Skip to main content

Monoclonal Antibody Glycoengineering for Biopharmaceutical Quality Assurance

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

  • 1905 Accesses

Abstract

Therapeutic monoclonal antibodies (mAbs) are glycoproteins that contain a pair of N-glycosylation sites on their constant fragment and are widely prescribed for the treatment of several types of cancer and autoimmune disorders. Glycosylation is considered a critical quality attribute of mAbs because it is essential to the safety, pharmacokinetics, and pharmacodynamics of these life-saving biopharmaceuticals. High degrees of glycosylation variability have been observed across different production campaigns of the same mAb product and arise from the numerous biological reactions involved in the glycosylation process, their sensitivity to cell culture conditions, and the genetic background of the production host. Due to its influence in defining the quality of mAb products, substantial effort has been made to develop strategies that minimise mAb glycosylation heterogeneity. This chapter recapitulates the progress made towards controlling mAb glycosylation within the context of biopharmaceutical quality assurance. The chapter presents a critical review of the vast number of (i) cellular, (ii) metabolic, and (iii) in vitro glycoengineering strategies that have been developed to enhance the quality of therapeutic mAbs. We conclude by outlining how these strategies can be combined to achieve the complex task of manufacturing homogenous mAb glycoforms that elicit optimal therapeutic outcomes in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higel F, Seidl A, Sörgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 100:94–100. https://doi.org/10.1016/j.ejpb.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  2. Planinc A, Dejaegher B, Vander Heyden Y, Viaene J, Van Praet S, Rappez F, Van Antwerpen P, Delporte C (2017) Batch-to-batch N-glycosylation study of infliximab, trastuzumab and bevacizumab, and stability study of bevacizumab. Eur J Hosp Pharm-S P 24(5):286–292. https://doi.org/10.1136/ejhpharm-2016-001022

    Article  Google Scholar 

  3. Raju TS, Jordan RE (2012) Galactosylation variations in marketed therapeutic antibodies. MAbs 4(3):385–391. https://doi.org/10.4161/mabs.19868

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim S-M, Chang K-H, Oh DJ (2018) Effect of environmental parameters on glycosylation of recombinant immunoglobulin G produced from recombinant CHO cells. Biotechnol Bioprocess Eng 23(4):456–464. https://doi.org/10.1007/s12257-018-0109-8

    Article  CAS  Google Scholar 

  5. Jiang R, Chen H, Xu S (2018) pH excursions impact CHO cell culture performance and antibody N-linked glycosylation. Bioprocess Biosyst Eng 41(12):1731–1741. https://doi.org/10.1007/s00449-018-1996-y

    Article  CAS  PubMed  Google Scholar 

  6. Brunner M, Fricke J, Kroll P, Herwig C (2017) Investigation of the interactions of critical scale-up parameters (pH, pO(2) and pCO(2)) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng 40(2):251–263. https://doi.org/10.1007/s00449-016-1693-7

    Article  CAS  PubMed  Google Scholar 

  7. Ivarsson M, Villiger TK, Morbidelli M, Soos M (2014) Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. J Biotechnol 188:88–96. https://doi.org/10.1016/j.jbiotec.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  8. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8(3):226–234. https://doi.org/10.1038/nrd2804

    Article  CAS  PubMed  Google Scholar 

  9. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8(14):2858–2871. https://doi.org/10.1002/pmic.200700968

    Article  CAS  PubMed  Google Scholar 

  10. Nakano M, Higo D, Arai E, Nakagawa T, Kakehi K, Taniguchi N, Kondo A (2009) Capillary electrophoresis-electrospray ionization mass spectrometry for rapid and sensitive N-glycan analysis of glycoproteins as 9-fluorenylmethyl derivatives. Glycobiology 19(2):135–143. https://doi.org/10.1093/glycob/cwn115

    Article  CAS  PubMed  Google Scholar 

  11. Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760(4):669–677. https://doi.org/10.1016/j.bbagen.2005.11.021

    Article  CAS  PubMed  Google Scholar 

  12. Magdelaine-Beuzelin C, Kaas Q, Wehbi V, Ohresser M, Jefferis R, Lefranc MP, Watier H (2007) Structure-function relationships of the variable domains of monoclonal antibodies approved for cancer treatment. Crit Rev Oncol Hematol 64(3):210–225. https://doi.org/10.1016/j.critrevonc.2007.04.011

    Article  PubMed  Google Scholar 

  13. Hafkenscheid L, Bondt A, Scherer HU, Huizinga TW, Wuhrer M, Toes RE, Rombouts Y (2017) Structural analysis of variable domain glycosylation of anti-Citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly Sialylated Glycans. Mol Cell Proteomics 16(2):278–287. https://doi.org/10.1074/mcp.M116.062919

    Article  CAS  PubMed  Google Scholar 

  14. Bondt A, Rombouts Y, Selman MH, Hensbergen PJ, Reiding KR, Hazes JM, Dolhain RJ, Wuhrer M (2014) Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics 13(11):3029–3039. https://doi.org/10.1074/mcp.M114.039537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Janin-Bussat MC, Tonini L, Huillet C, Colas O, Klinguer-Hamour C, Corvaia N, Beck A (2013) Cetuximab Fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol Biol 988:93–113. https://doi.org/10.1007/978-1-62703-327-5_7

    Article  CAS  PubMed  Google Scholar 

  16. van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y (2016) The emerging importance of IgG fab glycosylation in immunity. J Immunol 196(4):1435–1441. https://doi.org/10.4049/jimmunol.1502136

    Article  CAS  PubMed  Google Scholar 

  17. Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of Glycobiology, Cold Spring Harbor (NY), pp 99–111. https://doi.org/10.1101/glycobiology.3e.009

  18. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664. https://doi.org/10.1146/annurev.biochem.54.1.631

    Article  CAS  PubMed  Google Scholar 

  19. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191. https://doi.org/10.1038/nrm1052

    Article  CAS  PubMed  Google Scholar 

  20. Murrell MF, Yarema KJ, Levchenko A (2004) The systems biology of glycosylation. Chembiochem 5(10):1334–1347. https://doi.org/10.1002/cbic.200400143

    Article  CAS  PubMed  Google Scholar 

  21. Burleigh SC, van de Laar T, Stroop CJM, van Grunsven WMJ, O'Donoghue N, Rudd PM, Davey GP (2011) Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells. BMC Biotechnol 11. https://doi.org/10.1186/1472-6750-11-95

  22. Hadley B, Maggioni A, Ashikov A, Day CJ, Haselhorst T, Tiralongo J (2014) Structure and function of nucleotide sugar transporters: current progress. Comput Struct Biotechnol J 10(16):23–32. https://doi.org/10.1016/j.csbj.2014.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fan Y, Jimenez Del Val I, Muller C, Lund AM, Sen JW, Rasmussen SK, Kontoravdi C, Baycin-Hizal D, Betenbaugh MJ, Weilguny D, Andersen MR (2015) A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture. Biotechnol Bioeng 112(10):2172–2184. https://doi.org/10.1002/bit.25620

    Article  CAS  PubMed  Google Scholar 

  24. del Val IJ, Fan Y, Weilguny D (2016) Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modelling framework. Biotechnol J 11(5):610–623. https://doi.org/10.1002/biot.201400663

    Article  CAS  Google Scholar 

  25. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  CAS  Google Scholar 

  26. del Val IJ, Kontoravdi C, Nagy JM (2010) Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns. Biotechnol Progr 26(6):1505–1527. https://doi.org/10.1002/Btpr.470

    Article  Google Scholar 

  27. Jedrzejewski PM, Del Val IJ, Polizzi KM, Kontoravdi C (2013) Applying quality by design to glycoprotein therapeutics: experimental and computational efforts of process control. Pharm BioProc 1(1):51–69

    Article  Google Scholar 

  28. Springer SA, Gagneux P (2013) Glycan evolution in response to collaboration, conflict, and constraint. J Biol Chem 288(10):6904–6911. https://doi.org/10.1074/jbc.R112.424523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steinke JW, Platts-Mills TA, Commins SP (2015) The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol 135(3):589–596. https://doi.org/10.1016/j.jaci.2014.12.1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360. https://doi.org/10.1016/j.molmed.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Monine M, Huang Y, Swann P, Nestorov I, Lyubarskaya Y (2016) Quantitation and pharmacokinetic modeling of therapeutic antibody quality attributes in human studies. MAbs 8(6):1079–1087. https://doi.org/10.1080/19420862.2016.1186322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21(7):949–959. https://doi.org/10.1093/glycob/cwr027

    Article  CAS  PubMed  Google Scholar 

  33. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473. https://doi.org/10.1074/jbc.M210665200

    Article  CAS  PubMed  Google Scholar 

  34. Thomann M, Reckermann K, Reusch D, Prasser J, Tejada ML (2016) Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol Immunol 73:69–75. https://doi.org/10.1016/j.molimm.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  35. Peschke B, Keller CW, Weber P, Quast I, Lunemann JD (2017) Fc-Galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol 8:646. https://doi.org/10.3389/fimmu.2017.00646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–673

    Article  CAS  Google Scholar 

  37. Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, Tyler S, Mekala D, Cochran E, Sarvaiya H, Garofalo K, Meccariello R, Meador JW 3rd, Rutitzky L, Schultes BC, Ling L, Avery W, Nimmerjahn F, Manning AM, Kaundinya GV, Bosques CJ (2015) Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci U S A 112(11):E1297–E1306. https://doi.org/10.1073/pnas.1422481112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989

    Article  CAS  Google Scholar 

  39. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275. https://doi.org/10.1111/j.1600-065X.2010.00910.x

    Article  CAS  PubMed  Google Scholar 

  40. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. https://doi.org/10.1038/nri2206

    Article  CAS  PubMed  Google Scholar 

  41. Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY, Matlung H, van den Berg TK, van Esch WJE, Kuijpers TW, Wouters D, Rispens T, Wuhrer M, Vidarsson G (2017) Decoding the human immunoglobulin G-glycan repertoire reveals a Spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol 8:877. https://doi.org/10.3389/fimmu.2017.00877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schiestl M, Stangler T, Torella C, Cepeljnik T, Toll H, Grau R (2011) Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol 29(4):310–312. https://doi.org/10.1038/nbt.1839

    Article  CAS  PubMed  Google Scholar 

  43. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    Article  Google Scholar 

  44. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4(4):419–425. https://doi.org/10.4161/mabs.20996

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cameron F, McCormack PL (2014) Obinutuzumab: first global approval. Drugs 74(1):147–154. https://doi.org/10.1007/s40265-013-0167-3

    Article  CAS  PubMed  Google Scholar 

  46. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM, Reed JL, Woods R, Dall'acqua WW, Stephens GL, Erjefalt JS, Bjermer L, Humbles AA, Gossage D, Wu H, Kiener PA, Spitalny GL, Mackay CR, Molfino NA, Coyle AJ (2010) MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol 125(6):1344–1353. https://doi.org/10.1016/j.jaci.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  47. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M, Woods R, Rowe DC, Cheng L, Cook K, Evans K, Sims GP, Pfarr DS, Bowen MA, Dall'Acqua W, Shlomchik M, Tedder TF, Kiener P, Jallal B, Wu H, Coyle AJ (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335(1):213–222. https://doi.org/10.1124/jpet.110.168062

    Article  CAS  PubMed  Google Scholar 

  48. Dolgin E (2020) Anti-BCMA therapy endorsed, despite eye toxicity. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-nb2020-074

  49. Chiang AW, Li S, Spahn PN, Richelle A, Kuo CC, Samoudi M, Lewis NE (2016) Modulating carbohydrate-protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology. Curr Opin Struct Biol 40:104–111. https://doi.org/10.1016/j.sbi.2016.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622. https://doi.org/10.1002/bit.20151

    Article  CAS  PubMed  Google Scholar 

  51. Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, Shitara K, Satoh M (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–908. https://doi.org/10.1002/bit.20326

    Article  CAS  PubMed  Google Scholar 

  52. Beuger V, Kunkele KP, Koll H, Gartner A, Bahner M, Burtscher H, Klein C (2009) Short-hairpin-RNA-mediated silencing of fucosyltransferase 8 in Chinese-hamster ovary cells for the production of antibodies with enhanced antibody immune effector function. Biotechnol Appl Biochem 53(Pt 1):31–37. https://doi.org/10.1042/BA20080220

    Article  CAS  PubMed  Google Scholar 

  53. von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20(12):1607–1618. https://doi.org/10.1093/glycob/cwq109

    Article  CAS  Google Scholar 

  54. Roy G, Martin T, Barnes A, Wang J, Jimenez RB, Rice M, Li L, Feng H, Zhang S, Chaerkady R, Wu H, Marelli M, Hatton D, Zhu J, Bowen MA (2018) A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. MAbs 10(3):416–430. https://doi.org/10.1080/19420862.2018.1433975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kelly RM, Kowle RL, Lian Z, Strifler BA, Witcher DR, Parekh BS, Wang T, Frye CC (2018) Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway. Biotechnol Bioeng 115(3):705–718. https://doi.org/10.1002/bit.26496

    Article  CAS  PubMed  Google Scholar 

  56. Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84. https://doi.org/10.1186/1472-6750-7-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783. https://doi.org/10.1002/bit.22751

    Article  CAS  PubMed  Google Scholar 

  58. Cristea S, Freyvert Y, Santiago Y, Holmes MC, Urnov FD, Gregory PD, Cost GJ (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng 110(3):871–880. https://doi.org/10.1002/bit.24733

    Article  CAS  PubMed  Google Scholar 

  59. Ronda C, Pedersen LE, Hansen HG, Kallehauge TB, Betenbaugh MJ, Nielsen AT, Kildegaard HF (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616. https://doi.org/10.1002/bit.25233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu PQ, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD (2010) Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 106(1):97–105. https://doi.org/10.1002/bit.22654

    Article  CAS  PubMed  Google Scholar 

  61. Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844. https://doi.org/10.1038/nbt.3280

    Article  CAS  PubMed  Google Scholar 

  62. Sun T, Li C, Han L, Jiang H, Xie Y, Zhang B, Qian X, Lu H, Zhu J (2015) Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody. Eng Life Sci 15(6):660–666. https://doi.org/10.1002/elsc.201400218

    Article  CAS  Google Scholar 

  63. Chan KF, Shahreel W, Wan C, Teo G, Hayati N, Tay SJ, Tong WH, Yang Y, Rudd PM, Zhang P, Song Z (2016) Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnol J 11(3):399–414. https://doi.org/10.1002/biot.201500331

    Article  CAS  PubMed  Google Scholar 

  64. Zhang P, Haryadi R, Chan KF, Teo G, Goh J, Pereira NA, Feng H, Song Z (2012) Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese hamster ovary mutant. Glycobiology 22(7):897–911. https://doi.org/10.1093/glycob/cws064

    Article  CAS  PubMed  Google Scholar 

  65. Grav LM, Lee JS, Gerling S, Kallehauge TB, Hansen AH, Kol S, Lee GM, Pedersen LE, Kildegaard HF (2015) One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J 10(9):1446–1456. https://doi.org/10.1002/biot.201500027

    Article  CAS  PubMed  Google Scholar 

  66. Popp O, Moser S, Zielonka J, Ruger P, Hansen S, Plottner O (2018) Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. MAbs 10(2):290–303. https://doi.org/10.1080/19420862.2017.1405203

    Article  CAS  PubMed  Google Scholar 

  67. Schmieder V, Bydlinski N, Strasser R, Baumann M, Kildegaard HF, Jadhav V, Borth N (2018) Enhanced genome editing tools for multi-gene deletion Knock-out approaches using paired CRISPR sgRNAs in CHO cells. Biotechnol J 13(3):e1700211. https://doi.org/10.1002/biot.201700211

    Article  CAS  PubMed  Google Scholar 

  68. Fukuta K, Abe R, Yokomatsu T, Omae F, Asanagi M, Makino T (2000) Control of bisecting GlcNAc addition to N-linked sugar chains. J Biol Chem 275(31):23456–23461. https://doi.org/10.1074/jbc.M002693200

    Article  CAS  PubMed  Google Scholar 

  69. Davies J, Jiang L, Pan L, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered Glycoforms leads to an increase in ADCC through higher affinity for Fc RIII. Biotechnol Bioeng 74(4):288–294

    Article  CAS  Google Scholar 

  70. Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861. https://doi.org/10.1002/bit.20777

    Article  CAS  PubMed  Google Scholar 

  71. Goede V, Fischer K, Engelke A, Schlag R, Lepretre S, Montero LF, Montillo M, Fegan C, Asikanius E, Humphrey K, Fingerle-Rowson G, Hallek M (2015) Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia 29(7):1602–1604. https://doi.org/10.1038/leu.2015.14

    Article  CAS  PubMed  Google Scholar 

  72. Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(1116–21)

    Google Scholar 

  73. Raymond C, Robotham A, Spearman M, Butler M, Kelly J, Durocher Y (2015) Production of alpha2,6-sialylated IgG1 in CHO cells. MAbs 7(3):571–583. https://doi.org/10.1080/19420862.2015.1029215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stach CS, McCann MG, O'Brien CM, Le TS, Somia N, Chen X, Lee K, Fu HY, Daoutidis P, Zhao L, Hu WS, Smanski M (2019) Model-driven engineering of N-linked glycosylation in Chinese hamster ovary cells. ACS Synth Biol 8(11):2524–2535. https://doi.org/10.1021/acssynbio.9b00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Amann T, Hansen AH, Kol S, Lee GM, Andersen MR, Kildegaard HF (2018) CRISPR/Cas9-multiplexed editing of Chinese hamster ovary B4Gal-T1, 2, 3, and 4 tailors N-glycan profiles of therapeutics and secreted host cell proteins. Biotechnol J 13(10):e1800111. https://doi.org/10.1002/biot.201800111

    Article  CAS  PubMed  Google Scholar 

  76. Bydlinski N, Maresch D, Schmieder V, Klanert G, Strasser R, Borth N (2018) The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese hamster ovary cells. J Biotechnol 282:101–110. https://doi.org/10.1016/j.jbiotec.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  77. Lin N, George HJ, Mascarenhas J, Collingwood TN, Kayser KJ, Achtien K (2013) Cells deficient in cmp-n-acetylneuraminic acid hydroxylase and/or glycoprotein alpha-1,3-galactosyltransferase. Google Patents

    Google Scholar 

  78. Lin NAN, George Henry J, Mascarenhas J, Collingwood Trevor N, Kayser Kevin J, Achtien K (2018) Cells deficient in Cmp-n-acetylneuraminic acid hydroxylase and/or glycoprotein Alpha-1,3-galactosyltransferase. EP Patent EP 2726604 B1, 2018/04/04

    Google Scholar 

  79. Ryll T (2001) Improved galactosylation of recombinant glycoproteins. Google Patents,

    Google Scholar 

  80. Collins BE, Guo T, Thiruneelakantapillai L, Millea K, Bulik DA (2012) Production of glycoproteins. Google Patents,

    Google Scholar 

  81. Noh SM, Park JH, Lim MS, Kim JW, Lee GM (2017) Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Appl Microbiol Biotechnol 101(3):1035–1045. https://doi.org/10.1007/s00253-016-7876-y

    Article  CAS  PubMed  Google Scholar 

  82. Park H-S, Kim I-H, Kim I-Y, Kim K-H, Kim H-J (2000) Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media. J Biotechnol 81(2–3):129–140. https://doi.org/10.1016/S0168-1656(00)00282-0

    Article  CAS  PubMed  Google Scholar 

  83. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534. https://doi.org/10.1016/j.molimm.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  84. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28(8):863–867. https://doi.org/10.1038/nbt.1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Naso MF, Tam SH, Scallon BJ, Raju TS (2010) Engineering host cell lines to reduce terminal sialylation of secreted antibodies. MAbs 2(5):519–527. https://doi.org/10.4161/mabs.2.5.13078

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chung CY, Wang Q, Yang S, Yin B, Zhang H, Betenbaugh M (2017) Integrated genome and protein editing swaps alpha-2,6 sialylation for alpha-2,3 sialic acid on recombinant antibodies from CHO. Biotechnol J 12(2). https://doi.org/10.1002/biot.201600502

  87. Schulz MA, Tian W, Mao Y, Van Coillie J, Sun L, Larsen JS, Chen YH, Kristensen C, Vakhrushev SY, Clausen H, Yang Z (2018) Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology 28(7):542–549. https://doi.org/10.1093/glycob/cwy022

    Article  CAS  PubMed  Google Scholar 

  88. Chenu S, Grégoire A, Malykh Y, Visvikis A, Monaco L, Shaw L, Schauer R, Marc A, Goergen J-L (2003) Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy. Biochim Biophys Acta Gen Subj 1622(2):133–144. https://doi.org/10.1016/s0304-4165(03)00137-5

    Article  CAS  Google Scholar 

  89. Jefferis R (2006) A sugar switch for anti-inflammatory antibodies. Nat Biotech 24(10):1230–1231

    Article  CAS  Google Scholar 

  90. Marx N, Grunwald-Gruber C, Bydlinski N, Dhiman H, Ngoc Nguyen L, Klanert G, Borth N (2018) CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced Beta-Galactoside Alpha-2,6-Sialyltransferase 1 in CHO cells. Biotechnol J 13(10):e1700217. https://doi.org/10.1002/biot.201700217

    Article  CAS  PubMed  Google Scholar 

  91. KJlC K, Hefzi H, Xiong K, Shamie I, Hansen AH, Li S, Pedersen LE, Li S, Lee JS, Lee GM, Kildegaard HF, Lewis NE (2020) Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnol Bioeng 117(2):593–598. https://doi.org/10.1002/bit.27199

    Article  CAS  Google Scholar 

  92. Onitsuka M, Kim WD, Ozaki H, Kawaguchi A, Honda K, Kajiura H, Fujiyama K, Asano R, Kumagai I, Ohtake H, Omasa T (2012) Enhancement of sialylation on humanized IgG-like bispecific antibody by overexpression of alpha2,6-sialyltransferase derived from Chinese hamster ovary cells. Appl Microbiol Biotechnol 94(1):69–80. https://doi.org/10.1007/s00253-011-3814-1

    Article  CAS  PubMed  Google Scholar 

  93. Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I, Azadi P, Archer-Hartmann S (2015) Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol Prog 31(2):334–346. https://doi.org/10.1002/btpr.2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nguyen TS, Misaki R, Ohashi T, Fujiyama K (2020) Enhancement of sialylation in rIgG in glyco-engineered Chinese hamster ovary cells. Cytotechnology 72(3):343–355. https://doi.org/10.1007/s10616-020-00381-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T (2008) Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 99(3):652–665. https://doi.org/10.1002/bit.21598

    Article  CAS  PubMed  Google Scholar 

  96. Sealover NR, Davis AM, Brooks JK, George HJ, Kayser KJ, Lin N (2013) Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167(1):24–32. https://doi.org/10.1016/j.jbiotec.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  97. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17(1):104–118. https://doi.org/10.1093/glycob/cwl057

    Article  CAS  PubMed  Google Scholar 

  98. Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan J-P, Bayer R (2012) Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. mAbs 4(4):475–487. https://doi.org/10.4161/mabs.20737

    Article  PubMed  PubMed Central  Google Scholar 

  99. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243. https://doi.org/10.1038/nm0395-237

    Article  CAS  PubMed  Google Scholar 

  100. Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G(1) variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 105(51):20167–20172. https://doi.org/10.1073/pnas.0809257105

    Article  PubMed  PubMed Central  Google Scholar 

  101. Inman BA, Longo TA, Ramalingam S, Harrison MR (2017) Atezolizumab: A PD-L1-blocking antibody for bladder Cancer. Clin Cancer Res 23(8):1886–1890. https://doi.org/10.1158/1078-0432.Ccr-16-1417

    Article  CAS  PubMed  Google Scholar 

  102. Meuris L, Santens F, Elson G, Festjens N, Boone M, Dos Santos A, Devos S, Rousseau F, Plets E, Houthuys E, Malinge P, Magistrelli G, Cons L, Chatel L, Devreese B, Callewaert N (2014) GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat Biotechnol 32(5):485–489. https://doi.org/10.1038/nbt.2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gawlitzek M, Estacio M, Fürch T, Kiss R (2009) Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng 103(6):1164–1175. https://doi.org/10.1002/bit.22348

    Article  CAS  PubMed  Google Scholar 

  104. Gawlitzek M, Conradt HS, Wagner R (1995) Effect of different cell culture conditions on the polypeptide integrity and N-glycosylation of a recombinant model glycoprotein. Biotechnol Bioeng 46(6):536–544. https://doi.org/10.1002/bit.260460606

    Article  CAS  PubMed  Google Scholar 

  105. Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57(5):518–528. https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<518::AID-BIT3>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  106. Yang M, Butler M (2002) Effects of Ammonia and glucosamine on the heterogeneity of erythropoietin Glycoforms. Biotechnol Prog 18(1):129–138. https://doi.org/10.1021/bp0101334

    Article  CAS  PubMed  Google Scholar 

  107. Liu J, Wang J, Fan L, Chen X, Hu D, Deng X, Poon HF, Wang H, Liu X, Tan WS (2015) Galactose supplementation enhance sialylation of recombinant Fc-fusion protein in CHO cell: an insight into the role of galactosylation in sialylation. World J Microbiol Biotechnol 31(7):1147–1156. https://doi.org/10.1007/s11274-015-1864-8

    Article  CAS  PubMed  Google Scholar 

  108. Gu X, Wang DIC (1998) Improvement of interferon-γ sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58(6):642–648. https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<642::AID-BIT10>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  109. Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202. https://doi.org/10.1002/bit.1051

    Article  CAS  PubMed  Google Scholar 

  110. Wong NSC, Wati L, Nissom PM, Feng HT, Lee MM, Yap MGS (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336. https://doi.org/10.1002/bit.22812

    Article  CAS  PubMed  Google Scholar 

  111. Altamirano C, Cairo JJ, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76(4):351–360. https://doi.org/10.1002/bit.10096

    Article  CAS  PubMed  Google Scholar 

  112. Carvalhal AV, Santos SS, Calado J, Haury M, Carrondo MJT (2003) Cell growth arrest by nucleotides, nucleosides and bases as a tool for improved production of recombinant proteins. Biotechnol Prog 19(1):69–83. https://doi.org/10.1021/bp0255917

    Article  CAS  PubMed  Google Scholar 

  113. Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol Bioeng 110(11):2970–2983. https://doi.org/10.1002/bit.24959

    Article  CAS  PubMed  Google Scholar 

  114. Wahrheit J, Nicolae A, Heinzle E (2014) Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells. Appl Microbiol Biotechnol 98(4):1771–1783. https://doi.org/10.1007/s00253-013-5452-2

    Article  CAS  PubMed  Google Scholar 

  115. Aghamohseni H, Ohadi K, Spearman M, Krahn N, Moo-Young M, Scharer JM, Butler M, Budman HM (2014) Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J Biotechnol 186:98–109. https://doi.org/10.1016/j.jbiotec.2014.05.024

    Article  CAS  PubMed  Google Scholar 

  116. Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S (2009) Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 220(1):144–154. https://doi.org/10.1002/jcp.21744

    Article  CAS  PubMed  Google Scholar 

  117. Okeley NM, Alley SC, Anderson ME, Boursalian TE, Burke PJ, Emmerton KM, Jeffrey SC, Klussman K, Law C-L, Sussman D, Toki BE, Westendorf L, Zeng W, Zhang X, Benjamin DR, Senter PD (2013) Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci 110(14):5404–5409. https://doi.org/10.1073/pnas.1222263110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zimmermann M, Ehret J, Kolmar H, Zimmer A (2019) Impact of acetylated and non-acetylated Fucose analogues on IgG glycosylation. Antibodies (Basel) 8(1):9. https://doi.org/10.3390/antib8010009

    Article  CAS  Google Scholar 

  119. Zhang A, Tsang VL, Markely LR, Kurt L, Huang YM, Prajapati S, Kshirsagar R (2016) Identifying the differences in mechanisms of mycophenolic acid controlling fucose content of glycoproteins expressed in different CHO cell lines. Biotechnol Bioeng 113(11):2367–2376. https://doi.org/10.1002/bit.25995

    Article  CAS  PubMed  Google Scholar 

  120. Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P, Bagal D, San Miguel T, Sickmier EA, Osgood S, Swietlow A, Li V, Jordan JB, Kim KW, Rousseau AC, Kim YJ, Caille S, Achmatowicz M, Thiel O, Fotsch CH, Reddy P, McCarter JD (2016) Facile modulation of antibody Fucosylation with small molecule Fucostatin inhibitors and Cocrystal structure with GDP-mannose 4,6-dehydratase. ACS Chem Biol 11(10):2734–2743. https://doi.org/10.1021/acschembio.6b00460

    Article  CAS  PubMed  Google Scholar 

  121. Hills AE, Patel A, Boyd P, James DC (2001) Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng 75(2):239–251. https://doi.org/10.1002/bit.10022

    Article  CAS  PubMed  Google Scholar 

  122. Kildegaard HF, Fan Y, Sen JW, Larsen B, Andersen MR (2016) Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol Bioeng 113(2):359–366. https://doi.org/10.1002/bit.25715

    Article  CAS  PubMed  Google Scholar 

  123. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602. https://doi.org/10.1002/bit.23075

    Article  CAS  PubMed  Google Scholar 

  124. St. Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA (2014) Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng 111(10):1957–1970. https://doi.org/10.1002/bit.25251

    Article  CAS  PubMed  Google Scholar 

  125. Prabhu A, Gadre R, Gadgil M (2018) Zinc supplementation decreases galactosylation of recombinant IgG in CHO cells. Appl Microbiol Biotechnol 102(14):5989–5999. https://doi.org/10.1007/s00253-018-9064-8

    Article  CAS  PubMed  Google Scholar 

  126. Prabhu A, Gadgil M (2019) Nickel and cobalt affect galactosylation of recombinant IgG expressed in CHO cells. Biometals 32(1):11–19. https://doi.org/10.1007/s10534-018-0152-0

    Article  CAS  PubMed  Google Scholar 

  127. Hossler P, Racicot C (2015) Targeted shifting of protein glycosylation profiles in mammalian cell culture through media supplementation of cobalt. J Glycobiol:03. https://doi.org/10.4172/2168-958X.1000108

  128. Hossler P, Racicot C, Chumsae C, McDermott S, Cochran K (2017) Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles. Biotechnol Prog 33(2):511–522. https://doi.org/10.1002/btpr.2429

    Article  CAS  PubMed  Google Scholar 

  129. del Val IJ, Polizzi KM, Kontoravdi C (2016) A theoretical estimate for nucleotide sugar demand towards Chinese hamster ovary cellular glycosylation. Sci Rep 6:28547. https://doi.org/10.1038/srep28547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Torkashvand F, Vaziri B, Maleknia S, Heydari A, Vossoughi M, Davami F, Mahboudi F (2015) Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. PLoS One 10(10):e0140597. https://doi.org/10.1371/journal.pone.0140597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hong JK, Cho SM, Yoon SK (2010) Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl Microbiol Biotechnol 88(4):869–876. https://doi.org/10.1007/s00253-010-2790-1

    Article  CAS  PubMed  Google Scholar 

  132. Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286. https://doi.org/10.1016/j.jbiotec.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  133. Blondeel EJ, Braasch K, McGill T, Chang D, Engel C, Spearman M, Butler M, Aucoin MG (2015) Tuning a MAb glycan profile in cell culture: supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth. J Biotechnol 214:105–112. https://doi.org/10.1016/j.jbiotec.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  134. Dekkers G, Plomp R, Koeleman CA, Visser R, von Horsten HH, Sandig V, Rispens T, Wuhrer M, Vidarsson G (2016) Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans. Sci Rep 6:36964. https://doi.org/10.1038/srep36964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yin B, Wang Q, Chung CY, Bhattacharya R, Ren X, Tang J, Yarema KJ, Betenbaugh MJ (2017) A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Biotechnol Bioeng 114(8):1899–1902. https://doi.org/10.1002/bit.26291

    Article  CAS  PubMed  Google Scholar 

  136. Ehret J, Zimmermann M, Eichhorn T, Zimmer A (2019) Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Biotechnol Bioeng 116(4):816–830. https://doi.org/10.1002/bit.26904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gramer MJ, Goochee CF, Chock VY, Brousseau DT, Sliwkowski MB (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Biotechnology (N Y) 13(7):692–698. https://doi.org/10.1038/nbt0795-692

    Article  CAS  Google Scholar 

  138. Medveďová L, Farkaš R (2004) Hormonal control of protein glycosylation: role of steroids and related lipophilic ligands. Endocr Regul 38(2):65–79

    PubMed  Google Scholar 

  139. Jing Y, Qian Y, Li ZJ (2010) Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Biotechnol Bioeng 107(3):488–496. https://doi.org/10.1002/bit.22827

    Article  CAS  PubMed  Google Scholar 

  140. Rouiller Y, Perilleux A, Marsaut M, Stettler M, Vesin MN, Broly H (2012) Effect of hydrocortisone on the production and glycosylation of an Fc-fusion protein in CHO cell cultures. Biotechnol Prog 28(3):803–813. https://doi.org/10.1002/btpr.1530

    Article  CAS  PubMed  Google Scholar 

  141. Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100(1):189–194. https://doi.org/10.1002/bit.21726

    Article  CAS  PubMed  Google Scholar 

  142. Crowell CK, Qin Q, Grampp GE, Radcliffe RA, Rogers GN, Scheinman RI (2008) Sodium butyrate alters erythropoietin glycosylation via multiple mechanisms. Biotechnol Bioeng 99(1):201–213. https://doi.org/10.1002/bit.21539

    Article  CAS  PubMed  Google Scholar 

  143. Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-β by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30. https://doi.org/10.1021/bp049807b

    Article  CAS  PubMed  Google Scholar 

  144. Sung YH, Song YJ, Lim SW, Chung JY, Lee GM (2004) Effect of sodium butyrate on the production, heterogeneity and biological activity of human thrombopoietin by recombinant Chinese hamster ovary cells. J Biotechnol 112(3):323–335. https://doi.org/10.1016/j.jbiotec.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  145. Chen F, Kou T, Fan L, Zhou Y, Ye Z, Zhao L, Tan W-S (2011) The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng 16(6):1157–1165. https://doi.org/10.1007/s12257-011-0069-8

    Article  CAS  Google Scholar 

  146. Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8(2):123–132. https://doi.org/10.1016/j.ymben.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  147. Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68(6):637–646. https://doi.org/10.1002/(sici)1097-0290(20000620)68:6<637::Aid-bit6>3.0.Co;2-c

    Article  CAS  PubMed  Google Scholar 

  148. Rillahan CD, Antonopoulos A, Lefort CT, Sonon R, Azadi P, Ley K, Dell A, Haslam SM, Paulson JC (2012) Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat Chem Biol 8(7):661–668. https://doi.org/10.1038/nchembio.999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pacis E, Yu M, Autsen J, Bayer R, Li F (2011) Effects of cell culture conditions on antibody N-linked glycosylation—what affects high mannose 5 glycoform. Biotechnol Bioeng 108(10):2348–2358. https://doi.org/10.1002/bit.23200

    Article  CAS  PubMed  Google Scholar 

  150. Surve T, Gadgil M (2015) Manganese increases high mannose glycoform on monoclonal antibody expressed in CHO when glucose is absent or limiting: implications for use of alternate sugars. Biotechnol Prog 31(2):460–467. https://doi.org/10.1002/btpr.2029

    Article  CAS  PubMed  Google Scholar 

  151. Wentz Alane E, Hemmavanh DON, Matuck Joseph G (2017) Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins. US Patent US 9598667 B2, 2017/03/21

    Google Scholar 

  152. Kuwae S, Miyakawa I, Doi T (2018) Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content. Cytotechnology 70(3):939–948. https://doi.org/10.1007/s10616-017-0185-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang CJ, Lin H, Yang JX (2015) A robust method for increasing fc glycan high mannose level of recombinant antibodies. Biotechnol Bioeng 112(6):1200–1209. https://doi.org/10.1002/bit.25534

    Article  CAS  PubMed  Google Scholar 

  154. Slade PG, Caspary RG, Nargund S, Huang CJ (2016) Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol Bioeng 113(7):1468–1480. https://doi.org/10.1002/bit.25924

    Article  CAS  PubMed  Google Scholar 

  155. Hossler P, McDermott S, Racicot C, Chumsae C, Raharimampionona H, Zhou Y, Ouellette D, Matuck J, Correia I, Fann J, Li J (2014) Cell culture media supplementation of uncommonly used sugars sucrose and tagatose for the targeted shifting of protein glycosylation profiles of recombinant protein therapeutics. Biotechnol Prog 30(6):1419–1431. https://doi.org/10.1002/btpr.1968

    Article  CAS  PubMed  Google Scholar 

  156. van Berkel PH, Gerritsen J, van Voskuilen E, Perdok G, Vink T, van de Winkel JG, Parren PW (2010) Rapid production of recombinant human IgG with improved ADCC effector function in a transient expression system. Biotechnol Bioeng 105(2):350–357. https://doi.org/10.1002/bit.22535

    Article  CAS  PubMed  Google Scholar 

  157. Elbein AD, Pan YT, Solf R, Vosbeck K (1983) Effect of swainsonine, an inhibitor of glycoprotein processing, on cultured mammalian cells. J Cell Physiol 115(3):265–275. https://doi.org/10.1002/jcp.1041150309

    Article  CAS  PubMed  Google Scholar 

  158. Krahn N, Spearman M, Meier M, Dorion-Thibaudeau J, McDougall M, Patel TR, De Crescenzo G, Durocher Y, Stetefeld J, Butler M (2017) Inhibition of glycosylation on a camelid antibody uniquely affects its FcγRI binding activity. Eur J Pharm Sci 96:428–439. https://doi.org/10.1016/j.ejps.2016.09.040

    Article  CAS  PubMed  Google Scholar 

  159. Pande S, Rahardjo A, Livingston B, Mujacic M (2015) Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines. Biotechnol Bioeng 112(7):1383–1394. https://doi.org/10.1002/bit.25551

    Article  CAS  PubMed  Google Scholar 

  160. Liu B, Spearman M, Doering J, Lattova E, Perreault H, Butler M (2014) The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–27. https://doi.org/10.1016/j.jbiotec.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  161. Villacres C, Tayi VS, Lattova E, Perreault H, Butler M (2015) Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture. Biotechnol J 10(7):1051–1066. https://doi.org/10.1002/biot.201400662

    Article  CAS  PubMed  Google Scholar 

  162. Walker MR, Lund J, Thompson KM, Jefferis R (1989) Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing Fc gamma RI and/or Fc gamma RII receptors. Biochem J 259(2):347–353. https://doi.org/10.1042/bj2590347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Grilo AL, Mantalaris A (2019) The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 37(1):9–16. https://doi.org/10.1016/j.tibtech.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  164. Levinson Arthur D, Pennica D, Kohr William J, Vehar Gordon A, Goeddel David V, Yelverton Elizabeth M, Simonsen Christian C (2001) Human Tpa production using vectors coding for Dhfr protein. US Patent US 6261837 B1, 2001/07/17

    Google Scholar 

  165. Wurm FCHO Quasispecies—implications for manufacturing processes. Vol 1. MDPI. https://doi.org/10.3390/pr1030296

  166. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36(6):1110–1122. https://doi.org/10.3109/07388551.2015.1084266

    Article  CAS  PubMed  Google Scholar 

  167. Barone PW, Wiebe ME, Leung JC, Hussein ITM, Keumurian FJ, Bouressa J, Brussel A, Chen D, Chong M, Dehghani H, Gerentes L, Gilbert J, Gold D, Kiss R, Kreil TR, Labatut R, Li Y, Müllberg J, Mallet L, Menzel C, Moody M, Monpoeho S, Murphy M, Plavsic M, Roth NJ, Roush D, Ruffing M, Schicho R, Snyder R, Stark D, Zhang C, Wolfrum J, Sinskey AJ, Springs SL (2020) Viral contamination in biologic manufacture and implications for emerging therapies. Nat Biotechnol 38(5):563–572. https://doi.org/10.1038/s41587-020-0507-2

    Article  CAS  PubMed  Google Scholar 

  168. Crotti C, Agape E, Becciolini A, Biggioggero M, Favalli EG (2019) Targeting granulocyte-monocyte Colony-stimulating factor signaling in rheumatoid arthritis: future prospects. Drugs 79(16):1741–1755. https://doi.org/10.1007/s40265-019-01192-z

    Article  CAS  PubMed  Google Scholar 

  169. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145. https://doi.org/10.1038/nbt.4305

    Article  CAS  PubMed  Google Scholar 

  170. Sargentini-Maier ML, De Decker P, Tersteeg C, Canvin J, Callewaert F, De Winter H (2019) Clinical pharmacology of caplacizumab for the treatment of patients with acquired thrombotic thrombocytopenic purpura. Expert Rev Clin Pharmacol 12(6):537–545. https://doi.org/10.1080/17512433.2019.1607293

    Article  CAS  PubMed  Google Scholar 

  171. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793

    Article  CAS  Google Scholar 

  172. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan Y-Y, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8(5):434–436. https://doi.org/10.1038/nchembio.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392. https://doi.org/10.1016/j.copbio.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  174. Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4(1):58–70. https://doi.org/10.1038/nprot.2008.213

    Article  CAS  PubMed  Google Scholar 

  175. De Pourcq K, Vervecken W, Dewerte I, Valevska A, Van Hecke A, Callewaert N (2012) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb Cell Factories 11(1):53. https://doi.org/10.1186/1475-2859-11-53

    Article  CAS  Google Scholar 

  176. Wang H, Song HL, Wang Q, Qiu BS (2013) Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha. World J Microbiol Biotechnol 29(3):447–458. https://doi.org/10.1007/s11274-012-1197-9

    Article  CAS  PubMed  Google Scholar 

  177. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301(5637):1244–1246. https://doi.org/10.1126/science.1088166

    Article  CAS  PubMed  Google Scholar 

  178. Choi B-K, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci 100(9):5022–5027. https://doi.org/10.1073/pnas.0931263100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nasab FP, Aebi M, Bernhard G, Frey AD (2012) A combined system to engineer glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol:AEM:02817–02812. https://doi.org/10.1128/aem.02817-12

  180. Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d'Anjou M, Pollard D, Potgieter T (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27(6):1744–1750. https://doi.org/10.1002/btpr.695

    Article  CAS  PubMed  Google Scholar 

  181. Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d'Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139(4):318–325. https://doi.org/10.1016/j.jbiotec.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  182. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443. https://doi.org/10.1126/science.1130256

    Article  CAS  PubMed  Google Scholar 

  183. Hiatt A, Caffferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342(6245):76–78. https://doi.org/10.1038/342076a0

    Article  CAS  PubMed  Google Scholar 

  184. Bardor M, Faveeuw C, Fitchette A-C, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core α(1,3)-fucose and core xylose. Glycobiology 13(6):427–434. https://doi.org/10.1093/glycob/cwg024

    Article  CAS  PubMed  Google Scholar 

  185. Fitchette-Lainé A-C, Gomord V, Cabanes M, Michalski J-C, Saint Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P, Faye L (1997) N-glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12(6):1411–1417. https://doi.org/10.1046/j.1365-313x.1997.12061411.x

    Article  PubMed  Google Scholar 

  186. Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5(5):657–663. https://doi.org/10.1111/j.1467-7652.2007.00273.x

    Article  CAS  PubMed  Google Scholar 

  187. Strasser R, Altmann F, Mach L, Glössl J, Steinkellner H (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking β1,2-linked xylose and core α1,3-linked fucose. FEBS Lett 561(1–3):132–136. https://doi.org/10.1016/s0014-5793(04)00150-4

    Article  CAS  PubMed  Google Scholar 

  188. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597. https://doi.org/10.1038/nbt1260

    Article  CAS  PubMed  Google Scholar 

  189. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284(31):20479–20485. https://doi.org/10.1074/jbc.M109.014126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Castilho A, Pabst M, Leonard R, Veit C, Altmann F, Mach L, Glössl J, Strasser R, Steinkellner H (2008) Construction of a functional CMP-sialic acid biosynthesis pathway in Arabidopsis. Plant Physiol 147(1):331–339. https://doi.org/10.1104/pp.108.117572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514(7520):47–53. https://doi.org/10.1038/nature13777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Largent EA (2016) EBOLA and FDA: reviewing the response to the 2014 outbreak, to find lessons for the future. J Law Biosci 3(3):489–537. https://doi.org/10.1093/jlb/lsw046

    Article  PubMed  PubMed Central  Google Scholar 

  193. New antibodies best ZMapp in Ebola trial (2019) Nature. Biotechnology 37(10):1105–1105. https://doi.org/10.1038/s41587-019-0284-y

    Article  CAS  Google Scholar 

  194. Cérutti M, Golay J (2012) Lepidopteran cells, an alternative for the production of recombinant antibodies? mAbs 4(3):294–309. https://doi.org/10.4161/mabs.19942

    Article  PubMed  PubMed Central  Google Scholar 

  195. Shi X, Jarvis DL (2007) Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets 8(10):1116–1125. https://doi.org/10.2174/138945007782151360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Altmann F, Kornfeld G, Dalik T, Staudacher E, Glössl J (1993) Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology 3(6):619–625. https://doi.org/10.1093/glycob/3.6.619

    Article  CAS  PubMed  Google Scholar 

  197. Abdul-Rahman B, Ailor E, Jarvis D, Betenbaugh M, Lee YC (2002) Beta-(1 --> 4)-galactosyltransferase activity in native and engineered insect cells measured with time-resolved europium fluorescence. Carbohydr Res 337(21–23):2181–2186. https://doi.org/10.1016/s0008-6215(02)00260-4

    Article  CAS  PubMed  Google Scholar 

  198. Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 11(1):1–9. https://doi.org/10.1093/glycob/11.1.1

    Article  CAS  PubMed  Google Scholar 

  199. Altmann F, Schwihla H, Staudacher E, Glössl J, März L (1995) Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem 270(29):17344–17349. https://doi.org/10.1074/jbc.270.29.17344

    Article  CAS  PubMed  Google Scholar 

  200. Hollister JR, Shaper JH, Jarvis DL (1998) Stable expression of mammalian β1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology 8(5):473–480. https://doi.org/10.1093/glycob/8.5.473

    Article  CAS  PubMed  Google Scholar 

  201. Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41(50):15093–15104. https://doi.org/10.1021/bi026455d

    Article  CAS  PubMed  Google Scholar 

  202. Aumiller JJ, Mabashi-Asazuma H, Hillar A, Shi X, Jarvis DL (2012) A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 22(3):417–428. https://doi.org/10.1093/glycob/cwr160

    Article  CAS  PubMed  Google Scholar 

  203. Wagner R, Liedtke S, Kretzschmar E, Geyer H, Geyer R, Klenk H-D (1996) Elongation of the N-glycans of fowl plague virus hemagglutinin expressed in Spodoptera frugiperda (Sf9) cells by coexpression of human β1,2-N-acetylglucosaminyltransferase I. Glycobiology 6(2):165–175. https://doi.org/10.1093/glycob/6.2.165

    Article  CAS  PubMed  Google Scholar 

  204. Jarvis DL, Howe D, Aumiller JJ (2001) Novel baculovirus expression vectors that provide sialylation of recombinant glycoproteins in lepidopteran insect cells. J Virol 75(13):6223–6227. https://doi.org/10.1128/jvi.75.13.6223-6227.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hang GD, Chen CJ, Lin CY, Chen HC, Chen H (2003) Improvement of glycosylation in insect cells with mammalian glycosyltransferases. J Biotechnol 102(1):61–71. https://doi.org/10.1016/s0168-1656(02)00364-4

    Article  PubMed  Google Scholar 

  206. Palmberger D, Wilson IBH, Berger I, Grabherr R, Rendic D (2012) SweetBac: a new approach for the production of Mammalianised glycoproteins in insect cells. PLoS One 7(4):e34226. https://doi.org/10.1371/journal.pone.0034226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mabashi-Asazuma H, Kuo C-W, Khoo K-H, Jarvis DL (2013) A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 24(3):325–340. https://doi.org/10.1093/glycob/cwt161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Seeberger PH, Overkleeft HS (2015) Chemical synthesis of Glycans and Glycoconjugates. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York, pp 681–679. https://doi.org/10.1101/glycobiology.3e.053

    Chapter  Google Scholar 

  209. Fairbanks AJ (2018) Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines. Beilstein J Org Chem 14:416–429. https://doi.org/10.3762/bjoc.14.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Liu L, Prudden AR, Bosman GP, Boons G-J (2017) Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydr Res 452:122–128. https://doi.org/10.1016/j.carres.2017.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Alagesan K, Kolarich D (2019) Improved strategy for large scale isolation of sialylglycopeptide (SGP) from egg yolk powder. MethodsX 6:773–778. https://doi.org/10.1016/j.mex.2019.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652. https://doi.org/10.1021/bp050228w

    Article  CAS  PubMed  Google Scholar 

  213. Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJS (2001) Glycoengineering of therapeutic glycoproteins: in vitro Galactosylation and sialylation of glycoproteins with terminal N-Acetylglucosamine and galactose residues. Biochemistry 40(30):8868–8876. https://doi.org/10.1021/bi010475i

    Article  CAS  PubMed  Google Scholar 

  214. Thomann M, Schlothauer T, Dashivets T, Malik S, Avenal C, Bulau P, Rüger P, Reusch D (2015) In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS One 10(8):e0134949. https://doi.org/10.1371/journal.pone.0134949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37(12–13):697–706. https://doi.org/10.1016/s0161-5890(00)00105-x

    Article  CAS  PubMed  Google Scholar 

  216. Li C, Zhu S, Ma C, Wang L-X (2017) Designer α1,6-Fucosidase mutants enable direct Core Fucosylation of intact N-Glycopeptides and N-glycoproteins. J Am Chem Soc 139(42):15074–15087. https://doi.org/10.1021/jacs.7b07906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tsai T-I, Li S-T, Liu C-P, Chen KY, Shivatare SS, Lin C-W, Liao S-F, Lin C-W, Hsu T-L, Wu Y-T, Tsai M-H, Lai M-Y, Lin N-H, Wu C-Y, Wong C-H (2017) An effective bacterial Fucosidase for glycoprotein remodeling. ACS Chem Biol 12(1):63–72. https://doi.org/10.1021/acschembio.6b00821

    Article  CAS  PubMed  Google Scholar 

  218. Mikolajczyk K, Kaczmarek R, Czerwinski M (2020) How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology. https://doi.org/10.1093/glycob/cwaa041

  219. Zheng S, Qiu D, Adams M, Li J, Mantri RV, Gandhi R (2017) Investigating the degradation behaviors of a therapeutic monoclonal antibody associated with pH and buffer species. AAPS PharmSciTech 18(1):42–48. https://doi.org/10.1208/s12249-015-0403-0

    Article  CAS  PubMed  Google Scholar 

  220. Collin M, Olsén A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12):3046–3055. https://doi.org/10.1093/emboj/20.12.3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Goodfellow JJ, Baruah K, Yamamoto K, Bonomelli C, Krishna B, Harvey DJ, Crispin M, Scanlan CN, Davis BG (2012) An endoglycosidase with alternative glycan specificity allows broadened glycoprotein Remodelling. J Am Chem Soc 134(19):8030–8033. https://doi.org/10.1021/ja301334b

    Article  CAS  PubMed  Google Scholar 

  222. Sun B, Bao W, Tian X, Li M, Liu H, Dong J, Huang W (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69. https://doi.org/10.1016/j.carres.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  223. Fan SQ, Huang W, Wang LX (2012) Remarkable transglycosylation activity of glycosynthase mutants of endo-D, an endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae. J Biol Chem 287(14):11272–11281. https://doi.org/10.1074/jbc.M112.340497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Huang W, Giddens J, Fan S-Q, Toonstra C, Wang L-X (2012) Chemoenzymatic Glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134(29):12308–12318. https://doi.org/10.1021/ja3051266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang L-X (2018) Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc Natl Acad Sci 115(47):12023–12027. https://doi.org/10.1073/pnas.1812833115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li T, Tong X, Yang Q, Giddens JP, Wang L-X (2016) Glycosynthase mutants of endoglycosidase S2 show potent Transglycosylation activity and remarkably relaxed substrate specificity for antibody glycosylation remodeling. J Biol Chem 291(32):16508–16518. https://doi.org/10.1074/jbc.M116.738765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Giddens JP, Lomino JV, Amin MN, Wang LX (2016) Endo-F3 Glycosynthase mutants enable Chemoenzymatic synthesis of Core-fucosylated Triantennary complex type Glycopeptides and glycoproteins. J Biol Chem 291(17):9356–9370. https://doi.org/10.1074/jbc.M116.721597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Kurogochi M, Mori M, Osumi K, Tojino M, S-i S, Takashima S, Hirose Y, Tsukimura W, Mizuno M, Amano J, Matsuda A, Tomita M, Takayanagi A, Shoda S-I, Shirai T (2015) Glycoengineered monoclonal antibodies with homogeneous glycan (M3, G0, G2, and A2) using a Chemoenzymatic approach have different affinities for FcγRIIIa and variable antibody-dependent cellular cytotoxicity activities. PLoS One 10(7):e0132848. https://doi.org/10.1371/journal.pone.0132848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu CP, Tsai TI, Cheng T, Shivatare VS, Wu CY, Wu CY, Wong CH (2018) Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc Natl Acad Sci U S A 115(4):720–725. https://doi.org/10.1073/pnas.1718172115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Li C, Li T, Wang L-X (2018) Chemoenzymatic Defucosylation of therapeutic antibodies for enhanced effector functions using bacterial α-Fucosidases. Methods in molecular biology (Clifton, NJ) 1827:367-380. https://doi.org/10.1007/978-1-4939-8648-4_19

  231. Bennett LD, Yang Q, Berquist BR, Giddens JP, Ren Z, Kommineni V, Murray RP, White EL, Holtz BR, Wang LX, Marcel S (2018) Implementation of glycan remodeling to plant-made therapeutic antibodies. Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020421

  232. Shivatare SS, Huang L-Y, Zeng Y-F, Liao J-Y, You T-H, Wang S-Y, Cheng T, Chiu C-W, Chao P, Chen L-T, Tsai T-I, Huang C-C, Wu C-Y, Lin N-H, Wong C-H (2018) Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies. Chem Commun 54(48):6161–6164. https://doi.org/10.1039/C8CC03384F

    Article  CAS  Google Scholar 

  233. Tang F, Wang L-X, Huang W (2017) Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody–drug conjugates. Nat Protoc 12(8):1702–1721. https://doi.org/10.1038/nprot.2017.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Thompson P, Ezeadi E, Hutchinson I, Fleming R, Bezabeh B, Lin J, Mao S, Chen C, Masterson L, Zhong H, Toader D, Howard P, Wu H, Gao C, Dimasi N (2016) Straightforward Glycoengineering approach to site-specific antibody-Pyrrolobenzodiazepine conjugates. ACS Med Chem Lett 7(11):1005–1008. https://doi.org/10.1021/acsmedchemlett.6b00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang L-X (2017) Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci 114(13):3485–3490. https://doi.org/10.1073/pnas.1702173114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Warnock D, Bai X, Autote K, Gonzales J, Kinealy K, Yan B, Qian J, Stevenson T, Zopf D, Bayer RJ (2005) In vitro galactosylation of human IgG at 1 kg scale using recombinant galactosyltransferase. Biotechnol Bioeng 92(7):831–842. https://doi.org/10.1002/bit.20658

    Article  CAS  PubMed  Google Scholar 

  237. Tayi VS, Butler M (2018) Solid-phase enzymatic remodeling produces high yields of single Glycoform antibodies. Biotechnol J 13(4):e1700381. https://doi.org/10.1002/biot.201700381

    Article  CAS  PubMed  Google Scholar 

  238. Li T, Li C, Quan DN, Bentley WE, Wang LX (2018) Site-specific immobilization of endoglycosidases for streamlined chemoenzymatic glycan remodeling of antibodies. Carbohydr Res 458-459:77–84. https://doi.org/10.1016/j.carres.2018.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kontoravdi C, Jimenez del Val I (2018) Computational tools for predicting and controlling the glycosylation of biopharmaceuticals. Curr Opin Chem Eng 22:89–97. https://doi.org/10.1016/j.coche.2018.08.007

    Article  Google Scholar 

  240. Kotidis P, Jedrzejewski P, Sou SN, Sellick C, Polizzi K, Del Val IJ, Kontoravdi C (2019) Model-based optimization of antibody galactosylation in CHO cell culture. Biotechnol Bioeng 116(7):1612–1626. https://doi.org/10.1002/bit.26960

    Article  CAS  PubMed  Google Scholar 

  241. Sokolov M, Morbidelli M, Butte A, Souquet J, Broly H (2018) Sequential multivariate cell culture modeling at multiple scales supports systematic shaping of a monoclonal antibody toward a quality target. Biotechnol J 13(4):e1700461. https://doi.org/10.1002/biot.201700461

    Article  CAS  PubMed  Google Scholar 

  242. Zhang L, Wang M, Castan A, Stevenson J, Chatzissavidou N, Hjalmarsson H, Vilaplana F, Chotteau V (2020) Glycan residues balance analysis - GReBA: a novel model for the N-linked glycosylation of IgG produced by CHO cells. Metab Eng 57:118–128. https://doi.org/10.1016/j.ymben.2019.08.016

    Article  CAS  PubMed  Google Scholar 

  243. Zhang L, Schwarz H, Wang M, Castan A, Hjalmarsson H, Chotteau V (2020) Control of IgG glycosylation in CHO cell perfusion cultures by GReBA mathematical model supported by a novel targeted feed. TAFE Metab Eng. https://doi.org/10.1016/j.ymben.2020.11.004

  244. Luo Y, Lovelett RJ, Price JV, Radhakrishnan D, Barnthouse K, Hu P, Schaefer E, Cunningham J, Lee KH, Shivappa RB, Ogunnaike BA (2020) Modeling the effect of amino acids and copper on monoclonal antibody productivity and glycosylation: a modular approach. Biotechnol J:e2000261. https://doi.org/10.1002/biot.202000261

  245. Kotidis P, Kontoravdi C (2020) Harnessing the potential of artificial neural networks for predicting protein glycosylation. Metab Eng Commun 10:e00131. https://doi.org/10.1016/j.mec.2020.e00131

    Article  PubMed  PubMed Central  Google Scholar 

  246. Spahn PN, Hansen AH, Kol S, Voldborg BG, Lewis NE (2017) Predictive glycoengineering of biosimilars using a Markov chain glycosylation model. Biotechnol J 12(2). https://doi.org/10.1002/biot.201600489

  247. Chang MM, Gaidukov L, Jung G, Tseng WA, Scarcelli JJ, Cornell R, Marshall JK, Lyles JL, Sakorafas P, Chu AA, Cote K, Tzvetkova B, Dolatshahi S, Sumit M, Mulukutla BC, Lauffenburger DA, Figueroa B Jr, Summers NM, Lu TK, Weiss R (2019) Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat Chem Biol 15(7):730–736. https://doi.org/10.1038/s41589-019-0288-4

    Article  CAS  PubMed  Google Scholar 

  248. Nose M, Wigzell H (1983) Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci U S A 80(21):6632–6636. https://doi.org/10.1073/pnas.80.21.6632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Leatherbarrow RJ, Rademacher TW, Dwek RA, Woof JM, Clark A, Burton DR, Richardson N, Feinstein A (1985) Effector functions of a monoclonal aglycosylated mouse IgG2a: binding and activation of complement component C1 and interaction with human monocyte Fc receptor. Mol Immunol 22(4):407–415. https://doi.org/10.1016/0161-5890(85)90125-7

    Article  CAS  PubMed  Google Scholar 

  250. Boyd P, Lines A, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32(17–18):1311–1318

    Article  CAS  Google Scholar 

  251. Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K (2006) Glycoform-dependent conformational alteration of the fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760(4):693–700. https://doi.org/10.1016/j.bbagen.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  252. Tao MH, Morrison SL (1989) Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143(8):2595–2601

    CAS  PubMed  Google Scholar 

  253. Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J Immunol 157(11):4963–4969

    CAS  PubMed  Google Scholar 

  254. Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T (2015) Multi-angle effector function analysis of human monoclonal IgG Glycovariants. PLoS One 10(12):e0143520. https://doi.org/10.1371/journal.pone.0143520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M (2006) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17(1):104–118. https://doi.org/10.1093/glycob/cwl057

    Article  CAS  PubMed  Google Scholar 

  256. Wright A, Morrison SL (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160(7):3393–3402

    CAS  PubMed  Google Scholar 

  257. Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WWK, Dechant M, Beyer T, Repp R, van Berkel PHC, Vink T, van de Winkel JGJ, Parren PWHI, Valerius T (2008) Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112(6):2390–2399. https://doi.org/10.1182/blood-2008-03-144600

    Article  CAS  PubMed  Google Scholar 

  258. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740. https://doi.org/10.1074/jbc.M202069200

    Article  CAS  PubMed  Google Scholar 

  259. Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, Shitara K (2005) IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 306(1–2):151–160. https://doi.org/10.1016/j.jim.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  260. Suzuki E, Niwa R, Saji S, Muta M, Hirose M, Iida S, Shiotsu Y, Satoh M, Shitara K, Kondo M, Toi M (2007) A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin Cancer Res 13(6):1875–1882. https://doi.org/10.1158/1078-0432.Ccr-06-1335

    Article  CAS  PubMed  Google Scholar 

  261. Masuda K, Kubota T, Kaneko E, Iida S, Wakitani M, Kobayashi-Natsume Y, Kubota A, Shitara K, Nakamura K (2007) Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol 44(12):3122–3131. https://doi.org/10.1016/j.molimm.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  262. Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol 336(5):1239–1249. https://doi.org/10.1016/j.jmb.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  263. Kuhns S, Shu J, Xiang C, Guzman RD, Zhang Q, Bretzlaff W, Miscalichi N, Kalenian K, Joubert M (2020) Differential influence on antibody dependent cellular phagocytosis by different glycoforms on therapeutic monoclonal antibodies. J Biotechnol 317:5–15. https://doi.org/10.1016/j.jbiotec.2020.04.017

    Article  CAS  PubMed  Google Scholar 

  264. Herter S, Birk MC, Klein C, Gerdes C, Umana P, Bacac M (2014) Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity. J Immunol 192(5):2252–2260. https://doi.org/10.4049/jimmunol.1301249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, Klein C, Introna M (2013) Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 122(20):3482–3491. https://doi.org/10.1182/blood-2013-05-504043

    Article  CAS  PubMed  Google Scholar 

  266. Chung S, Quarmby V, Gao X, Ying Y, Lin L, Reed C, Fong C, Lau W, Qiu ZJ, Shen A, Vanderlaan M, Song A (2012) Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities. mAbs 4(3):326–340. https://doi.org/10.4161/mabs.19941

    Article  PubMed  PubMed Central  Google Scholar 

  267. Davies J, Jiang L, Pan L-Z, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FCγRIII. Biotechnol Bioeng 74(4):288–294. https://doi.org/10.1002/bit.1119

    Article  CAS  PubMed  Google Scholar 

  268. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180. https://doi.org/10.1038/6179

    Article  PubMed  Google Scholar 

  269. Huang L, Biolsi S, Bales KR, Kuchibhotla U (2006) Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal Biochem 349(2):197–207. https://doi.org/10.1016/j.ab.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  270. Subedi GP, Barb AW (2016) The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 8(8):1512–1524. https://doi.org/10.1080/19420862.2016.1218586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Tsuchiya N, Endo T, Matsuta K, Yoshinoya S, Aikawa T, Kosuge E, Takeuchi F, Miyamoto T, Kobata A (1989) Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J Rheumatol 16(3):285–290

    CAS  PubMed  Google Scholar 

  272. Nimmerjahn F, Anthony RM, Ravetch JV (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A 104(20):8433–8437. https://doi.org/10.1073/pnas.0702936104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, McDonald JU, Orr SJ, Berger M, Petzold D, Blanchard V, Winkler A, Hess C, Reid DM, Majoul IV, Strait RT, Harris NL, Köhl G, Wex E, Ludwig R, Zillikens D, Nimmerjahn F, Finkelman FD, Brown GD, Ehlers M, Köhl J (2012) Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med 18(9):1401–1406. https://doi.org/10.1038/nm.2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117. https://doi.org/10.1056/NEJMoa074943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249. https://doi.org/10.1006/bbrc.2001.5382

    Article  CAS  PubMed  Google Scholar 

  276. Kumpel BM, Rademacher TW, Rook GA, Williams PJ, Wilson IB (1994) Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent on culture method and affects Fc receptor-mediated functional activity. Hum Antibodies Hybridomas 5(3–4):143–151

    CAS  PubMed  Google Scholar 

  277. Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276(49):45539–45547. https://doi.org/10.1074/jbc.M107478200

    Article  CAS  PubMed  Google Scholar 

  278. Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang L-X, Münz C, Nimmerjahn F, Dalakas MC, Lünemann JD (2015) Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 125(11):4160–4170. https://doi.org/10.1172/JCI82695

    Article  PubMed  PubMed Central  Google Scholar 

  279. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373–376. https://doi.org/10.1126/science.1154315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291(5503):484–486. https://doi.org/10.1126/science.291.5503.484

    Article  CAS  PubMed  Google Scholar 

  281. Zhu A, Hurst R (2002) Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 9(6):376–381. https://doi.org/10.1034/j.1399-3089.2002.02138.x

    Article  PubMed  Google Scholar 

Download references

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Funding

The authors gratefully acknowledge funding by the Mexican Council for Science and Technology (CONACyT) (grant number 438330), The Irish Research Council (grant number GOIPG/2017/1049) and Science Foundation Ireland (SFI), via the SSPC Research Centre for Pharmaceuticals (grant number 12/RC/2275_P2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioscani Jiménez del Val .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aquino, I.G., del Val, I.J. (2021). Monoclonal Antibody Glycoengineering for Biopharmaceutical Quality Assurance. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_6

Download citation

Publish with us

Policies and ethics