: 25947376; PMCID: 4505448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merrill AH Jr, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E (1997) Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142(1):208–225

    Article  CAS  PubMed  Google Scholar 

  7. Thudichum JWL (1901) Die chemische Konstitution des Gehirns des Menschen und der Tiere. Verlag von Franz Pietzcker, Tuebingen

    Google Scholar 

  8. Thudichum JWL (1884) A treatise of the chemical constitution of the brain. Bailliere, Tindall, and Cox, London

    Google Scholar 

  9. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862. https://doi.org/10.1074/jbc.R111.254359. Epub 2011/06/23. PubMed PMID: 21693702; PMCID: PMC3151029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crivelli SM, Giovagnoni C, Visseren L, Scheithauer A-L, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P (2020) Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 159:214–231. https://doi.org/10.1016/j.addr.2019.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Mullen TD, Obeid LM (2012) Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anti Cancer Agents Med Chem 12(4):340–363. Epub 2011/06/29. doi: BSP/ACAMC/E-Pub/ 00187 [pii]

    Article  CAS  Google Scholar 

  12. Kim JL, Mestre B, Shin SH, Futerman AH (2021) Ceramide synthases: reflections on the impact of Dr. Lina M Obeid. Cell Signalling 109958. Epub 2021/02/20. https://doi.org/10.1016/j.cellsig.2021.109958

  13. Wang G, Bieberich E (2018) Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 70:51–64. https://doi.org/10.1016/j.jbior.2018.09.013. PubMed PMID: 30287225; PMCID: 6251739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogretmen B (2018) Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18(1):33–50. https://doi.org/10.1038/nrc.2017.96

    Article  CAS  PubMed  Google Scholar 

  15. Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2511–2518. https://doi.org/10.1016/j.bbamcr.2013.04.010. PubMed PMID: 23611790 Epub 2013/04/25. doi: S0167-4889(13)00170-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20(6):1010–1018. https://doi.org/10.1016/j.cellsig.2007.12.006. PubMed PMID: 18191382; PMCID: 2422835 Epub 2008/01/15. S0898-6568(07)00371-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62(5):347–356. https://doi.org/10.1002/iub.319. Epub 2010/03/12. PubMed PMID: 20222015; PMCID: 2858252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tidhar R, Ben-Dor S, Wang E, Kelly S, Merrill AH Jr, Futerman AH (2012) Acyl chain specificity of ceramide synthases is determined within a region of 150 residues in the Tram-Lag-CLN8 (TLC) domain. J Biol Chem 287(5):3197–3206. https://doi.org/10.1074/jbc.M111.280271. PubMed PMID: 22144673; PMCID: PMC3270974. Epub 2011/12/07

    Article  CAS  PubMed  Google Scholar 

  19. Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J, Hannun YA, Obeid LM (2011) Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J Lipid Res 52(1):68–77. https://doi.org/10.1194/jlr.M009142. PubMed PMID: 20940143; PMCID: 2999923 jlr.M009142 [pii] Epub 2010/10/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stiban J, Tidhar R, Futerman AH (2010) Ceramide synthases: roles in cell physiology and signaling. Adv Exp Med Biol 688:60–71. Epub 2010/10/06

    Article  CAS  PubMed  Google Scholar 

  21. Spassieva SD, Ji X, Liu Y, Gable K, Bielawski J, Dunn TM, Bieberich E, Zhao L (2016) Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 113(21):5928–5933. https://doi.org/10.1073/pnas.1522071113. Epub 2016/05/11. PubMed PMID: 27162368; PMCID: 4889366 1522071113 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tidhar R, Zelnik ID, Volpert G, Ben-Dor S, Kelly S, Merrill AH Jr, Futerman AH (2018) Eleven residues determine the acyl chain specificity of ceramide synthases. J Biol Chem. https://doi.org/10.1074/jbc.RA118.001936

  23. Bieberich E (2018) Sphingolipids and lipid rafts: novel concepts and methods of analysis. Chem Phys Lipids 216:114–131. https://doi.org/10.1016/j.chemphyslip.2018.08.003. PubMed PMID: 30194926; PMCID: 6196108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA (2015) Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 19(12):1725–1742. https://doi.org/10.1517/14728222.2015.1071794

    Article  CAS  PubMed  Google Scholar 

  25. Castro BM, Prieto M, Silva LC (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 54:53–67. https://doi.org/10.1016/j.plipres.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  26. Chakraborty M, Jiang XC (2013) Sphingomyelin and its role in cellular signaling. Adv Exp Med Biol 991:1–14. https://doi.org/10.1007/978-94-007-6331-9_1. PubMed PMID: 23775687 Epub 2013/06/19

    Article  CAS  PubMed  Google Scholar 

  27. Heberle FA, Feigenson GW (2011) Phase separation in lipid membranes. Cold Spring Harb Perspect Biol 3:4. https://doi.org/10.1101/cshperspect.a004630. PubMed PMID: 21441593; PMCID: 3062215

    Article  CAS  Google Scholar 

  28. Pinto SN, Laviad EL, Stiban J, Kelly SL, Merrill AH Jr, Prieto M, Futerman AH, Silva LC (2014) Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. J Lipid Res 55(1):53–61. https://doi.org/10.1194/jlr.M042002. PubMed PMID: 24163422; PMCID: 3927481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH Jr, Futerman AH (2010) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910. https://doi.org/10.1074/jbc.M109.077594. PubMed PMID: 20110363; PMCID: 2856296 M109.077594 [pii] Epub 2010/01/30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castro BM, de Almeida RF, Silva LC, Fedorov A, Prieto M (2007) Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach. Biophys J 93(5):1639–1650. https://doi.org/10.1529/biophysj.107.107714. PubMed PMID: 17496019; PMCID: 1948048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikolova-Karakashian M, Karakashian A, Rutkute K (2008) Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 49:469–486. https://doi.org/10.1007/978-1-4020-8831-5_18

    Article  PubMed  Google Scholar 

  32. Zeidan Y, Marchesini N, Hannun YA (2006) Overview of acid and neutral sphingomyelinases in cell signaling. In: Hirabayashi Y, Igarashi Y, Merrill AH (eds) Sphingolipid biology. Springer Japan, Tokyo, pp 167–181

    Chapter  Google Scholar 

  33. Airola MV, Hannun YA (2013) Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 215:57–76. https://doi.org/10.1007/978-3-7091-1368-4_3. PubMed PMID: 23579449; PMCID: 4043343 Epub 2013/04/13

    Article  CAS  Google Scholar 

  34. Horres CR, Hannun YA (2012) The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res 37(6):1137–1149. https://doi.org/10.1007/s11064-011-0692-y

    Article  CAS  PubMed  Google Scholar 

  35. Zeidan YH, Hannun YA (2010) The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 10(5):454–466. Epub 2010/06/15. doi: CMM # 51 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Henry B, Ziobro R, Becker KA, Kolesnick R, Gulbins E (2013) Acid sphingomyelinase. Handb Exp Pharmacol 215:77–88. Epub 2013/04/13. https://doi.org/10.1007/978-3-7091-1368-4_4

    Article  CAS  Google Scholar 

  37. Hua G, Kolesnick R (2013) Using ASMase knockout mice to model human diseases. Handb Exp Pharmacol 216:29–54. https://doi.org/10.1007/978-3-7091-1511-4_2. PubMed PMID: 23563650 Epub 2013/04/09

    Article  CAS  Google Scholar 

  38. Clarke CJ, Cloessner EA, Roddy PL, Hannun YA (2011) Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-α in MCF-7 cells. Biochem J 435(2):381–390. https://doi.org/10.1042/bj20101752. PubMed PMID: 21303347; PMCID: PMC3715995 Epub 2011/02/10

    Article  CAS  PubMed  Google Scholar 

  39. Castillo SS, Levy M, Thaikoottathil JV, Goldkorn T (2007) Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp Cell Res 313(12):2680–2686. https://doi.org/10.1016/j.yexcr.2007.04.002. PubMed PMID: 17498692 Epub 2007/05/15

    Article  CAS  PubMed  Google Scholar 

  40. Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell Signaling responses. NeuroMolecular Med. https://doi.org/10.1007/s12017-010-8120-z. PubMed PMID: 20552297. Epub 2010/06/17

  41. Dotson PP 2nd, Karakashian AA, Nikolova-Karakashian MN (2015) Neutral sphingomyelinase-2 is a redox sensitive enzyme: role of catalytic cysteine residues in regulation of enzymatic activity through changes in oligomeric state. Biochem J 465(3):371–382. https://doi.org/10.1042/BJ20140665. PubMed PMID: 25287744; PMCID: 4526461

    Article  CAS  PubMed  Google Scholar 

  42. Muhle C, Reichel M, Gulbins E, Kornhuber J (2013) Sphingolipids in psychiatric disorders and pain syndromes. Handb Exp Pharmacol 216:431–456. https://doi.org/10.1007/978-3-7091-1511-4_22. PubMed PMID: 23563670 Epub 2013/04/09

    Article  CAS  Google Scholar 

  43. Clarke CJ, Cloessner EA, Roddy PL, Hannun YA (2011) Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-alpha in MCF-7 cells. Biochem J 435(2):381–390. https://doi.org/10.1042/BJ20101752. BJ20101752 [pii] Epub 2011/02/10. PubMed PMID: 21303347; PMCID: 3715995

    Article  CAS  PubMed  Google Scholar 

  44. Cutler RG, Mattson MP (2001) Sphingomyelin and ceramide as regulators of development and lifespan. Mech Ageing Dev 122(9):895–908

    Article  CAS  PubMed  Google Scholar 

  45. Gu L, Huang B, Shen W, Gao L, Ding Z, Wu H, Guo J (2013) Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J Neuroinflammation 10:109. https://doi.org/10.1186/1742-2094-10-109. PubMed PMID: 24007266; PMCID: PMC3844623 Epub 2013/09/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dinkins MB, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, Liu Y, Terry AV Jr, Bieberich E (2016) Neutral Sphingomyelinase-2 deficiency ameliorates Alzheimer's disease pathology and improves cognition in the 5XFAD mouse. J Neurosci 36(33):8653–8667. https://doi.org/10.1523/JNEUROSCI.1429-16.2016. PubMed PMID: 27535912; PMCID: 4987436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang G, Spassieva SD, Bieberich E (2018) Ceramide and S1P signaling in embryonic stem cell differentiation. Methods Mol Biol 1697:153–171. https://doi.org/10.1007/7651_2017_43. PubMed PMID: 28540559; PMCID: PMC5815858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5(8):777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P (2020) Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2019.12.003. PubMed PMID: 31911096 Epub 2020/01/09

  50. Yadav RS, Tiwari NK (2014) Lipid integration in neurodegeneration: an overview of Alzheimer's disease. Mol Neurobiol 50(1):168–176. https://doi.org/10.1007/s12035-014-8661-5

    Article  CAS  PubMed  Google Scholar 

  51. Mencarelli C, Martinez-Martinez P (2013) Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 70(2):181–203. https://doi.org/10.1007/s00018-012-1038-x. PubMed PMID: 22729185; PMCID: 3535405 Epub 2012/06/26

    Article  CAS  PubMed  Google Scholar 

  52. Novgorodov SA, Gudz TI (2011) Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol 2(4):347–361. Epub 2011/12/22. PubMed PMID: 22187669; PMCID: 3242427

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mielke MM, Lyketsos CG (2010) Alterations of the sphingolipid pathway in Alzheimer's disease: new biomarkers and treatment targets? NeuroMolecular Med 12(4):331–340. https://doi.org/10.1007/s12017-010-8121-y. PubMed PMID: 20571935; PMCID: 3129545 Epub 2010/06/24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ben-David O, Futerman AH (2010) The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. NeuroMolecular Med 12(4):341–350. https://doi.org/10.1007/s12017-010-8114-x

    Article  CAS  PubMed  Google Scholar 

  55. de la Monte SM, Longato L, Tong M, DeNucci S, Wands JR (2009) The liver-brain axis of alcohol-mediated neurodegeneration: role of toxic lipids. Int J Environ Res Public Health 6(7):2055–2075. https://doi.org/10.3390/ijerph6072055. PubMed PMID: 19742171; PMCID: 2738898 Epub 2009/09/11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arboleda G, Morales LC, Benitez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59(2):333–346. https://doi.org/10.1016/j.brainresrev.2008.10.001. doi: S0165-0173(08)00133-1 [pii] Epub 2008/11/11

    Article  CAS  PubMed  Google Scholar 

  57. Karunakaran I, van Echten-Deckert G (2017) Sphingosine 1-phosphate—a double edged sword in the brain. Biochim Biophys Acta 1859(9 Pt B):1573–1582. https://doi.org/10.1016/j.bbamem.2017.03.008

    Article  CAS  Google Scholar 

  58. Gulbins A, Schumacher F, Becker KA, Wilker B, Soddemann M, Boldrin F, Muller CP, Edwards MJ, Goodman M, Caldwell CC, Kleuser B, Kornhuber J, Szabo I, Gulbins E (2018) Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry 23(12):2324–2346. https://doi.org/10.1038/s41380-018-0090-9. PubMed PMID: 30038230; PMCID: PMC6294742 Epub 2018/07/25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tommasino C, Marconi M, Ciarlo L, Matarrese P, Malorni W (2015) Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids. Apoptosis 20(5):645–657. https://doi.org/10.1007/s10495-015-1102-8. PubMed PMID: 25697338 Epub 2015/02/24

    Article  PubMed  Google Scholar 

  60. Lepine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S (2011) Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286(52):44380–44390. https://doi.org/10.1074/jbc.M111.257519. PubMed PMID: 22052905; PMCID: 3247960 Epub 2011/11/05. doi: M111.257519 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang W, Ogretmen B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841(5):783–792. https://doi.org/10.1016/j.bbalip.2013.09.005. PubMed PMID: 24055889; PMCID: 3960371 Epub 2013/09/24. doi: S1388-1981(13)00196-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Nikolova-Karakashian MN, Rozenova KA (2010) Ceramide in stress response. Adv Exp Med Biol 688:86–108. Epub 2010/10/06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dany M, Ogretmen B (2015) Ceramide induced mitophagy and tumor suppression. Biochim Biophys Acta 1853(10 Pt B):2834–2845. https://doi.org/10.1016/j.bbamcr.2014.12.039. Epub 2015/01/31. doi: S0167-4889(15)00008-7 [pii]. PubMed PMID: 25634657; PMCID: 4515393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51(1):50–62. https://doi.org/10.1016/j.plipres.2011.11.001. Epub 2011/12/03. doi: S0163-7827(11)00042-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Siddique MM, Li Y, Chaurasia B, Kaddai VA, Summers SA (2015) Dihydroceramides: from bit players to Lead actors. J Biol Chem 290(25):15371–15379. https://doi.org/10.1074/jbc.R115.653204. Epub 2015/05/08. doi: R115.653204 [pii] PubMed PMID: 25947377; PMCID: 4505450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96

    Article  PubMed  PubMed Central  Google Scholar 

  67. Obeid LM, Hannun YA (2003) Ceramide, stress, and a "LAG" in aging. Sci Aging Knowl Environ 2003(39):PE27. https://doi.org/10.1126/sageke.2003.39.pe27. Epub 2003/10/03. 2003/39/pe27 [pii]

    Article  Google Scholar 

  68. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270(51):30701–30708. Epub 1995/12/22

    Article  CAS  PubMed  Google Scholar 

  69. Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278(1–2):5–15. https://doi.org/10.1016/j.jns.2008.12.010. Epub 2009/01/17 PubMed PMID: 19147160; PMCID: PMC2660887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tong M, de la Monte SM (2009) Mechanisms of ceramide-mediated neurodegeneration. J Alzheimer’s Dis 16(4):705–714. https://doi.org/10.3233/jad-2009-0983. Epub 2009/04/24. PubMed PMID: 19387107; PMCID: PMC4550322

    Article  Google Scholar 

  71. Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul J-L, Cruciani-Guglielmacci C, Magnan C, Janel N (2019) Deciphering the link between hyperhomocysteinemia and ceramide metabolism in Alzheimer-type neurodegeneration. Front Neurol 10:807. https://doi.org/10.3389/fneur.2019.00807

    Article  PubMed  PubMed Central  Google Scholar 

  72. Spassieva S, Bieberich E (2016) Lysosphingolipids and sphingolipidoses: psychosine in Krabbe's disease. J Neurosci Res 94(11):974–981. https://doi.org/10.1002/jnr.23888. PubMed PMID: 27638582; PMCID: 5027979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Svennerholm L, Vanier MT, Mansson JE (1980) Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res 21(1):53–64. Epub 1980/01/01

    Article  CAS  PubMed  Google Scholar 

  74. Vitner EB, Futerman AH (2013) Neuronal forms of Gaucher disease. Handb Exp Pharmacol 216:405–419. https://doi.org/10.1007/978-3-7091-1511-4_20. PubMed PMID: 23563668 Epub 2013/04/09

    Article  CAS  Google Scholar 

  75. Bieberich E, Freischutz B, Suzuki M, Yu RK (1999) Differential effects of glycolipid biosynthesis inhibitors on ceramide-induced cell death in neuroblastoma cells. J Neurochem 72(3):1040–1049. Epub 1999/02/26

    Article  CAS  PubMed  Google Scholar 

  76. de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE (2019) Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation 16(1):48. https://doi.org/10.1186/s12974-019-1436-1. PubMed PMID: 30803453; PMCID: PMC6388480 Epub 2019/02/26

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xing Y, Tang Y, Zhao L, Wang Q, Qin W, Ji X, Zhang J, Jia J (2016) Associations between plasma ceramides and cognitive and neuropsychiatric manifestations in Parkinson's disease dementia. J Neurol Sci 370:82–87. https://doi.org/10.1016/j.jns.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  78. Mielke MM, Maetzler W, Haughey NJ, Bandaru VV, Savica R, Deuschle C, Gasser T, Hauser AK, Graber-Sultan S, Schleicher E, Berg D, Liepelt-Scarfone I (2013) Plasma ceramide and glucosylceramide metabolism is altered in sporadic Parkinson's disease and associated with cognitive impairment: a pilot study. PLoS One 8(9):e73094. https://doi.org/10.1371/journal.pone.0073094. PubMed PMID: 24058461; PMCID: 3776817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bras J, Singleton A, Cookson MR, Hardy J (2008) Emerging pathways in genetic Parkinson's disease: potential role of ceramide metabolism in Lewy body disease. FEBS J 275(23):5767–5773. https://doi.org/10.1111/j.1742-4658.2008.06709.x. Epub 2008/11/22. doi: EJB6709 [pii]. PubMed PMID: 19021754; PMCID: 2646080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ariga T, Jarvis WD, Yu RK (1998) Role of sphingolipid-mediated cell death in neurodegenerative diseases. J Lipid Res 39(1):1–16

    Article  CAS  PubMed  Google Scholar 

  81. Schuchman EH (2016) Acid ceramidase and the treatment of ceramide diseases: the expanding role of enzyme replacement therapy. Biochim Biophys Acta. https://doi.org/10.1016/j.bbadis.2016.05.001. Epub 2016/05/08 doi: S0925-4439(16)30094-1 [pii]

  82. Paciotti S, Albi E, Parnetti L, Beccari T (2020) Lysosomal ceramide metabolism disorders: implications in Parkinson's disease. J Clin Med 9:2. https://doi.org/10.3390/jcm9020594. PubMed PMID: 32098196; PMCID: PMC7073989 Epub 2020/02/27

    Article  CAS  Google Scholar 

  83. Baekelandt V, Lobbestael E, Xicoy H, Martens GJM (2020) Editorial: the role of lipids in the pathogenesis of Parkinson's disease. Front Neurosci 14:250. https://doi.org/10.3389/fnins.2020.00250. Epub 2020/04/09. PubMed PMID: 32265647; PMCID: PMC7105851

    Article  PubMed  PubMed Central  Google Scholar 

  84. Plotegher N, Bubacco L, Greggio E, Civiero L (2019) Ceramides in Parkinson's disease: from recent evidence to new hypotheses. Front Neurosci 13:330. https://doi.org/10.3389/fnins.2019.00330. PubMed PMID: 31001082; PMCID: PMC6454043 Epub 2019/04/20

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lin G, Wang L, Marcogliese PC, Bellen HJ (2019) Sphingolipids in the pathogenesis of Parkinson's disease and Parkinsonism. Trends Endocrinol Metab 30(2):106–117. https://doi.org/10.1016/j.tem.2018.11.003. PubMed PMID: 30528460 Epub 2018/12/12

    Article  CAS  PubMed  Google Scholar 

  86. Dunn TM, Tifft CJ, Proia RL (2019) A perilous path: the inborn errors of sphingolipid metabolism. J Lipid Res 60(3):475–483. https://doi.org/10.1194/jlr.S091827. PubMed PMID: 30683667; PMCID: PMC6399501 Epub 2019/01/27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Czubowicz K, Jesko H, Wencel P, Lukiw WJ, Strosznajder RP (2019) The role of ceramide and sphingosine-1-phosphate in Alzheimer's disease and other neurodegenerative disorders. Mol Neurobiol 56(8):5436–5455. https://doi.org/10.1007/s12035-018-1448-3. PubMed PMID: 30612333; PMCID: PMC6614129. Epub 2019/01/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dasgupta S, Ray SK (2017) Diverse biological functions of sphingolipids in the CNS: ceramide and sphingosine regulate myelination in developing brain but stimulate demyelination during pathogenesis of multiple sclerosis. J Neurol Psychol 5:1. https://doi.org/10.13188/2332-3469.1000035. PubMed PMID: 30338269; PMCID: PMC6190913. Epub 2018/10/20

    Article  Google Scholar 

  89. Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains—structure and function. Biochim Biophys Acta Biomembr 1788(1):178–183. https://doi.org/10.1016/j.bbamem.2008.07.030

    Article  CAS  Google Scholar 

  91. Tripathi P, Zhu Z, Qin H, Elsherbini A, Roush EA, Crivelli SM, Spassieva SD, Bieberich E (2021) Cross-link/proximity ligation assay for visualization of lipid and protein complexes in lipid rafts. Methods Mol Biol 2187:337–348. https://doi.org/10.1007/978-1-0716-0814-2_20. Epub 2020/08/10

    Article  CAS  PubMed  Google Scholar 

  92. Elsherbini A, Qin H, Zhu Z, Tripathi P, Wang G, Crivelli SM, Spassieva SD, Bieberich E (2021) Extracellular vesicles containing ceramide-rich platforms: "Mobile Raft" isolation and analysis. Methods Mol Biol 2187:87–98. https://doi.org/10.1007/978-1-0716-0814-2_5. Epub 2020/08/10

    Article  CAS  PubMed  Google Scholar 

  93. Tripathi P, Zhu Z, Qin H, Elsherbini A, Crivelli SM, Roush E, Wang G, Spassieva SD, Bieberich E (2020) Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis. J Lipid Res. https://doi.org/10.1194/jlr.RA120001190. Epub 2021/01/01

  94. Jiang X, Zhu Z, Qin H, Tripathi P, Zhong L, Elsherbini A, Karki S, Crivelli SM, Zhi W, Wang G, Spassieva SD, Bieberich E (2019) Visualization of ceramide-associated proteins in ceramide-rich platforms using a cross-linkable ceramide analog and proximity ligation assays with anti-ceramide antibody. Front Cell Dev Biol 7:166. https://doi.org/10.3389/fcell.2019.00166. PubMed PMID: 31475148; PMCID: 6706757

    Article  PubMed  PubMed Central  Google Scholar 

  95. Canals D, Salamone S, Hannun YA (2018) Visualizing bioactive ceramides. Chem Phys Lipids 216:142–151. https://doi.org/10.1016/j.chemphyslip.2018.09.013. PubMed PMID: 30266560; PMCID: 6233321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Burgert A, Schlegel J, Becam J, Doose S, Bieberich E, Schubert-Unkmeir A, Sauer M (2017) Characterization of plasma membrane ceramides by super-resolution microscopy. Angew Chem. https://doi.org/10.1002/anie.201700570

  97. Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584(9):1728–1740. https://doi.org/10.1016/j.febslet.2010.02.026. Epub 2010/02/25. doi: S0014-5793(10)00120-1 [pii] PubMed PMID: 20178791; PMCID: 4440589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains—structure and function. Biochim Biophys Acta 1788(1):178–183. https://doi.org/10.1016/j.bbamem.2008.07.030. Epub 2008/09/13. doi: S0005-2736(08)00242-3 [pii] .PubMed

    Article  CAS  PubMed  Google Scholar 

  99. Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92(2):502–516

    Article  CAS  PubMed  Google Scholar 

  100. Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746(3):284–294. https://doi.org/10.1016/j.bbamcr.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  101. Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22(45):7070–7077. https://doi.org/10.1038/sj.onc.1207146. Epub 2003/10/15. 1207146 [pii]

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89(1):63–72. doi: S0092-8674(00)80183-X [pii]. Epub 1997/04/04

    Article  CAS  PubMed  Google Scholar 

  103. Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273(46):30419–30426

    Article  CAS  PubMed  Google Scholar 

  104. Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275(45):35617–35623

    Article  CAS  PubMed  Google Scholar 

  105. Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, Moscat J (1994) Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem 269(30):19200–19202

    Article  CAS  PubMed  Google Scholar 

  106. Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14(9):1961–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bieberich E, Kawaguchi T, Yu RK (2000) N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275(1):177–181. Epub 2000/01/05

    Article  CAS  PubMed  Google Scholar 

  108. Wang YM, Seibenhener ML, Vandenplas ML, Wooten MW (1999) Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/JNK kinase and cell survival. J Neurosci Res 55(3):293–302

    Article  CAS  PubMed  Google Scholar 

  109. Ruvolo PP (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47(5):383–392

    Article  CAS  PubMed  Google Scholar 

  110. Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280(28):26415–26424

    Article  CAS  PubMed  Google Scholar 

  111. Fox TE, Houck KL, O'Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O, Yun JK, Naides SJ, Kester M (2007) Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282(17):12450–12457. https://doi.org/10.1074/jbc.M700082200. Epub 2007/02/20. doi: M700082200 [pii]

    Article  CAS  PubMed  Google Scholar 

  112. Wang G, Krishnamurthy K, Chiang YW, Dasgupta S, Bieberich E (2008) Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development. J Neurochem 106(2):718–733

    Article  CAS  PubMed  Google Scholar 

  113. Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E (2009) The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 284(21):14469–14475. https://doi.org/10.1074/jbc.M808909200. Epub 2009/03/24. M808909200 [pii] PubMed PMID: 19304661; PMCID: 2682895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mukhopadhyay A, Saddoughi SA, Song P, Sultan I, Ponnusamy S, Senkal CE, Snook CF, Arnold HK, Sears RC, Hannun YA, Ogretmen B (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23(3):751–763. https://doi.org/10.1096/fj.08-120550. PubMed PMID: 19028839; PMCID: PMC2653988 Epub 2008/11/26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268(21):15523–15530. Epub 1993/07/25

    Article  CAS  PubMed  Google Scholar 

  116. Chalfant CE, Kishikawa K, Mumby MC, Kamibayashi C, Bielawska A, Hannun YA (1999) Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem 274(29):20313–20317. Epub 1999/07/10

    Article  CAS  PubMed  Google Scholar 

  117. Chalfant CE, Szulc Z, Roddy P, Bielawska A, Hannun YA (2004) The structural requirements for ceramide activation of serine-threonine protein phosphatases. J Lipid Res 45(3):496–506

    Article  CAS  PubMed  Google Scholar 

  118. Mukhopadhyay A, Saddoughi SA, Song P, Sultan I, Ponnusamy S, Senkal CE, Snook CF, Arnold HK, Sears RC, Hannun YA, Ogretmen B (2008) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751

    Article  PubMed  Google Scholar 

  119. Canals D, Roddy P, Hannun YA (2012) Protein phosphatase 1alpha mediates ceramide-induced ERM protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. J Biol Chem 287(13):10145–10155. https://doi.org/10.1074/jbc.M111.306456. PubMed PMID: 22311981; PMCID: 3323024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Perry DM, Kitatani K, Roddy P, El-Osta M, Hannun YA (2012) Identification and characterization of protein phosphatase 2C activation by ceramide. J Lipid Res 53(8):1513–1521. https://doi.org/10.1194/jlr.M025395. Epub 2012/05/23. doi: jlr.M025395 [pii]. PubMed PMID: 22615346; PMCID: 3540846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J, Krönke M, Schütze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18(19):5252–5263. https://doi.org/10.1093/emboj/18.19.5252. PubMed PMID: 10508159; PMCID: PMC1171596. Epub 1999/10/03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287(25):21384–21395. https://doi.org/10.1074/jbc.M112.340513. PubMed PMID: 22532571; PMCID: PMC3375560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276(48):44396–44404

    Article  CAS  PubMed  Google Scholar 

  124. Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162(3):469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, Bondada V, Rangnekar VM, Mattson MP (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 4(8):957–962

    Article  CAS  PubMed  Google Scholar 

  126. Duan W, Rangnekar VM, Mattson MP (1999) Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J Neurochem 72(6):2312–2322. https://doi.org/10.1046/j.1471-4159.1999.0722312.x. Epub 1999/06/01

    Article  CAS  PubMed  Google Scholar 

  127. Mattson MP, Duan W, Chan SL, Camandola S (1999) Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J Mol Neurosci 13(1–2):17–30. https://doi.org/10.1385/JMN:13:1-2:17JMN:13:1-2:17. [pii]. Epub 2000/02/26

    Article  CAS  PubMed  Google Scholar 

  128. Camandola S, Mattson MP (2000) Pro-apoptotic action of PAR-4 involves inhibition of NF-kappaB activity and suppression of BCL-2 expression. J Neurosci Res 61(2):134–139

    Article  CAS  PubMed  Google Scholar 

  129. Guo Q, Xie J, Chang X, Du H (2001) Prostate apoptosis response-4 enhances secretion of amyloid beta peptide 1-42 in human neuroblastoma IMR-32 cells by a caspase-dependent pathway. J Biol Chem 276(19):16040–16044

    Article  CAS  PubMed  Google Scholar 

  130. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167(4):723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xie J, Guo Q (2005) PAR-4 is involved in regulation of beta-secretase cleavage of the Alzheimer amyloid precursor protein. J Biol Chem 280(14):13824–13832

    Article  CAS  PubMed  Google Scholar 

  132. Wang G, Silva J, Dasgupta S, Bieberich E (2008) Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56(4):449–456

    Article  PubMed  Google Scholar 

  133. Casolari DA, Pereira MC, de Bessa Garcia SA, Nagai MA (2011) Insulin-like growth factor-1 and 17beta-estradiol down-regulate prostate apoptosis response-4 expression in MCF-7 breast cancer cells. Int J Mol Med 28(3):337–342. Epub 2011/05/14. https://doi.org/10.3892/ijmm.2011.691

    Article  CAS  PubMed  Google Scholar 

  134. Bieberich E (2004) Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21(6):315–327

    Article  CAS  PubMed  Google Scholar 

  135. Sardar Sinha M, Ansell-Schultz A, Civitelli L, Hildesjo C, Larsson M, Lannfelt L, Ingelsson M, Hallbeck M (2018) Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 136(1):41–56. https://doi.org/10.1007/s00401-018-1868-1. PubMed PMID: 29934873; PMCID: 6015111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yin Q, Ji X, Lv R, Pei JJ, Du Y, Shen C, Hou X (2020) Targetting exosomes as a new biomarker and therapeutic approach for Alzheimer's disease. Clin Interv Aging 15:195–205. https://doi.org/10.2147/cia.S240400. PubMed PMID: 32103922; PMCID: PMC7025655. Epub 2020/02/28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Song Z, Xu Y, Deng W, Zhang L, Zhu H, Yu P, Qu Y, Zhao W, Han Y, Qin C (2020) Brain derived exosomes are a double-edged sword in Alzheimer's disease. Front Mol Neurosci 13:79. https://doi.org/10.3389/fnmol.2020.00079. PubMed PMID: 32547364; PMCID: PMC7274346. Epub 2020/06/18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Elsherbini A, Kirov AS, Dinkins MB, Wang G, Qin H, Zhu Z, Tripathi P, Crivelli SM, Bieberich E (2020) Association of Abeta with ceramide-enriched astrosomes mediates Abeta neurotoxicity. Acta Neuropathol Commun 8(1):60. https://doi.org/10.1186/s40478-020-00931-8. Epub 2020/04/30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guix FX, Corbett GT, Cha DJ, Mustapic M, Liu W, Mengel D, Chen Z, Aikawa E, Young-Pearse T, Kapogiannis D, Selkoe DJ, Walsh DM (2018) Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int J Mol Sci 19:3. https://doi.org/10.3390/ijms19030663. PubMed PMID: 29495441; PMCID: 5877524

    Article  CAS  Google Scholar 

  140. Yuyama K, Igarashi Y (2017) Exosomes as carriers of Alzheimer's Amyloid-ss. Front Neurosci 11:229. https://doi.org/10.3389/fnins.2017.00229. PubMed PMID: 28487629; PMCID: 5403946

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ngolab J, Trinh I, Rockenstein E, Mante M, Florio J, Trejo M, Masliah D, Adame A, Masliah E, Rissman RA (2017) Brain-derived exosomes from dementia with Lewy bodies propagate alpha-synuclein pathology. Acta Neuropathol Commun 5(1):46. https://doi.org/10.1186/s40478-017-0445-5. PubMed PMID: 28599681; PMCID: 5466770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hartmann A, Muth C, Dabrowski O, Krasemann S, Glatzel M (2017) Exosomes and the prion protein: more than one truth. Front Neurosci 11:194. https://doi.org/10.3389/fnins.2017.00194. PubMed PMID: 28469550; PMCID: 5395619

    Article  PubMed  PubMed Central  Google Scholar 

  143. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326. Epub 2014/10/08

    Article  CAS  PubMed  Google Scholar 

  144. Abe T, Niizuma K, Kanoke A, Saigusa D, Saito R, Uruno A, Fujimura M, Yamamoto M, Tominaga T (2018) Metabolomic analysis of mouse brain after a transient middle cerebral artery occlusion by mass spectrometry imaging. Neurol Med Chir 58(9):384–392. https://doi.org/10.2176/nmc.oa.2018-0054. Epub 2018/08/07. PubMed PMID: 30078821; PMCID: PMC6156127

    Article  Google Scholar 

  145. Barbacci DC, Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, Balaban CD, Schultz JA, Gouty S, Cox BM, Woods AS (2017) Mass spectrometric imaging of ceramide biomarkers tracks therapeutic response in traumatic brain injury. ACS Chem Neurosci 8(10):2266–2274. https://doi.org/10.1021/acschemneuro.7b00189

    Article  CAS  PubMed  Google Scholar 

  146. Brunkhorst R, Friedlaender F, Ferreirós N, Schwalm S, Koch A, Grammatikos G, Toennes S, Foerch C, Pfeilschifter J, Pfeilschifter W (2015) Alterations of the ceramide metabolism in the Peri-infarct cortex are independent of the sphingomyelinase pathway and not influenced by the acid sphingomyelinase inhibitor fluoxetine. Neural Plast 2015:503079. https://doi.org/10.1155/2015/503079. PubMed PMID: 26605090; PMCID: PMC4641186. Epub 2015/11/26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, Balaban CD, Barbacci D, Schultz JA, Gouty S, Cox BM, Woods AS (2016) Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2016.02.004. Epub 2016/02/14. doi: S0165-0270(16)00056-X [pii]

  148. Sajja V, Jablonska A, Haughey N, Bulte JWM, Stevens RD, Long JB, Walczak P, Janowski M (2018) Sphingolipids and microRNA changes in blood following blast traumatic brain injury: an exploratory study. J Neurotrauma 35(2):353–361. https://doi.org/10.1089/neu.2017.5009

    Article  PubMed  Google Scholar 

  149. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247. https://doi.org/10.1126/science.1153124. Epub 2008/03/01

    Article  CAS  PubMed  Google Scholar 

  150. Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC (2010) Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging 31(1):17–24. https://doi.org/10.1016/j.neurobiolaging.2008.03.011. PubMed PMID: 18455839; PMCID: PMC2783210. Epub 2008/05/06

    Article  CAS  PubMed  Google Scholar 

  151. Mielke MM, Bandaru VV, Haughey NJ, Xia J, Fried LP, Yasar S, Albert M, Varma V, Harris G, Schneider EB, Rabins PV, Bandeen-Roche K, Lyketsos CG, Carlson MC (2012) Serum ceramides increase the risk of Alzheimer disease: the Women's Health and Aging Study II. Neurology 79(7):633–641. https://doi.org/10.1212/WNL.0b013e318264e380. PubMed PMID: 22815558; PMCID: PMC3414665. Epub 2012/07/21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mielke MM, Haughey NJ, Bandaru VV, Schech S, Carrick R, Carlson MC, Mori S, Miller MI, Ceritoglu C, Brown T, Albert M, Lyketsos CG (2010) Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss. Alzheimers Dement 6(5):378–385. https://doi.org/10.1016/j.jalz.2010.03.014. PubMed PMID: 20813340; PMCID: PMC2933928. Epub 2010/09/04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kim M, Nevado-Holgado A, Whiley L, Snowden SG, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Thambisetty M, Dobson RJB, Powell JF, Lupton MK, Simmons A, Velayudhan L, Lovestone S, Proitsi P, Legido-Quigley C (2017) Association between plasma ceramides and phosphatidylcholines and hippocampal brain volume in late onset Alzheimer's disease. J Alzheimers Dis 60(3):809–817. https://doi.org/10.3233/jad-160645. PubMed PMID: 27911300; PMCID: PMC5676755. Epub 2016/12/03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278(22):19777–19783. https://doi.org/10.1074/jbc.M300466200. Epub 2003/03/22

    Article  CAS  PubMed  Google Scholar 

  155. Levy M, Castillo SS, Goldkorn T (2006) nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun 344(3):900–905. https://doi.org/10.1016/j.bbrc.2006.04.013. PubMed PMID: 16631623; PMCID: PMC4370275. Epub 2006/04/25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rutkute K, Asmis RH, Nikolova-Karakashian MN (2007) Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res 48(11):2443–2452. https://doi.org/10.1194/jlr.M700227-JLR200. PubMed PMID: 17693623; PMCID: PMC3010975. Epub 2007/08/19

    Article  CAS  PubMed  Google Scholar 

  157. Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125. https://doi.org/10.1016/j.ceb.2014.05.004. Epub 2014/06/25

    Article  CAS  PubMed  Google Scholar 

  158. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579. https://doi.org/10.1038/nri855. Epub 2002/08/03

    Article  CAS  PubMed  Google Scholar 

  159. Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavík J, Machala M, Zimmermann P (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5(1):3477. https://doi.org/10.1038/ncomms4477

    Article  CAS  PubMed  Google Scholar 

  160. Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290(6):3455–3467. https://doi.org/10.1074/jbc.M114.605253. PubMed PMID: 25505180; PMCID: PMC4319014. Epub 2014/12/17

    Article  CAS  PubMed  Google Scholar 

  161. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7(1):42. https://doi.org/10.1186/1750-1326-7-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol 128(5):639–650. https://doi.org/10.1007/s00401-014-1314-y. PubMed PMID: 24997849; PMCID: PMC4201967 Epub 2014/07/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A, Riazifar M, Pham V, Digman MA, Pone EJ, Zhao W (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529. https://doi.org/10.1007/s12195-016-0458-3. PubMed PMID: 28392840; PMCID: PMC5382965. Epub 2017/04/11

    Article  CAS  PubMed  Google Scholar 

  164. Saeedi S, Israel S, Nagy C, Turecki G (2019) The emerging role of exosomes in mental disorders. Transl Psychiatry 9(1):122. https://doi.org/10.1038/s41398-019-0459-9

    Article  PubMed  PubMed Central  Google Scholar 

  165. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2014) Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2014.06.008. Epub 2014/08/19. doi: S1552-5260(14)02469-8 [pii]

  166. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, Schwartz JB, Miller BL (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. FASEB J 30(11):3853–3859. https://doi.org/10.1096/fj.201600756R. PubMed PMID: 27511944; PMCID: 5067254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sun R, Wang H, Shi Y, Sun Z, Jiang H, Zhang J (2020) Changes in the morphology, number, and pathological protein levels of plasma exosomes may help diagnose Alzheimer’s disease. J Alzheimers Dis 73:909–917. https://doi.org/10.3233/JAD-190497

    Article  CAS  PubMed  Google Scholar 

  168. Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, Diehl T, Motamedi V, Osier N, Stern RA, Kapogiannis D (2018) Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj 32(10):1277–1284. https://doi.org/10.1080/02699052.2018.1471738. PubMed PMID: 29913077; PMCID: PMC6129391. Epub 2018/06/19

    Article  PubMed  PubMed Central  Google Scholar 

  169. Perez-Nievas BG, Serrano-Pozo A (2018) Deciphering the astrocyte reaction in Alzheimer’s disease. Front Aging Neurosci 10:114. https://doi.org/10.3389/fnagi.2018.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Palmer AL, Ousman SS (2018) Astrocytes and aging. Front Aging Neurosci 10:337. https://doi.org/10.3389/fnagi.2018.00337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B (2020) Exosomal MicroRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci 21:7. https://doi.org/10.3390/ijms21072312. PubMed PMID: 32230793; PMCID: PMC7177648. Epub 2020/04/02

    Article  CAS  Google Scholar 

  172. Venturini A, Passalacqua M, Pelassa S, Pastorino F, Tedesco M, Cortese K, Gagliani MC, Leo G, Maura G, Guidolin D, Agnati LF, Marcoli M, Cervetto C (2019) Exosomes from astrocyte processes: signaling to neurons. Front Pharmacol 10:1452. https://doi.org/10.3389/fphar.2019.01452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67(13):1815–1829. https://doi.org/10.1002/dneu.20559. Epub 2007/08/19

    Article  CAS  PubMed  Google Scholar 

  174. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006. PubMed PMID: 17021169; PMCID: PMC6674618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jana A, Pahan K (2010) Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer's disease. J Neurosci 30(38):12676–12689. https://doi.org/10.1523/JNEUROSCI.1243-10.2010. PubMed PMID: 20861373; PMCID: PMC3020912. Epub 2010/09/24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Elsherbini A, Qin H, Zhu Z, Tripathi P, Crivelli SM, Bieberich E (2020) In vivo evidence of exosome-mediated Abeta neurotoxicity. Acta Neuropathol Commun 8(1):100. https://doi.org/10.1186/s40478-020-00981-y. PubMed PMID: 32631455; PMCID: PMC7339450. Epub 2020/07/08

    Article  PubMed  PubMed Central  Google Scholar 

  177. Xie J, Chang X, Zhang X, Guo Q (2001) Aberrant induction of par-4 is involved in apoptosis of hippocampal neurons in presenilin-1 M146V mutant knock-in mice. Brain Res 915(1):1–10. https://doi.org/10.1016/s0006-8993(01)02803-7. Epub 2001/10/02

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grants R01AG034389 and R01AG064234, and the VA merit award I01BX003643. We are grateful to institutional support by the Department of Physiology (Chair Dr. Alan Daugherty) at the University of Kentucky College of Medicine, Lexington, KY 40536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Bieberich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elsherbini, A., Bieberich, E. (2021). Role of PAR-4 in Ceramide-Inducible Effects in Neurodegeneration. In: Rangnekar, V.M. (eds) Tumor Suppressor Par-4. Springer, Cham. https://doi.org/10.1007/978-3-030-80558-6_13

Download citation

Publish with us

Policies and ethics