Skip to main content

Impact of Temperature Fluctuations on Plant Morphological and Physiological Traits

  • Chapter
  • First Online:
Building Climate Resilience in Agriculture

Abstract

Impact of climate change on plant morphology, physiology, survival, and adaptation is becoming a global concern nowadays. Temperature fluctuations have detrimental effects on many plant morphological and physiological traits. Plant response to warming or chilling temperatures is considered as an important understanding for the agricultural ecosystems. Continuous increase in the global average temperature has significant impacts on the productivity of agricultural crops. Plant growth and development could be affected due to high and low temperature events under changing climate, topography, and land-sea thermal differences. Temperature fluctuations increase the forward and reverse biochemical reactions exponentially resulting in the denaturation of enzymes. Beyond optimal limit, depending on the duration and intensity of temperature, reversible or irreversible changes may lead to plant death. Resilience of plants can be predicted through investigating morphological, biochemical, and physiological analysis under different conditions. Plants evolve resilient mechanisms to survive under uncertain temperature stress by limiting the adverse impacts on the metabolic and physiological processes. Knowledge enhancement towards better understanding of various plant processes is needed to cope with detrimental impacts of temperature. This chapter is aimed to illustrate and understand the key plant morphological and physiological traits in response to temperature stress for better management of plants under changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahammed GJ, Yu J-Q (2016) Plant hormones under challenging environmental factors. Springer Nature Singapore Pvt. Ltd., 269. DOI: https://doi.org/10.1007/978-94-017-7758-2

    BookĀ  Google ScholarĀ 

  • Ahmad P, Prasad MNV (2011) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science & Business Media

    Google ScholarĀ 

  • Ahmad S, Abbas G, Fatima Z, Khan R, Anjum M, Ahmed M, Khan M, Porter C, Hoogenboom G (2017) Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. Journal of Agronomy and Crop Science

    Google ScholarĀ 

  • Ahmed M (2020) Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734, 139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Ahmed M, Stockle CO (2016). Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer Nature Singapore Pvt. Ltd., pp. 437. doi:https://doi.org/10.1007/978-3-319-32059-5.

    BookĀ  Google ScholarĀ 

  • Ahmed M, Hassan FU, Aslam MA, Akram MN, Akmal M. (2011) Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. African Journal of Biotechnology.10(45):9114-21. https://doi.org/10.5897/AJB11.1318

    ArticleĀ  Google ScholarĀ 

  • Ahmed M, Asif M, Hirani AH, Akram MN, Goyal A (2013) Modeling for Agricultural Sustainability: A Review. In Gurbir S, Bhullar GS, Bhullar NK (ed) Agricultural Sustainability Progress and Prospects in Crop Research. Elsevier, London

    Google ScholarĀ 

  • Ahmed, M, M. Asif, M. K. Nawaz Shah, Fayyaz-ul-Hassan and S. K. Basu (2014) Model for integrating traditional agronomic practices and modern biotech applications with omics approach in forage development for uplifting agricultural and rural economy in Pakistan. Omics Technologies and Crop Improvement Published: CRC Press. Editor(s): Noureddine Benkeblia

    Google ScholarĀ 

  • Ahmed M, Hassan F-U (2015) Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date. PloS one 10 (4):e0126097-e0126097. https://doi.org/10.1371/journal.pone.0126097

  • Ahmed M, Aslam M, Fayyaz ul H, Hayat R, Ahmad S (2019) Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pakistan Journal of Botany 51. https://doi.org/10.30848/PJB2019-2(10)

  • Ahmed K, Shabbir G, Ahmed M, Shah KN (2020) Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082

    ArticleĀ  ADSĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Aitken SN, Whitlock MC (2013) Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. Annual Review of Ecology, Evolution, and Systematics 44(1): 367ā€“388. https://doi.org/10.1146/annurev-ecolsys-110512-135747

  • Ali, S. et al., 2020. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health, 42, 121-133

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Anderson JT (2016) Plant fitness in a rapidly changing world. New Phytol 210 (1):81-87

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Anderson, T J, Inouye, W D, McKinney, M A, Colautti, I R, Mitchell-Olds, Tom (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences 279 (1743):3843-3852

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Aslam MA, Ahmed M, Stƶckle CO, Higgins SS, Hassan Fu, Hayat R (2017a) Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology? Frontiers in Environmental Science 5 (57). doi:https://doi.org/10.3389/fenvs.2017.00057

  • Aslam MA, Ahmed M, Fayyaz-ul-Hassan, Hayat R (2017b) Modeling Nitrogen Use Efficiency Under Changing Climate. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability Springer International Publishing, Cham, 71-90. doi:https://doi.org/10.1007/978-3-319-32059-5_4

    ChapterĀ  Google ScholarĀ 

  • Aslam Z, Khattak JZK, Ahmed M, Asif M (2017c) A Role of Bioinformatics in Agriculture. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, Springer International Publishing, Cham, pp 413-434. doi:https://doi.org/10.1007/978-3-319-32059-5_17

    ChapterĀ  Google ScholarĀ 

  • Aslam MU, Shehzad A, Ahmed M, Iqbal M, Asim M, Aslam M (2017d) QTL Modelling: An Adaptation Option in Spring Wheat for Drought Stress. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, Springer International Publishing, Cham, pp 113-136. doi:https://doi.org/10.1007/978-3-319-32059-5_6

    ChapterĀ  Google ScholarĀ 

  • Asseng S, Martre P, Maiorano A, Rƶtter RP, Oā€™Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K-C, Klein C, Koehler A-K, Liu B, Minoli S, Montesino San Martin M, MĆ¼ller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stƶckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Global Change Biology 25 (1):155-173. doi:https://doi.org/10.1111/gcb.14481

    ArticleĀ  ADSĀ  PubMedĀ  Google ScholarĀ 

  • Bartwal A, Mall R, Lohani P, Guru S, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32 (1):216-232

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Baudouin E (2011) The language of nitric oxide signalling. Plant Biol 13 (2):233-242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Begara-Morales JC, SĆ”nchez-Calvo B, Chaki M, Valderrama R, Mata-PĆ©rez C, LĆ³pez-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2013) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65 (2):527-538

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Begara-Morales JC, SĆ”nchez-Calvo B, Chaki M, Mata-PĆ©rez C, Valderrama R, Padilla MN, LĆ³pez-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66 (19):5983-5996

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science 4:273

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bogdanović J, Mojović M, Milosavić N, Mitrović A, Vučinić Ž, Spasojević I (2008) Role of fructose in the adaptation of plants to cold-induced oxidative stress. Eur Biophys J 37 (7):1241-1246

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants. John Wiley & Sons,

    Google ScholarĀ 

  • Carvalho C, Hayashi A, Braga M, Nievola C (2013) Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures. Plant Physiol Biochem 71:144-154. doi:https://doi.org/10.1016/j.plaphy.2013.07.005

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen C, Lei C, Deng A, Qian C, Hoogmoed W, Zhang W (2011) Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965ā€“2008. Agricultural and Forest Meteorology 151 (12):1580-1588

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8 (4):e1000357

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181 (5):604-611

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • De Pinto MC, Locato V, Paradiso A, De Gara L (2015) Role of redox homeostasis in thermo-tolerance under a climate change scenario. Ann Bot 116 (4):487-496

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212-228

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Deutsch C, Tewksbury J, Tigchelaar M, Battisti D, Merrill S, Huey R, Naylor R (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916-919. doi:https://doi.org/10.1126/science.aat3466

    ArticleĀ  ADSĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Diao Q, Song Y, Shi D, Qi H (2017) Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.00203

  • Dolev MB, Braslavsky I (2017) Ice-binding proteinsā€”not only for ice growth control. Temperature: Multidisciplinary Biomedical Journal 4 (2):112

    ArticleĀ  Google ScholarĀ 

  • Egigu M, Ibrahim M, Riikonen J, Yahya A, Holopainen T, Julkunen-Tiitto R, Holopainen J (2014) Effects of Rising Temperature on Secondary Compounds of Yeheb (Cordeauxia edulis Hemsley). American Journal of Plant Sciences 05:517-527. doi:https://doi.org/10.4236/ajps.2014.55066

    ArticleĀ  Google ScholarĀ 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan M, Shah A, Wu C, Yousaf M, Jatoi W, Alharby H, Alghabari F, Huang J (2016a) Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.01250

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Amanullah, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously Applied Plant Growth Regulators Affect Heat-Stressed Rice Pollens. Journal of Agronomy and Crop Science 202 (2):139-150. doi:https://doi.org/10.1111/jac.12148

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science 8 (1147). doi:https://doi.org/10.3389/fpls.2017.01147

  • Fahad S, Ihsan MZ, Khaliq A, Daur I, Saud S, Alzamanan S, Nasim W, Abdullah M, Khan IA, Wu C, Wang D, Huang J (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science 64 (11):1473-1488. doi:https://doi.org/10.1080/03650340.2018.1443213

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019a) Chapter 10ā€”Rice Responses and Tolerance to High Temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in Rice Research for Abiotic Stress Tolerance. Woodhead Publishing, pp 201-224. doi:https://doi.org/10.1016/B978-0-12-814332-2.00010-1

    ChapterĀ  Google ScholarĀ 

  • Fahad S., et al., 2019b. Suppressing photorespiration for the improvement in photosynthesis and crop yields: A review on the role of S-allantoin as a nitrogen source, Journal of Environmental Management, 237: 644-651

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant, Cell Environ 40 (4):462-472

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fitter AH, Hay RK (2012) Environmental physiology of plants. Academic press,

    Google ScholarĀ 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences 104 (4):1278-1282

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  • Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318 (5853):1134-1136

    ArticleĀ  ADSĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gao H-B, Chu Y-J, Xue H-W (2013) Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization. Molecular plant 6 (5):1692-1702

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gaupp F, Pflug G, Hochrainer-Stigler S, Hall J, Dadson S (2017) Dependency of crop production between global breadbaskets: a copula approach for the assessment of global and regional risk pools. Journal of Risk Analysis 37 (11):2212-2228

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48 (12):909-930

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gunderson CA, Oā€™Hara KH, Campion CM, Walker AV, Edwards NT (2010) Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biol 16 (8):2272-2286

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Guo Y, Liu S, Yang Z, Tian S, Sui N (2016) Responses of unsaturated fatty acid in membrane lipid and antioxidant enzymes to chilling stress in sweet sorghum (Sorghum bicolor (L.) Moench) seedling. J Agric Sci 8 (9):71

    Google ScholarĀ 

  • Gupta KJ, Hincha DK, Mur LA (2011) NO way to treat a cold. The New phytologist 189 (2):360-363

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hajiboland R (2014) Reactive oxygen species and photosynthesis. In: Oxidative damage to plants. Elsevier, pp 1-63

    Google ScholarĀ 

  • Hammad, MH., et al. (2020). Comparative effects of organic and inorganic fertilizers on soil organic carbon and wheat productivity under arid region. Communication in Soil Science and Plant Analysis, Accepted

    Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013a) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences 14 (5):9643-9684

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Fujita M (2013b) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic stress-Plant responses and applications in agriculture:169-205

    Google ScholarĀ 

  • Hayat S, Ahmad A (2010) Brassinosteroids: a class of plant hormone. Springer Science & Business Media

    Google ScholarĀ 

  • Hayat R, Ahmad S (2014) Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak J Bot 51:2

    Google ScholarĀ 

  • Herring SC, Hoell A, Hoerling MP, Kossin JP, Schreck III CJ, Stott PA (2016) Explaining extreme events of 2015 from a climate perspective. Bulletin of the American Meteorological Society 97 (12):S1-S145

    ADSĀ  Google ScholarĀ 

  • Hincha DK, Zuther E, Heyer AG (2003) The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochimica et Biophysica Acta (BBA)-Biomembranes 1612 (2):172-177

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014) Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Oxidative damage to plants. Elsevier, pp 477-522

    Google ScholarĀ 

  • Hu, S., Ding, Y., Zhu, C. (2020) Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. Frontiers in Plant Science, 11.

    Google ScholarĀ 

  • Hussain, S., et al (2020) Study of land cover/land use changes using RS and GIS: a case study of Multan district, Pakistan, Environmental Monitoring & Assessment, 192:2: 1-15

    Google ScholarĀ 

  • Ijaz W, Ahmed M, Fayyaz-ul-Hassan, Asim M, Aslam M (2017) Models to Study Phosphorous Dynamics Under Changing Climate. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, Springer International Publishing, Cham, pp 371-386. doi:https://doi.org/10.1007/978-3-319-32059-5_15

    ChapterĀ  Google ScholarĀ 

  • IPCC (2018) An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

    Google ScholarĀ 

  • Jabeen M, Gabriel HF, Ahmed M, Mahboob MA, Iqbal J (2017) Studying Impact of Climate Change on Wheat Yield by Using DSSAT and GIS: A Case Study of Pothwar Region. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, Springer International Publishing, Cham, pp 387-411. doi:https://doi.org/10.1007/978-3-319-32059-5_16

    ChapterĀ  Google ScholarĀ 

  • JanskĆ” A, MarÅ”Ć­k P, ZelenkovĆ” S, OvesnĆ” J (2010) Cold stress and acclimationā€“what is important for metabolic adjustment? Plant Biol 12 (3):395-405

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Johnson MT, Agrawal AA, Maron JL, Salminen JP (2009) Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment. J Evol Biol 22 (6):1295-1307

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Khan MN, Mobin M, Abbas ZK (2015) Nitric oxide and high temperature stress: a physiological perspective. In: Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, pp 77-93

    Google ScholarĀ 

  • Khan MA, Tahir A, Khurshid N, Husnain MIu, Ahmed M, Boughanmi H (2020) Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan. Sustainability 12 (3):1216. https://doi.org/10.3390/su12031216

  • Kimball S, Gremer JR, Angert AL, Huxman TE, Venable DL (2012) Fitness and physiology in a variable environment. Oecologia 169 (2):319-329

    ArticleĀ  ADSĀ  PubMedĀ  Google ScholarĀ 

  • Knaupp M, Mishra KB, Nedbal L, Heyer AG (2011) Evidence for a role of raffinose in stabilizing photosystem II during freezeā€“thaw cycles. Planta 234 (3):477-486

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195 (4):737-751

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett 38 (8)

    Google ScholarĀ 

  • Kremer A, Potts BM, Delzon S (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28 (1):22-36

    ArticleĀ  Google ScholarĀ 

  • Kumudini S, Andrade FH, Boote K, Brown G, Dzotsi K, Edmeades G, Gocken T, Goodwin M, Halter A, Hammer G (2014) Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agron J 106 (6):2087-2097

    ArticleĀ  Google ScholarĀ 

  • Larcher W, Piccioni M (1993) Ecofisiologia vegetal, vol 350. Edagricole,

    Google ScholarĀ 

  • Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. Plant abiotic stress 100:144

    Google ScholarĀ 

  • Lawson T, Davey PA, Yates SA, Bechtold U, Baeshen M, Baeshen N, Mutwakil MZ, Sabir J, Baker NR, Mullineaux PM (2014) C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. New Phytol 201 (3):862-873. doi:https://doi.org/10.1111/nph.12559

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li X, Gong B, Xu K (2014) Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Scientia Horticulturae 170:237-248

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liancourt P, Boldgiv B, Song DS, Spence LA, Helliker BR, Petraitis PS, Casper BB (2015) Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe. Global Change Biol 21 (9):3489-3498

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158 (1):451-464

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, MĆ¼ller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, Oā€™Leary GJ, Palosuo T, Priesack E, Ripoche D, Rƶtter RP, Semenov MA, Stƶckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0Ā°C above pre-industrial warming. Global Change Biology 25(4):1428-1444. doi:https://doi.org/10.1111/gcb.14542

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lu P, Sang W-G, Ma K (2008) Differential Responses of the Activities of Antioxidant Enzymes to Thermal Stresses between Two Invasive Eupatorium Species in China. Journal of integrative plant biology 50:393-401. doi:https://doi.org/10.1111/j.1744-7909.2007.00583.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mathur S, Jajoo A (2014) Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiol Mol Biol Plants 20 (4):527-531

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B: Biol 137:116-126

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mazorra L (2011) Brassinosteroid action and its relation with heat stress mechanisms in plants. In: Brassinosteroids: A Class of Plant Hormone. Springer, pp 289-307

    Google ScholarĀ 

  • Medeiros JS, Ward JK (2013) Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function. New Phytol 199 (3):738-748

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • MerilƤ J (2012) Evolution in response to climate change: in pursuit of the missing evidence. Bioessays 34 (9):811-818

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37 (3):118-125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mubeen, M. et al. (2019) Evaluating the climate change impact on crop water requirement of cotton- wheat in semi-arid conditions using DSSAT model. Journal of Water and Climate Change 11 (4): 1661-1675. doi: https://doi.org/10.2166/wcc.2019.179

    ArticleĀ  Google ScholarĀ 

  • Narayanan S, Tamura PJ, Roth MR, Prasad PV, Welti R (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant, Cell Environ 39 (4):787-803

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nguyen-Huy T, Deo RC, Mushtaq S, An-Vo D-A, Khan S (2018) Modeling the joint influence of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based approach. European journal of agronomy 98:65-81

    ArticleĀ  Google ScholarĀ 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15 (12):684-692

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature 4 (4):371-405

    ArticleĀ  Google ScholarĀ 

  • Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Frontiers in Plant Science 7:230

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in plant science 9:915

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oā€™Sullivan OS, Heskel MA, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Zhu L, Egerton JJ, Bloomfield KJ, Creek D (2017) Thermal limits of leaf metabolism across biomes. Global Change Biol 23 (1):209-223

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Obaid AY, Sabir JSM, Atef A, Liu X, Edris S, El-Domyati FM, Mutwakil MZ, Gadalla NO, Hajrah NH, Al-Kordy MA, Hall N, Bahieldin A, Jansen RK (2016) Analysis of transcriptional response to heat stress in Rhazya stricta. BMC Plant Biol 16 (1):252. doi:https://doi.org/10.1186/s12870-016-0938-6

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22 (1):53-65

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pedroso ANV, Lazarini RAdM, Tamaki V, Nievola CC (2010) In vitro culture at low temperature and ex vitro acclimatization of Vriesea inflata an ornamental bromeliad. Brazilian Journal of Botany 33:407-414

    ArticleĀ  Google ScholarĀ 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journal of Geophysical Research: Atmospheres 115 (D21)

    Google ScholarĀ 

  • Pirttioja N, Carter TR, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Journal of Climate Research 65:87-105

    ArticleĀ  Google ScholarĀ 

  • Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Travasso M, Barros V, Field C, Dokken D (2017) Food security and food production systems.

    Google ScholarĀ 

  • Qasim, M.Z, et al. (2020) The potential applications of picotechnology in biomedical and environmental sciences. Environmental Science and Pollution Research, Accepted

    Google ScholarĀ 

  • Ramani H, Mandavia M, Dave R, Bambharolia R, Silungwe H, Garaniya N (2017) Biochemical and physiological constituents and their correlation in wheat (Triticum aestivum L.) genotypes under high temperature at different development stages. International Journal of Plant Physiology and Biochemistry 9 (1):1-8

    ArticleĀ  Google ScholarĀ 

  • Rasheed R, Wahid A, Farooq M, Hussain I, Basra SM (2011) Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regulation 65 (1):35-45

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rasool A., et al. (2019) Quantification of Tl (I) and Tl (III) based on microcolumn separation through ICP-MS in river sediment pore water. Environmental Science and Pollution Research, Accepted

    Google ScholarĀ 

  • Repetto M, Semprine J, Boveris A (2012) Lipid peroxidation: chemical mechanism, biological implications and analytical determination, vol 1. chapter

    Google ScholarĀ 

  • Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions 12 (1):143-157

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, SĆ”nchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160 (2):315-321

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rubbo H, Trostchansky A (2014) Nitro-fatty acids: synthesis, properties, and role in biological system. In: Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, pp 153ā€“162

    Google ScholarĀ 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69 (3):225-232

    ArticleĀ  Google ScholarĀ 

  • Saidi Y, Peter M, Finka A, Cicekli C, Vigh L, Goloubinoff P (2010) Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant signaling & behavior 5 (12):1530-1533

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2016) The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature communications 7:12439

    ArticleĀ  ADSĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sehrawat A, Gupta R, Deswal R (2013) Nitric oxide-cold stress signalling cross-talk, evolution of a novel regulatory mechanism. Proteomics 13 (12-13):1816-1835

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shaw, RG, Etterson, RJ (2012) Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol 195 (4):752-765

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Shinozaki K, Uemura M, Bailey-Serres J, Bray E, Weretilnyk E (2015) Responses to abiotic stress. Biochemistry and molecular biology of plants:1051-1100

    Google ScholarĀ 

  • Singsaas E, Sharkey T (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant, Cell Environ 21 (11):1181-1188

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. Antioxidants and reactive oxygen species in plants:53-86

    Google ScholarĀ 

  • Stott PA, Allen M, Christidis N, Dole RM, Hoerling M, Huntingford C, Pall P, Perlwitz J, Stone D (2013) Attribution of weather and climate-related events. In: Climate science for serving society. Springer, pp 307ā€“337

    Google ScholarĀ 

  • Sugiyama Y, Kameshita I (2017) Multi-PK antibodies: Powerful analytical tools to explore the protein kinase world. Biochemistry and biophysics reports 11:40-45

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell Environ 35 (2):259-270

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo X, Shah J, Schlauch K (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. The Plant Cell 25 (9):3553-3569

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Taiz L, Zeiger E, MĆøller IM, Murphy A (2015) Plant physiology and development.

    Google ScholarĀ 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences 105 (31):10949-10954

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  • Tang T, Liu P, Zheng G, Li W (2016) Two phases of response to long-term moderate heat: Variation in thermotolerance between Arabidopsis thaliana and its relative Arabis paniculata. Phytochemistry 122:81-90. doi:https://doi.org/10.1016/j.phytochem.2016.01.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tarkowski ŁP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in plant science 6:203

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154 (2):571-577

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tollenaar M, Fridgen J, Tyagi P, Stackhouse Jr PW, Kumudini S (2017) The contribution of solar brightening to the US maize yield trend. Nature Climate Change 7(4): 275ā€“278. https://doi.org/10.1038/nclimate3234

  • Tollenaar M, Dzotsi K, Kumudini S, Boote K, Chen K, Hatfield J, Jones JW, Lizaso JI, Nielsen RL, Thomison P, Timlin DJ, Valentinuz O, Vyn TJ, Yang H (2020) Modeling the Effects of Genotypic and Environmental Variation on Maize Phenology: The Phenology Subroutine of the AgMaize Crop Model. Agroclimatology:173-200. https://doi.org/10.2134/agronmonogr60.2017.0038

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42 (1):579-620

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vitasse Y, Lenz A, Kƶrner C (2014) The interaction between freezing tolerance and phenology in temperate deciduous trees. Frontiers in Plant Science 5:541

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wahid A, Close T (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51 (1):104-109

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wahid A, Farooq M, Hussain I, Rasheed R, Galani S (2012) Responses and management of heat stress in plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, pp 135ā€“157

    Google ScholarĀ 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, MĆ¼ller C, Naresh Kumar S, Nendel C, Oā€™Leary GJ, Palosuo T, Priesack E, Ripoche D, Rƶtter RP, Semenov MA, Stƶckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of cropā€“environmentā€“management interactions. Global Change Biology 24 (11):5072-5083. doi:https://doi.org/10.1111/gcb.14411

    ArticleĀ  ADSĀ  PubMedĀ  Google ScholarĀ 

  • Wang, D., et al., 2019. Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote ā€œIdeotypeā€ breeding: Evidence from 3D visual modeling of ā€œsuperā€ rice (Oryza sativa L.). Plant Physiology and Biochemistry, 135: 499-510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153 (4):1895-1906

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yang H, Feng J, Zhai S, Dai Y, Xu M, Wu J, Shen M, Bian X, Koide RT, Liu J (2016) Long-term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice-wheat rotation system. Soil and Tillage Research 163:21-31. https://doi.org/10.1016/j.still.2016.05.003

    ArticleĀ  Google ScholarĀ 

  • Yang R, Guo L, Wang J, Wang Z, Gu Z (2017) Heat Shock Enhances Isothiocyanate Formation and Antioxidant Capacity of Cabbage Sprouts. J Food Process Preserv 41 (4):e13034. doi:https://doi.org/10.1111/jfpp.13034

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ye T, Zong S, Kleidon A, Yuan W, Wang Y, Shi P (2019) Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects. Climatic Change 155 (1):127-143. https://doi.org/10.1007/s10584-019-02450-5

  • Zamin M., et al. (2019) Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environmental Science and Pollution Research (Accepted)

    Google ScholarĀ 

  • Zhang S, Jiang H, Peng S, Korpelainen H, Li C (2010) Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J Exp Bot 62 (2):675-686

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Zhou R, Yu X, KjƦr KH, Rosenqvist E, Ottosen C-O, Wu Z (2015) Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environ Exp Bot 118:1-11

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A (2013) Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol Biochem 68:118-126

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • ŹrĆ³bek-Sokolnik A (2012) Temperature stress and responses of plants. In: Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, pp 113ā€“134

    Google ScholarĀ 

Download references

Acknowledgments

Thanks are extended to the Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan and Higher Education Commission, Pakistan.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, M.A. et al. (2022). Impact of Temperature Fluctuations on Plant Morphological and Physiological Traits. In: Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z. (eds) Building Climate Resilience in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-79408-8_3

Download citation

Publish with us

Policies and ethics