Skip to main content

Acid Sphingomyelinase

  • Chapter
  • First Online:
Sphingolipids: Basic Science and Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

The enzyme acid sphingomyelinase catalyzes the hydrolysis of sphingomyelin to ceramide. The importance of the enzyme for cell functions was first recognized in Niemann–Pick disease type A and B, the genetic disorders with a massive accumulation of sphingomyelin in many organs. Studies in the last years demonstrated that the enzyme also has an important role in cell signalling. Thus, the acid sphingomyelinase has a central function for the re-organization of molecules within the cell upon stimulation and thereby for the response of cells to stress and the induction of cell death but also proliferation and differentiation. Here, we discuss the current state of the art of the structure, regulation, and function of the acid sphingomyelinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Shakor AB, Kwiatkowska K, Sobota A (2004) Cell surface ceramide generation precedes and controls FcgammaRII clustering and phosphorylation in rafts. J Biol Chem 279:36778–36787

    Article  PubMed  CAS  Google Scholar 

  • Avota E, Gulbins E, Schneider-Schaulies S (2011) Ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 7:e1001290

    Article  PubMed  CAS  Google Scholar 

  • Bao JX, Xia M, Poklis JL, Han WQ, Brimson C, Li PL (2010) Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol 298:H992–H1002

    Article  PubMed  CAS  Google Scholar 

  • Bock J, Gulbins E (2003) The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett 534:169–174

    Article  PubMed  CAS  Google Scholar 

  • Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc Natl Acad Sci U S A 55:366–369

    Article  PubMed  CAS  Google Scholar 

  • Brenner B, Ferlinz K, GrassmĂ© H, Weller M, Koppenhoefer U, Dichgans J, Sandhoff K, Lang F, Gulbins E (1998) Fas/CD95/Apo-I activates the acidic sphingomyelinase via caspases. Cell Death Differ 5:29–37

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  • Cremesti A, Paris F, GrassmĂ© H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables fas to cap and kill. J Biol Chem 276:23954–23961

    Article  PubMed  CAS  Google Scholar 

  • da Veiga Pereira L, Desnick RJ, Adler DA, Disteche CM, Schuchman EH (1991) Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1-p15.4. Genomics 9:229–234

    Article  PubMed  Google Scholar 

  • Dobrowsky RT, Hannun YA (1993) Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A. Adv Lipid Res 25:91–104

    PubMed  CAS  Google Scholar 

  • Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625

    Article  PubMed  CAS  Google Scholar 

  • Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E (2007) Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 12:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Edelmann B, Bertsch U, Tchikov V, Winoto-Morbach S, Perrotta C, Jakob M, Adam-Klages S, Kabelitz D, Schutze S (2011) Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBO J 30:379–394

    Article  PubMed  CAS  Google Scholar 

  • Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, GrassmĂ© H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439

    Article  PubMed  CAS  Google Scholar 

  • Ferlinz K, Hurwitz R, Vielhaber G, Suzuki K, Sandhoff K (1994) Occurrence of two molecular forms of human acid sphingomyelinase. Biochem J 301(Pt 3):855–862

    PubMed  CAS  Google Scholar 

  • Fowler S (1969) Lysosomal localization of sphingomyelinase in rat liver. Biochim Biophys Acta 191:481–484

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Gassert E, Avota E, Harms H, Krohne G, Gulbins E, Schneider-Schaulies S (2009) Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5:e1000623

    Article  PubMed  Google Scholar 

  • Göggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, SchĂĽtze S, Gulbins E, Uhlig S (2004) PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10:155–160

    Article  PubMed  Google Scholar 

  • GrassmĂ© H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91:605–615

    Article  PubMed  Google Scholar 

  • GrassmĂ© H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001a) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  Google Scholar 

  • GrassmĂ© H, Schwarz H, Gulbins E (2001b) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284:1016–1030

    Article  PubMed  Google Scholar 

  • GrassmĂ© H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307

    PubMed  Google Scholar 

  • GrassmĂ© H, Jendrossek V, Riehle A, von KĂĽrthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003a) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  • GrassmĂ© H, Cremesti A, Kolesnick R, Gulbins E (2003b) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470

    Article  PubMed  Google Scholar 

  • GrassmĂ© H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262

    Article  PubMed  Google Scholar 

  • Gulbins E, Szabo I, Baltzer K, Lang F (1997) Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci U S A 94:7661–7666

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2000) Measurement of sphingomyelinase activity. Methods Enzymol 322:382–388

    Article  PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    Article  PubMed  CAS  Google Scholar 

  • Han WQ, Xia M, Xu M, Boini KM, Ritter JK, Li NJ, Li PL (2012) Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells. J Cell Sci 125:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  PubMed  CAS  Google Scholar 

  • Hauck CR, GrassmĂ© H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478:260–266

    Article  PubMed  CAS  Google Scholar 

  • Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J, Krönke M, SchĂĽtze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz R, Ferlinz K, Vielhaber G, Moczall H, Sandhoff K (1994) Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J Biol Chem 269:5440–5445

    PubMed  CAS  Google Scholar 

  • Huwiler A, Fabbro D, Pfeilschifter J (1998) Selective ceramide binding to protein kinase C-alpha and -delta isoenzymes in renal mesangial cells. Biochemistry 37:14556–14562

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Johansen B, Skarstad A, Pfeilschifter J (2001) Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J 15:7–9

    PubMed  CAS  Google Scholar 

  • Jia SJ, Jin S, Zhang F, Yi F, Dewey WL, Li PL (2008) Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes. Am J Physiol Heart Circ Physiol 295:H1743–H1752

    Article  PubMed  CAS  Google Scholar 

  • Jenkins RW, Idkowiak-Baldys J, Simbari F, Canals D, Roddy P, Riner CD, Clarke CJ, Hannun YA (2011) A novel mechanism of lysosomal acid sphingomyelinase maturation: requirement for carboxyl-terminal proteolytic processing. J Biol Chem 286:3777–3788

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Yi F, Zhang F, Poklis JL, Li PL (2008a) Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Arterioscler Thromb Vasc Biol 28:2056–2062

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Zhang Y, Yi F, Li PL (2008b) Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol 28:485–490

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300

    Article  PubMed  CAS  Google Scholar 

  • Kolzer M, Arenz C, Ferlinz K, Werth N, Schulze H, Klingenstein R, Sandhoff K (2003) Phosphatidylinositol-3,5-Bisphosphate is a potent and selective inhibitor of acid sphingomyelinase. Biol Chem 384:1293–1298

    Article  PubMed  Google Scholar 

  • Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64:3593–3598

    Article  PubMed  CAS  Google Scholar 

  • Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Häussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    Article  PubMed  CAS  Google Scholar 

  • Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci U S A 96:13795–13800

    Article  PubMed  CAS  Google Scholar 

  • MĂĽller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14:1961–1969

    PubMed  Google Scholar 

  • Newrzella D, Stoffel W (1996) Functional analysis of the glycosylation of murine acid sphingomyelinase. J Biol Chem 271:32089–32095

    Article  PubMed  CAS  Google Scholar 

  • Niemann A (1914) Ein unbekanntes Krankheitsbild. Jahrb Kinderheilkd 79:1–10

    Google Scholar 

  • Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  PubMed  CAS  Google Scholar 

  • Perrotta C, Bizzozero L, Cazzato D, Morlacchi S, Assi E, Simbari F, Zhang Y, Gulbins E, Bassi MT, Rosa P, Clementi E (2010) Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J Biol Chem 285:40240–40251

    Article  PubMed  CAS  Google Scholar 

  • Preuss S, Omam FD, Scheiermann J, Stadelmann S, Winoto-Morbach S, von Bismarck P, Adam-Klages S, Knerlich-Lukoschus F, Lex D, Wesch D, Held-Feindt J, Uhlig S, SchĂĽtze S, Krause MF (2012) Topical application of phosphatidyl-inositol-3,5-bisphosphate for acute lung injury in neonatal swine. J Cell Mol Med 16:2813–2826

    Article  PubMed  CAS  Google Scholar 

  • Qiu H, Edmunds T, Baker-Malcolm J, Karey KP, Estes S, Schwarz C, Hughes H, Van Patten SM (2003) Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J Biol Chem 278:32744–32752

    Article  PubMed  CAS  Google Scholar 

  • Quintern LE, Schuchman EH, Levran O, Suchi M, Ferlinz K, Reinke H, Sandhoff K, Desnick RJ (1989) Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. EMBO J 8:2469–2473

    PubMed  CAS  Google Scholar 

  • Rhein C, Tripal P, Seebahn A, Konrad A, Kramer M, Nagel C, Kemper J, Bode J, MĂĽhle C, Gulbins E, Reichel M, Becker CM, Kornhuber J (2012) Functional implications of novel human acid sphingomyelinase splice variants. PLoS One 7:e35467

    Article  PubMed  CAS  Google Scholar 

  • Roth AG, Redmer S, Arenz C (2009) Potent inhibition of acid sphingomyelinase by phosphoinositide analogues. Chembiochem 10:2367–2374

    Article  PubMed  CAS  Google Scholar 

  • Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280:26425–26434

    Article  PubMed  CAS  Google Scholar 

  • Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, Haimovitz-Friedman A, Kim K, Qian M, Cardo-Vila M, Fuks Z, Pasqualini R, Arap W, Kolesnick R (2012) Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest 122:1786–1790

    Article  PubMed  CAS  Google Scholar 

  • Samapati R, Yang Y, Yin J, Stoerger C, Arenz C, Dietrich A, Gudermann T, Adam D, Wu S, Freichel M, Flockerzi V, Uhlig S, Kuebler WM (2012) Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am J Respir Crit Care Med 185:160–170

    Article  PubMed  CAS  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199

    Article  PubMed  CAS  Google Scholar 

  • Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I (1998a) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273:2738–2746

    Article  PubMed  CAS  Google Scholar 

  • Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I (1998b) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273:18250–18259

    Article  PubMed  CAS  Google Scholar 

  • Schuchman EH, Suchi M, Takahashi T, Sandhoff K, Desnick RJ (1991) Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem 266:8531–8539

    PubMed  CAS  Google Scholar 

  • Schuchman EH, Levran O, Pereira LV, Desnick RJ (1992) Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 12:197–205

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 275:38640–38644

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Elkind MM (1970) Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol Relat Stud Phys Chem Med 17:261–267

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Xia M, Li XX, Han WQ, Boini KM, Zhang F, Zhang Y, Ritter JK, Li PL (2012) Requirement of translocated lysosomal V1 H(+)-ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary endothelial cells. Mol Biol Cell 23:1546–1557

    Article  PubMed  CAS  Google Scholar 

  • Zeidan YH, Hannun YA (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J Biol Chem 282:11549–11561

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Li PL (2010) Membrane raft redox signalosomes in endothelial cells. Free Radic Res 44:831–842

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89:63–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in this review was supported by the DFG-SPP1267 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Gulbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henry, B., Ziobro, R., Becker, K.A., Kolesnick, R., Gulbins, E. (2013). Acid Sphingomyelinase. In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_4

Download citation

Publish with us

Policies and ethics