Skip to main content

Advertisement

Log in

Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids

  • THE ROLE OF SPHINGOLIPIDS AND LIPID RAFTS IN DETERMINING CELL FATE
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis and autophagy are two evolutionary conserved processes that exert a critical role in the maintenance of tissue homeostasis. While apoptosis is a tightly regulated cell program implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in the lysosomal degradation and recycling of proteins and organelles, and is thereby considered an important cytoprotection mechanism. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including lipid rafts and caveolae, and contribute to a number of cellular functions such as cell proliferation, apoptosis and, as suggested more recently, autophagy. For instance, SLs are hypothesized to be involved in several intracellular processes, including organelle membrane scrambling, whilst at the plasma membrane lipid rafts, acting as catalytic domains, strongly contribute to the ignition of critical signaling pathways determining cell fate. In particular, by targeting several shared regulators, ceramide, sphingosine-1-phosphate, dihydroceramide, sphingomyelin and gangliosides seem able to differentially regulate the autophagic pathway and/or contribute to the autophagosome formation. This review illustrates recent studies on this matter, particularly lipid rafts, briefly underscoring the possible implication of SLs and their alterations in the autophagy disturbances and in the pathogenesis of some human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMP:

Adenosine monophosphate

AMPK:

AMP kinase

ATG:

Autophagy-related gene

ATP:

Adenosine triphosphate

Bax:

BCL2-associated X protein

Bcl-2:

B cell lymphoma 2

BH3:

Bcl-2 homology domain 3

Bnip3:

Bcl-2/adenovirus E1B nineteen kilodalton interacting protein 3

CDases:

Ceramidases

Cer:

Ceramide

CerS:

Ceramide synthase

CERT:

Cer, transfer protein

CMA:

Chaperone-mediated autophagy

DES:

Dihydroceramide desaturase

dhCer:

Dihydroceramide

dhCerS:

Dihydroceramide synthase

DR:

Death receptor

DRAM:

Damage-regulated autophagy modulator

EGFR:

Epidermal growth factor receptor

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FAPP2:

Four-phosphate adaptor protein 2

FLIP:

FLICE inhibitor protein

GCase:

Glucocerebrosidase

GCS:

Glucosylceramide synthase

GD:

Gaucher disease

IKBKB:

IκB kinase β

IKK:

Inhibitor of kappa B kinase

IL-1:

Interleukin-1

JNK:

Jun N-terminal kinase

LAMP1:

Lysosomal-associated membrane protein 1

LC3:

Microtubule-associated protein light chain 3

LDL:

Low density lipoprotein

MAMs:

Mitochondria-associated membranes

MAPK:

Mitogen activated protein kinase

MMP:

Mitochondrial membrane permeability

Mtor:

Mechanistic target of rapamycin

NF-kB:

Nuclear factor kappa B

NPC:

Niemann–Pick disease type C

PE:

Phosphatidyl-ethanolamine

PI3K/AKT:

Phosphatidylinositol-3-kinases/AKT

PtdIns(3)P:

Phosphatidylinositol 3-phospate

ROS:

Reactive oxygen species

S1P:

Sphingosine-1-phosphate

S1P lyase:

Sphingosine-1-phosphate lyase

Sap C:

Saposin C

SLs:

Sphingolipids

SM:

Sphingomyelin

SMases:

Sphingomyelinases

SMS:

Sphingomyelin synthase

SphKs:

Sphingosine kinases

SPPs:

Sphingosine-1-phosphate phosphatases

THC:

Cannabinoid tetrahydrocannabinol

TNF-α:

Tumor necrosis factor-α

TRAIL:

Tumor necrosis factor-alpha-related apoptosis-inducing ligand

ULK1:

Unc-51-like kinase 1

UV:

Ultraviolet

UVRAG:

Activating molecule in Beclin-1 regulated autophagy

VEGFR:

Vascular endothelial growth factor receptor

Vps:

Vacuolar protein sorting

References

  1. Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163

    CAS  PubMed  Google Scholar 

  2. Galluzzi L, Bravo-San Pedro JM, Vitale I et al (2014) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. doi:10.1038/cdd.2014.137

    Google Scholar 

  3. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    CAS  PubMed  Google Scholar 

  4. East DA, Campanella M (2013) Ca2+ in quality control: an unresolved riddle critical to autophagy and mitophagy. Autophagy 9:1710–1719

    CAS  PubMed  Google Scholar 

  5. Su M, Mei Y, Sinha S (2013) Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol 2013:102735

    PubMed Central  PubMed  Google Scholar 

  6. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Hamasaki M, Yoshimori T (2010) Where do they come from? Insights into autophagosome formation. FEBS Lett 584:1296–1301

    CAS  PubMed  Google Scholar 

  10. Ghavami S, Shojaei S, Yeganeh B et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    CAS  PubMed  Google Scholar 

  11. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437

    CAS  PubMed  Google Scholar 

  13. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393

    CAS  PubMed  Google Scholar 

  15. Ravikumar B, Moreau K, Rubinsztein DC (2010) Plasma membrane helps autophagosomes grow. Autophagy 6:1184–1186

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198:219–233

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Madeo F, Pietrocola F, Eisenberg T, Kroemer G (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13:727–740

    CAS  PubMed  Google Scholar 

  21. Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52:381–400

    CAS  PubMed  Google Scholar 

  22. Emanuele E (2014) Can trehalose prevent neurodegeneration? Insights from experimental studies. Curr Drug Targets 15:551–557

    CAS  PubMed  Google Scholar 

  23. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41:1103–1130

    CAS  PubMed  Google Scholar 

  24. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    CAS  PubMed  Google Scholar 

  25. Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    CAS  PubMed  Google Scholar 

  28. El-Khattouti A, Selimovic D, Haikel Y, Hassan M (2013) Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 6:37–55

    PubMed Central  PubMed  Google Scholar 

  29. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Delgado ME, Dyck L, Laussmann MA, Rehm M (2014) Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways. Cell Death Dis 5:e1011

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P (2014) The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal 26:549–555

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Young MM, Kester M, Wang HG (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54:5–19

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Li Y, Li S, Qin X, Hou W, Dong H, Yao L, Xiong L (2014) The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5:e1245

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Taniguchi M, Okazaki T (2014) The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders. Biochim Biophys Acta 1841:692–703

    CAS  PubMed  Google Scholar 

  36. Li Z, Fan Y, Liu J et al (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32:1577–1584

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Hailemariam TK, Huan C, Liu J et al (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol 28:1519–1526

    CAS  PubMed  Google Scholar 

  38. Yano M, Watanabe K, Yamamoto T et al (2011) Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice. J Biol Chem 286:3992–4002

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Imgrund S, Hartmann D, Farwanah H et al (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284:33549–33560

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ebel P, Vom Dorp K, Petrasch-Parwez E et al (2013) Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 288:21433–21447

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R

    CAS  PubMed  Google Scholar 

  42. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    PubMed Central  PubMed  Google Scholar 

  43. Marconi M, Ascione B, Ciarlo L et al (2013) Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death Dis 4:e863

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    CAS  PubMed  Google Scholar 

  45. Sorice M, Mattei V, Matarrese P et al (2012) Dynamics of mitochondrial raft-like microdomains in cell life and death. Commun Integr Biol 5:217–219

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Krengel U, Bousquet PA (2014) Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front Immunol 5:325

    PubMed Central  PubMed  Google Scholar 

  47. Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8:159–167

    CAS  PubMed  Google Scholar 

  48. Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 275:38640–38644

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Scorrano L, Petronilli V, Di Lisa F, Bernardi P (1999) Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J Biol Chem 274:22581–22585

    CAS  PubMed  Google Scholar 

  50. Mattei V, Matarrese P, Garofalo T et al (2011) Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 22:4842–4853

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Heinrich M, Wickel M, Schneider-Brachert W et al (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275:35617–35623

    CAS  PubMed  Google Scholar 

  53. Malorni W, Giammarioli AM, Garofalo T, Sorice M (2007) Dynamics of lipid raft components during lymphocyte apoptosis: the paradigmatic role of GD3. Apoptosis 12:941–949

    CAS  PubMed  Google Scholar 

  54. Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R, Fabriàs G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett 282:238–243

    CAS  PubMed  Google Scholar 

  55. Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G (2012) Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 130:685–693

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Devlin CM, Lahm T, Hubbard WC et al (2011) Dihydroceramide-based response to hypoxia. J Biol Chem 286:38069–38078

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Jiang W, Ogretmen B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841:783–792

    CAS  PubMed  Google Scholar 

  58. Zhou H, Summers SA, Birnbaum MJ, Pittman RN (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 273:16568–16575

    CAS  PubMed  Google Scholar 

  59. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279:18384–18391

    CAS  PubMed  Google Scholar 

  60. Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29:2594–2608

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P (2009) Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 284:2719–2728

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Salazar M, Carracedo A, Salanueva IJ et al (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Sims K, Haynes CA, Kelly S et al (2010) Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 285:38568–38579

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Yamagata M, Obara K, Kihara A (2011) Sphingolipid synthesis is involved in autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 410:786–791

    CAS  PubMed  Google Scholar 

  65. Peralta ER, Edinger AL (2009) Ceramide-induced starvation triggers homeostatic autophagy. Autophagy 5:407–409

    CAS  PubMed  Google Scholar 

  66. Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 105:17402–17407

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Li DD, Wang LL, Deng R et al (2009) The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 28:886–898

    CAS  PubMed  Google Scholar 

  68. Sun T, Li D, Wang L, Xia L, Ma J, Guan Z, Feng G, Zhu X (2011) c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J Transl Med 9:161

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293

    CAS  PubMed  Google Scholar 

  71. Sentelle RD, Senkal CE, Jiang W et al (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8:831–838

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Lanterman MM, Saba JD (1998) Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants. Biochem J 332:525–531

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J, Codogno P (2006) Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 281:8518–8527

    CAS  PubMed  Google Scholar 

  74. Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T, Cuvillier O (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20:95–102

    CAS  PubMed  Google Scholar 

  75. Huang YL, Chang CL, Tang CH, Lin YC, Ju TK, Huang WP, Lee H (2014) Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. Cell Signal 26:611–618

    CAS  PubMed  Google Scholar 

  76. Chang CL, Ho MC, Lee PH, Hsu CY, Huang WP, Lee H (2009) S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. Am J Physiol Cell Physiol 297:C451–C458

    CAS  PubMed  Google Scholar 

  77. Hwang J, Lee HJ, Lee WH, Suk K (2010) NF-κB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes. J Neuroimmunol 226:66–72

    CAS  PubMed  Google Scholar 

  78. Matarrese P, Garofalo T, Manganelli V et al (2014) Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10:750–765

    CAS  PubMed  Google Scholar 

  79. Ciarlo L, Manganelli V, Garofalo T, Matarrese P, Tinari A, Misasi R, Malorni W, Sorice M (2010) Association of fission proteins with mitochondrial raft-like domains. Cell Death Differ 17:1047–1058

    CAS  PubMed  Google Scholar 

  80. Ciarlo L, Manganelli V, Matarrese P et al (2012) Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington’s disease. J Lipid Res 53:2057–2068

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Brandstaetter H, Kishi-Itakura C, Tumbarello DA, Manstein DJ, Buss F (2014) Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy 10(12):2310–2323

    PubMed  Google Scholar 

  82. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    CAS  PubMed  Google Scholar 

  83. Huang LS, Natarajan V (2015) Sphingolipids in pulmonary fibrosis. Adv Biol Regul 57:55–63

    CAS  PubMed  Google Scholar 

  84. Scarpa MC, Baraldo S, Marian E, Turato G, Calabrese F, Saetta M, Maestrelli P (2013) Ceramide expression and cell homeostasis in chronic obstructive pulmonary disease. Respiration 85:342–349

    CAS  PubMed  Google Scholar 

  85. Yang DS, Stavrides P, Saito M et al (2014) Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. Brain 137:3300–3318

    PubMed  Google Scholar 

  86. Lee JK, Jin HK, Park MH et al (2014) Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. J Exp Med 211:1551–1570

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Cervia D, Perrotta C, Moscheni C, De Palma C, Clementi E (2013) Nitric oxide and sphingolipids control apoptosis and autophagy with a significant impact on Alzheimer’s disease. J Biol Regul Homeost Agents 27:11–22

    CAS  PubMed  Google Scholar 

  88. Kang S, Heo TH, Kim SJ (2014) Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells. Gene 539:181–185

    CAS  PubMed  Google Scholar 

  89. Gabandé-Rodríguez E, Boya P, Labrador V, Dotti CG, Ledesma MD (2014) High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 21:864–875

    PubMed  Google Scholar 

  90. Gallala HD, Breiden B, Sandhoff K (2011) Regulation of the NPC2 protein-mediated cholesterol trafficking by membrane lipids. J Neurochem 116:702–707

    CAS  PubMed  Google Scholar 

  91. Vaccaro AM, Motta M, Tatti M et al (2010) Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation, saposin C deficiency, but normal prosaposin processing and sorting. Hum Mol Genet 19:2987–2997

    CAS  PubMed  Google Scholar 

  92. Chévrier M, Brakch N, Céline L et al (2010) Autophagosome maturation is impaired in Fabry disease. Autophagy 6:589–599

    PubMed  Google Scholar 

  93. Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146

    CAS  PubMed  Google Scholar 

  95. Don AS, Lim XY, Couttas TA (2014) Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 4:315–353

    PubMed Central  PubMed  Google Scholar 

  96. Hryniewicz-Jankowska A, Augoff K, Biernatowska A, Podkalicka J, Sikorski AF (2014) Membrane rafts as a novel target in cancer therapy. Biochim Biophys Acta 1845:155–165

    CAS  PubMed  Google Scholar 

  97. Huang X, Withers BR, Dickson RC (2014) Sphingolipids and lifespan regulation. Biochim Biophys Acta 1841:657–664

    CAS  PubMed  Google Scholar 

  98. Molano A, Huang Z, Marko MG et al (2012) Age-dependent changes in the sphingolipid composition of mouse CD4 + T cell membranes and immune synapses implicate glucosylceramides in age-related T cell dysfunction. PLoS ONE 7:e47650

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Rivas DA, Morris EP, Haran PH et al (2012) Increased ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J Appl Physiol 113:1727–1736

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Raschetti R, Maggini M, Popoli P et al (1995) Gangliosides and Guillain-Barré syndrome. J Clin Epidemiol 48:1399–1405

    CAS  PubMed  Google Scholar 

  101. Sorice M, Matarrese P, Tinari A et al (2009) Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J 23:3298–3308

    CAS  PubMed  Google Scholar 

  102. Patwardhan GA, Liu YY (2011) Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 50:104–114

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 1785:182–206

    CAS  PubMed  Google Scholar 

  104. Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell 99:129–140

    CAS  PubMed  Google Scholar 

  105. Pacheco CD, Elrick MJ, Lieberman AP (2009) Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet 18:956–965

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Karten B, Peake KB, Vance JE (2009) Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta 1791:659–670

    CAS  PubMed  Google Scholar 

  107. Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A, Liang X, Bi X (2007) Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 -/- mouse brain. Am J Pathol 171:962–975

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Ishibashi S, Yamazaki T, Okamoto K (2009) Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells. J Clin Neurosci 16:954–959

    CAS  PubMed  Google Scholar 

  109. Grabowski GA (2012) Gaucher disease and other storage disorders. Hematology Am Soc Hematol Educ Program 2012:13–18

    PubMed  Google Scholar 

  110. Mazzulli JR, Xu YH, Sun Y et al (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, Cowart LA (2012) Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 122:3919–3930

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Schilling JD, Machkovech HM, He L, Sidhu R, Fujiwara H, Weber K, Ory DS, Schaffer JE (2013) Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J Biol Chem 288:2923–2932

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Partially supported by Peretti Foundation, Arcobaleno Onlus and AIRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Matarrese or Walter Malorni.

Additional information

Chiara Tommasino and Matteo Marconi to be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tommasino, C., Marconi, M., Ciarlo, L. et al. Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids. Apoptosis 20, 645–657 (2015). https://doi.org/10.1007/s10495-015-1102-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1102-8

Keywords

Navigation