Skip to main content

Abstract

A project was executed to study genotype to phenotype relationships through QTL analysis in a recombinant inbred population of 77 lines and its integration in crop simulation modeling. RILs were generated from a cross between wheat cultivar Opata and SH-349. At two leaves stage drought was imposed using gravimetric method for drought maintenance at 40 % of field capacity and control was maintained at 100 % field capacity. At three phenological stages viz. jointing, flag leaf and anthesis; photosynthetic rate, stomatal conductance, transpiration rate, stomatal resistance were determined and chlorophyll content was measured. The RILs under study exhibited high phenotypic variation under drought stress. The physiological and phenological data was used to parameterize and validate Agricultural Production Systems Simulator (APSIM); a crop growth and development modeling tool. It was noted that APSIM predicted the phenology of all the 77 RILs with R2 value ranging from 0.72 to 0.98. The same mapping population was used for QTL mapping using computational approaches with observed data and simulated data from crop simulation model APSIM. In linkage group 1 a single QTL controlling 13 physiological traits and another QTL controlling a single trait for phenology was found. In linkage group 2 one QTL controlling 7 phenological traits was mapped. The QTLs which were mapped with real data were the same as with simulated data. This indicated that the simulated data with crop models under different environmental scenarios could be efficiently used for QTL mapping reducing the environmental contribution in G x E complex and suggesting the QTLs with more precision. Photosynthetic attributes of these RILs under drought stress at different phenological stages suggests complex physiological aspects critical for coping moisture stress and provides a strong basis for their utilization in wheat cultivar improvement for drought stress adaptation under changing climatic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, M. 2011. Climatic resilience of wheat using simulation approaches. In Pothowar. PhD, PMAS Arid Agricultural University Rawalpindi, Pakistan.

    Google Scholar 

  • Ahmed, M., M.N. Akram, M. Asim, M. Aslam, F.-U. Hassan, S. Higgins, C.O. Stöckle, and G. Hoogenboom. 2016. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture 123: 384–401.

    Article  Google Scholar 

  • Araus, J.L., G.A. Slafer, C. Royo, and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences 27: 377–412.

    Article  Google Scholar 

  • Asif, M., M.Y. Mujahid, I. Ahmad, N.S. Kisana, M. Asim, and S.Z. Mustafa. 2003. Determining direct selection criteria for identification of high yielding lines in bread wheat (Triticum aestivum). Pakistan Journal of Biological Sciences 6: 48–50.

    Article  Google Scholar 

  • Asim, M. 2008. Determination of spring wheat response to developmental windows using simulation approach. PhD, Quaid-e-Azam university, Islamabad, Pakistan.

    Google Scholar 

  • Birsin, M.A. 2005. Effects of removal of some photosynthetic structures on some yield components in wheat. Tarim Bilimleri Dergisi 11: 364–367.

    Google Scholar 

  • Chapman, S.C. 2008. Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161: 195–208.

    Article  Google Scholar 

  • Chapman, S.C., M.C. Cooper, G.L. Hammer, and D. Butler. 2000. Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields. Australian Journal of Agricultural Research 51: 209–222.

    Article  Google Scholar 

  • Chapman, S.C., M. Cooper, D. Podlich, and G.L. Hammer. 2003. Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agronomy Journal 95: 99–113.

    Article  Google Scholar 

  • Charles-Edwards, D.A. 1982. Physiological determinants of crop growth. Sydney: Academic.

    Google Scholar 

  • Chenu, K., S.C. Chapman, G.L. Hammer, G. Mclean, and F. Tardieu. 2008. Short-term responses of leaf growth rate to water deficit scale up to whole plant and crop levels. An integrated modelling approach in maize. Plant, Cell & Environment 31: 378–391.

    Article  Google Scholar 

  • Chenu, K., S.C. Chapman, F. Tardieu, G. Mclean, C. Welcker, and G.L. Hammer. 2009. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: ‘Gene-to-phenotype’ modeling approach. Genetics 183: 1507–1523.

    Article  Google Scholar 

  • Collard, B.C.Y., M.Z.Z. Jahufer, J.B. Brouwer, and E.C.K. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196.

    Article  CAS  Google Scholar 

  • Cooper, M., S.C. Chapman, D.W. Podlich, and G.L. Hammer. 2002. The G to P problem: Quantifying gene-to-phenotype relationships. In Silico Biology 2: 151–164.

    CAS  Google Scholar 

  • Cooper, M., D.W. Podlich, and O.S. Smith. 2005. Gene-to-phenotype models and complex trait genetics. Australian Journal of Agricultural Research 56: 895–918.

    Article  Google Scholar 

  • Earl, H.J. 2003. A precise gravimetric method for simulating drought stress in pot experiments. Crop Science 43: 1868–1873.

    Article  Google Scholar 

  • Feng, N., Z. He, Y. Zhang, X. Xia, and Y. Zhang. 2013. QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross. The Crop Journal 1: 166–171.

    Article  Google Scholar 

  • Hammer, G.L., and D.R. Jordan. 2007. An integrated systems approach to crop improvement. In Scale and complexity in plant systems research: Gene-plant-crop relations, Wageningen UR, F. S. N. D, ed. J.H.J. Spiertz, P.C. Struik, and H.H. van Laar, 45–61. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hammer, G. L., E.L. Van-Oosterom, S.C. Chapman, and G. Mclean. 2001. The economic theory of water and nitrogen dynamics and management in field crops. In Proceedings of the fourth Australian sorghum conference, eds. Borrell A. K, and R.G Henzell. Kooralbyn, Queensland. 5–8 February 2001. CD Rom Format. Range Media Pvt.Ltd., 2001.

    Google Scholar 

  • Hammer, G.L., M.J. Kropff, T.R. Sinclair, and J.R. Porter. 2002. Future contributions of crop modelling: From heuristics and supporting decision-making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy 18: 15–31.

    Article  Google Scholar 

  • Hammer, G.L., S. Chapman, E. Van Oosterom, and D.W. Podlich. 2005. Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems. Australian Journal of Agricultural Research 56: 947–960.

    Article  Google Scholar 

  • Hammer, G.L., M. Cooper, F. Tardieu, S. Welch, B. Walsh, F.V. Eeuwijk, S. Chapman, and C. Podlich. 2006. Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science 11: 587–593.

    Article  CAS  Google Scholar 

  • Karamat, F. 2012. Genetic linkage map construction in a hexaploid wheat population developed for mapping drought tolerance. http://agris.fao.org/agris-search/search.do?recordID=PK2014000261

  • Keating, B.A., P.S. Carberry, G.L. Hammer, M.E. Probert, M.J. Robertson, D. Holzworth, N.I. Huth, J.N.G. Hargreaves, H. Meinke, Z. Hochman, G. Mclean, K. Verburg, V. Snow, J.P. Dimes, M. Silburn, E. Wang, S. Brown, K.L. Bristow, S. Asseng, S. Chapman, R.L. Mccown, D.M. Freebairn, and C.J. SMITH. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267–288.

    Article  Google Scholar 

  • Kilic, H., and T. Yagbasanlar. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38: 164–170.

    Google Scholar 

  • Kleijnen, J.P.C. 1995. Verification and validation of simulation models. European Journal of Operational Research 82: 145–161.

    Article  Google Scholar 

  • Letort, V., P. Mahe, P.-H. Cournède, P. De Reffye, and B. Courtois. 2008. Quantitative genetics and functional–structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of Botany 101: 1243–1254.

    Article  Google Scholar 

  • Li, L., G.S. Mcmaster, Q. Yu, and J. Du. 2008. Simulating winter wheat development response to temperature: Modifying Malo’s exponential sine equation. Computers and Electronics in Agriculture 63: 274–281.

    Article  Google Scholar 

  • Ludwig, F., and S. Asseng. 2010. Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agricultural Systems 103: 127–136.

    Article  Google Scholar 

  • Mason, R.E., S. Mondal, F.W. Beecher, A. Pacheco, B. Jampala, A.M.H. Ibrahim, and D.B. Hays. 2010. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heatstress. Euphytica 174: 423–436.

    Article  Google Scholar 

  • Meinke, K. 1996. Topological methods for algebraic specification. Theoretical Computer Science 166: 263–290.

    Article  Google Scholar 

  • Messina, C., G. Hammer, Z. Dong, D. Podlich, and M. Cooper. 2009. Modelling crop improvement in a G*E*M framework via gene-trait phenotype relationships. In Crop physiology: Applications for genetic improvement and agronomy, ed. V.O. Sadras and D. Calderini, 235–265. Amsterdam/Boston: Academic Press/Elsevier.

    Chapter  Google Scholar 

  • Moose, S.P., and R.H. Mumm. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology 147: 969–977.

    Article  CAS  Google Scholar 

  • Nagarajan, S. 2005. Can India produce enough wheat even by 2020. Current Science 89: 1467–1471.

    Google Scholar 

  • Narjesi, V., M. Mardi, E.M. Hervan, A. Azadi, M.R. Naghavi, M. Ebrahimi, and A.A. Zali. 2015. Analysis of Quantitative Trait Loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt-stress conditions. Plant Molecular Biology Reporter 33: 2030–2040.

    Article  CAS  Google Scholar 

  • Nezhadahmadi, A., Z.H. Prodhan, and G. Faruq. 2013. Drought tolerance in wheat. The Scientific World Journal 2013: 610721.

    Article  Google Scholar 

  • Podlich, D.W., M. Cooper, K.E. Basford, and H.H. Geiger. 1999. Computer simulation of a selection strategy to accommodate genotype environment interactions in a wheat recurrent selection programme. Plant Breeding 118: 17–28.

    Article  Google Scholar 

  • Sinclair, T.R., and N.G. Seligman. 1996. Crop modeling: From infancy to maturity. Agronomy Journal 88: 698.

    Article  Google Scholar 

  • Wang, E., M.J. Robertson, G.L. Hammer, P.S. Carberry, D. Holzworth, H. Meinke, S.C. Chapman, J.N.G. Hargreaves, N.I. Huth, and G. Mclean. 2002. Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy 18: 121–140.

    Article  Google Scholar 

  • Yin, X., P. Stam, C.J. Dourleijn, and M.J. Kropff. 1999. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theoretical and Applied Genetics 99: 244–253.

    Article  CAS  Google Scholar 

  • Yin, X., S. Chasalow, C.J. Dourleijn, P. Stam, and M.J. Kropff. 2000a. Coupling estimated effects of QTLs for physiological traits to a crop growth model: Predicting yield variation among recombinant inbred lines in barley. Heredity 85: 539–549.

    Article  CAS  Google Scholar 

  • Yin, X., M.J. Kropff, J. Goudriaan, and P. Stam. 2000b. A model analysis of yield differences among recombinant inbred lines in barley. Agronomy Journal 92: 114–120.

    Article  Google Scholar 

  • Yu, M., G.-Y. Chen, L.-Q. Zhang, Y.-X. Liu, D.-C. Liu, J.-R. Wang, Z.-E. Pu, L. Zhang, X.-J. Lan, Y.-M. Wei, C.-J. Liu, and Y.-L. Zheng. 2014. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. Journal of Integrative Agriculture 13: 1835–1844.

    Article  Google Scholar 

  • Zadoks, J.C., T.T. Chang, and C.F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415–421.

    Article  Google Scholar 

  • Zhang, L.Y., C. Ravel, M. Bernard, F. Balfourier, P. Leroy, C. Feuillet, and P. Sourdille. 2006. Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theoretical and Applied Genetics 113: 407–418.

    Article  CAS  Google Scholar 

  • Zhang, G., Y. Wang, Y. Guo, Y. Zhao, F. Kong, and S. Li. 2015. Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat. The Crop Journal 3: 135–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umair Aslam .

Editor information

Editors and Affiliations

Appendix 1: Modified Genetic Coefficients in APSIM Wheat -Module for Wheat Mapping Population

Appendix 1: Modified Genetic Coefficients in APSIM Wheat -Module for Wheat Mapping Population

Parameters

Vernalization sensitivity

Photothermal sensitivity

Thermal time for grain filling

Radiation use efficiency at floral initiation/flowering

Default Value in APSIM -Wheat Module

1.5

3

610

1.24/1.24

DRMP-5-1

0

3.45

635

3.00/2.24

DRMP-5-3

0

3.5

644

3.00/2.24

DRMP-5-4

0

3.46

636

3.00/2.24

DRMP-5-05

0

3.44

633

3.00/2.24

DRMP-5-6

0

3.45

635

3.00/2.24

DRMP-5-8

0

3.5

644

3.00/2.24

DRMP-5-10

0

3.6

662

3.00/2.24

DRMP-5-12

0

3.5

644

3.00/2.24

DRMP-5-13

0

3.3

624

3.00/2.24

DRMP-5-14

0

3.4

626

3.00/2.24

DRMP-5-15

0

3.34

625

3.00/2.24

DRMP-5-16

0

3.45

635

3.00/2.24

DRMP-5-17

0

3.4

625

3.00/2.24

DRMP-5-19

0

3.4

625

3.00/2.24

DRMP-5-20

0

3.5

644

3.00/2.24

DRMP-5-21

0

3.6

662

3.00/2.24

DRMP-5-22

0

3.6

662

3.00/2.24

DRMP-5-24

0

3.6

662

3.00/2.24

DRMP-5-25

0

3.6

662

3.00/2.24

DRMP-5-26

0

3.5

644

3.00/2.24

DRMP-5-28

0

3.5

644

3.00/2.24

DRMP-5-29

0

3.6

662

3.00/2.24

DRMP-5-30

0

3.45

635

3.00/2.24

DRMP-5-31

0

3.2

621

3.00/2.24

DRMP-5-32

0

3.5

644

3.00/2.24

DRMP-5-33

0

3.6

662

3.00/2.24

DRMP-5-35

0

3.6

662

3.00/2.24

DRMP-5-36

0

3.5

644

3.00/2.24

DRMP-5-37

0

3.7

653

3.00/2.24

DRMP-5-38

0

3.6

661

3.00/2.24

DRMP-5-44

0

3.5

644

3.00/2.24

DRMP-5-45

0

3.5

644

3.00/2.24

DRMP-5-46

0

3.5

644

3.00/2.24

DRMP-5-47

0

3.6

662

3.00/2.24

DRMP-5-48

0

3.6

662

3.00/2.24

DRMP-5-49

0

3.5

644

3.00/2.24

DRMP-5-50

0

3.6

662

3.00/2.24

DRMP-5-51

0

3.5

644

3.00/2.24

DRMP-5-53

0

3.5

644

3.00/2.24

DRMP-5-54

0

3.5

644

3.00/2.24

DRMP-5-56

0

3.6

645

3.00/2.24

DRMP-5-57

0

3.5

644

3.00/2.24

DRMP-5-58

0

3.5

644

3.00/2.24

DRMP-5-61

0

3.5

644

3.00/2.24

DRMP-5-62

0

3.4

626

3.00/2.24

DRMP-5-64

0

3.6

663

3.00/2.24

DRMP-5-65

0

3.4

626

3.00/2.24

DRMP-5-66

0

3.6

663

3.00/2.24

DRMP-5-71

0

3.4

626

3.00/2.24

DRMP-5-72

0

3.5

644

3.00/2.24

DRMP-5-73

0

3.6

663

3.00/2.24

DRMP-5-74

0

3.5

644

3.00/2.24

DRMP-5-76

0

3.5

644

3.00/2.24

DRMP-5-78

0

3.6

663

3.00/2.24

DRMP-5-80

0

3.6

663

3.00/2.24

DRMP-5-81

0

3.5

644

3.00/2.24

DRMP-5-83

0

3.5

644

3.00/2.24

DRMP-5-84

0

3.6

663

3.00/2.24

DRMP-5-85

0

3.4

626

3.00/2.24

DRMP-5-86

0

3.5

644

3.00/2.24

DRMP-5-87

0

3.6

663

3.00/2.24

DRMP-5-88

0

3.6

663

3.00/2.24

DRMP-5-89

0

3.5

644

3.00/2.24

DRMP-5-90

0

3.4

626

3.00/2.24

DRMP-5-91

0

3.6

663

3.00/2.24

DRMP-5-92

0

3.5

644

3.00/2.24

DRMP-5-94

0

3.6

663

3.00/2.24

DRMP-5-95

0

3.4

626

3.00/2.24

DRMP-5-96

0

3.5

644

3.00/2.24

DRMP-5-97

0

3.5

644

3.00/2.24

DRMP-5-101

0

3.6

663

3.00/2.24

DRMP-5-102

0

3.6

663

3.00/2.24

DRMP-5-103

0

3.4

626

3.00/2.24

DRMP-5-104

0

3.5

644

3.00/2.24

DRMP-5-105

0

3.5

644

3.00/2.24

DRMP-5-107

0

3.6

663

3.00/2.24

DRMP-5-108

0

3.4

626

3.00/2.24

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aslam, M.U., Shehzad, A., Ahmed, M., Iqbal, M., Asim, M., Aslam, M. (2017). QTL Modelling: An Adaptation Option in Spring Wheat for Drought Stress. In: Ahmed, M., Stockle, C. (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-32059-5_6

Download citation

Publish with us

Policies and ethics