Skip to main content

Role of Heat Shock Proteins in Immune Modulation in Malaria

  • Chapter
  • First Online:
Heat Shock Proteins of Malaria

Abstract

Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host’s and the parasite’s heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel A, Steeg C, Aminkiah F, Addai-Mensah O, Addo M, Gagliani N, Casar C, Yar DD, Owusu-Dabo E, Jacobs T (2018) Differential expression pattern of co-inhibitory molecules on CD4+ T cells in uncomplicated versus complicated malaria. Sci Rep 8:1–9

    Google Scholar 

  • Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153:85–94

    Article  CAS  PubMed  Google Scholar 

  • Acharya P, Chaubey S, Grover M, Tatu U (2012) An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS One 7:e44605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aprile FA, Dhulesia A, Stengel F, Roodveldt C, Benesch JLP, Tortora P, Robinson CV, Salvatella X, Dobson CM, Cremades N (2013) Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One 8:1–7. https://doi.org/10.1371/journal.pone.0067961

    Article  CAS  Google Scholar 

  • Arispe N, Doh M, De Maio A (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armijo G, Okerblom J, Cauvi DM, Lopez V, Schlamadinger DE, Kim J, Arispe N, De Maio A (2014) Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress Chaperones 19:877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  • Atochina O, Harn D (2005) LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin Diagn Lab Immunol 12:1041–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baleux F, Dubois P (1992) Novel version of multiple antigenic peptide allowing incorporation on a cysteine functionalized lysine tree. Int J Pept Protein Res 40:7–12

    Article  CAS  PubMed  Google Scholar 

  • Banumathy G, Singh V, Tatu U (2002) Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 277:3902–3912

    Article  CAS  PubMed  Google Scholar 

  • Banumathy G, Singh V, Pavithra SR, Tatu U (2003) Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278:18336–18345

    Article  CAS  PubMed  Google Scholar 

  • Behl A, Kumar V, Bisht A, Panda JJ, Hora R, Mishra PC (2019) Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’. Sci Rep 9:1–17

    Article  CAS  Google Scholar 

  • Behr C, Sarthou JL, Rogier C, Trape JF, Dat MH, Michel JC, Aribot G, Dieye G, Claverie JM, Druihle P (1992) Antibodies and reactive T cells against the malaria heat-shock protein Pf72/Hsp70-1 and derived peptides in individuals continuously exposed to Plasmodium falciparum. J Immunol 149:3321–3330

    Article  CAS  PubMed  Google Scholar 

  • Biebl MM, Riedl M, Buchner J (2020) Hsp90 co-chaperones form plastic genetic networks adapted to client maturation. Cell Rep 32:108063

    Article  CAS  PubMed  Google Scholar 

  • Bijker EM, Teirlinck AC, Schats R, van Gemert G-J, van de Vegte-Bolmer M, van Lieshout L, IntHout J, Hermsen CC, Scholzen A, Visser LG (2014) Cytotoxic markers associate with protection against malaria in human volunteers immunized with Plasmodium falciparum sporozoites. J Infect Dis 210:1605–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64:442–451

    Article  CAS  PubMed  Google Scholar 

  • Blisnick T, Lema F, Mazie JC, Pereira da Silva LP (1988) Plasmodium falciparum: analysis of B epitopes of a polypeptide antigen expressed in Escherichia coli, using monoclonal antibodies. Exp Parasitol 67:247–256

    Article  CAS  PubMed  Google Scholar 

  • Böttger E, Multhoff G, Kun JF, Esen M (2012) Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS One 7:e33774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulet C, Doerig CD, Carvalho TG (2018) Manipulating eryptosis of human red blood cells: a novel antimalarial strategy? Front Cell Infect Microbiol 8:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrack KS, Hart GT, Hamilton SE (2019) Contributions of natural killer cells to the immune response against Plasmodium. Malar J 18:1–9

    Article  CAS  Google Scholar 

  • Cabral FJ, Vianna LG, Medeiros MM, Carlos BC, Martha RD, Silva NM, Da Silva LHP, Stabeli RG, Wunderlich G (2017) Immunoproteomics of Plasmodium falciparum-infected red blood cell membrane fractions. Mem Inst Oswaldo Cruz 112. https://doi.org/10.1590/0074-02760170041

  • Calderwood SK, Theriault JR, Gong J (2005) Message in a bottle: role of the 70 kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 35:2518–2527

    Article  CAS  PubMed  Google Scholar 

  • Chakafana G, Zininga T, Shonhai A (2019) Comparative structure-function features of Hsp70s of Plasmodium falciparum and human origins. Biophys Rev 11:591–602

    Article  CAS  PubMed Central  Google Scholar 

  • Charnaud SC, Dixon MWA, Nie CQ, Chappell L, Sanders PR, Nebl T, Hanssen E, Berriman M, Chan J-A, Blanch AJ (2017) The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites. PLoS One 12:e0181656

    Article  PubMed  PubMed Central  Google Scholar 

  • Charnaud SC, Jonsdottir TK, Sanders PR, Bullen HE, Dickerman BK, Kouskousis B, Palmer CS, Pietrzak HM, Laumaea AE, Erazo A (2018) Spatial organization of protein export in malaria parasite blood stages. Traffic 19:605–623

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Amaladoss A, Ye W, Liu M, Dummler S, Kong F, Wong LH, Loo HL, Loh E, Tan SQ (2014) Human natural killer cells control Plasmodium falciparum infection by eliminating infected red blood cells. Proc Natl Acad Sci USA 111:1479–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua C-S, Low H, Sim T-S, Tatu U (2014) Co-chaperones of Hsp90 in Plasmodium falciparum and their concerted roles in cellular regulation. Parasitology 141:1177

    Article  CAS  PubMed  Google Scholar 

  • Coch C, Hommertgen B, Zillinger T, Daßler-Plenker J, Putschli B, Nastaly M, Kümmerer BM, Scheunemann JF, Schumak B, Specht S, Schlee M (2019) Human TLR8 senses RNA from Plasmodium falciparum-infected red blood cells which is uniquely required for the IFN-γ response in NK cells. Front Immunol 10:371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day J, Passecker A, Beck HP, Vakonakis I (2019) The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. FASEB J 33:14611–14624

    Article  PubMed  PubMed Central  Google Scholar 

  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, Sanders PR, Lundie RJ, Maier AG, Cowman AF, Crabb BS (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Koning-Ward TF, Dixon MWA, Tilley L, Gilson PR (2016) Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 14:494

    Article  PubMed  CAS  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 16:235–249

    Article  CAS  PubMed  Google Scholar 

  • De Souza JB, Williamson KH, Otani T, Playfair JH (1997) Early gamma interferon responses in lethal and nonlethal murine blood-stage malaria. Infect Immun 65:1593–1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I (2020) Association of inhibitory killer cell immunoglobulin-like receptor ligands with higher Plasmodium falciparum parasite prevalence. J Infect Dis 224:175–183

    Article  CAS  PubMed Central  Google Scholar 

  • Doolan DL, Martinez-Alier N (2006) Immune response to pre-erythrocytic stages of malaria parasites. Curr Mol Med 6:169–185

    Article  CAS  PubMed  Google Scholar 

  • Dubois P, Dedet JP, Fandeur T, Roussilhon C, Jendoubi M, Pauillac S, Mercereau-Puijalon O, Pereira Da Silva L (1984) Protective immunization of the squirrel monkey against asexual blood stages of Plasmodium falciparum by use of parasite protein fractions. Proc Natl Acad Sci USA 81:229–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois P, Jendoubi M, Pauillac S, Jouin H, Pereira da Silva L (1985) Studies on the molecular biology of Plasmodium falciparum polypeptide antigens related to the immunoprotective response. Parassitologia 27:31–53

    CAS  PubMed  Google Scholar 

  • El Bakkouri M, Pow A, Mulichak A, Cheung KLY, Artz JD, Amani M, Fell S, de Koning-Ward TF, Goodman CD, McFadden GI, Ortega J, Hui R, Houry WA (2010) The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J Mol Biol 404:456–477

    Article  PubMed  CAS  Google Scholar 

  • Goodier MR, Wolf AS, Riley EM (2020) Differentiation and adaptation of natural killer cells for anti-malarial immunity. Immunol Rev 293:25–37

    Article  CAS  PubMed  Google Scholar 

  • Gross C, Koelch W, De Maio A, Arispe N, Multhoff G (2003) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278:41173–41181

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Chaubey S, Ranade S, Tatu U (2013) Identification of an exported heat shock protein 70 in Plasmodium falciparum. Parasite 20:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Gudi T, Gupta CM (1993) Hsp 70-like protein in rhesus erythrocyte cytosol and its interactions with membrane skeleton under heat and pathologic stress. J Biol Chem 268:21344–21350

    Article  CAS  PubMed  Google Scholar 

  • Gysin J, Fandeur T, Pereira da Silva L (1982) Kinetics of the humoral immune response to blood-induced falciparum malaria in the squirrel monkey Saimiri sciureus. Ann Immunol (Paris) 133D:95–102

    CAS  Google Scholar 

  • Harrison TE, Mørch AM, Felce JH, Sakoguchi A, Reid AJ, Arase H, Dustin ML, Higgins MK (2020) Structural basis for RIFIN-mediated activation of LILRB1 in malaria. Nature 587:309–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart GT, Tran TM, Theorell J, Schlums H, Arora G, Rajagopalan S, Sangala AJ, Welsh KJ, Traore B, Pierce SK, Crompton PD (2019) Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria. JEM 216:1280–1290

    Article  CAS  Google Scholar 

  • Hegde RS, Keenan RJ (2011) Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 12:787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermsen CC, Konijnenberg Y, Mulder L, Loé C, van Deuren M, van der Meer JWM, van Mierlo GJ, Eling WMC, Hack CE, Sauerwein RW (2003) Circulating concentrations of soluble granzyme A and B increase during natural and experimental Plasmodium falciparum infections. Clin Exp Immunol 132:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Castañeda MA, Happ K, Cattalani F, Wallimann A, Blanchard M, Fellay I, Scolari B, Lannes N, Mbagwu S, Fellay B (2020) γδ T Cells Kill Plasmodium falciparum in a granzyme-and granulysin-dependent mechanism during the late blood stage. J Immunol 204:1798–1809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho CM, Beck JR, Lai M, Cui Y, Goldberg DE, Egea PF, Zhou ZH (2018) Malaria parasite translocon structure and mechanism of effector export. Nature 561:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth I, Multhoff G, Sonnleitner A, Vigh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778:1653–1664

    Article  PubMed  CAS  Google Scholar 

  • Jha P, Laskar S, Dubey S, Bhattacharyya MK, Bhattacharyya S (2017) Plasmodium Hsp40 and human Hsp70: a potential cochaperone-chaperone complex. Mol Biochem Parasitol 214:10–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94

    Article  CAS  PubMed  Google Scholar 

  • Kaminski L, Riehn M, Abel A, Steeg C, Yar DD, Addai-Mensah O, Aminkiah F, Owusu-Dabo E, Jacobs T, Mackroth MS (2019) Cytotoxic T cell-derived granzyme b is increased in severe Plasmodium falciparum malaria. Front Immunol 10:2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaguchi T, Nagoya M, Amano T, Suzuki M, Minami M (1996) Analysis of roles of natural killer cells in defense against Plasmodium chabaudi in mice. Parasitol Res 82:352–357

    Article  CAS  PubMed  Google Scholar 

  • Kopacz J, Kumar N (1999) Murine gamma delta T lymphocytes elicited during Plasmodium yoelii infection respond to Plasmodium heat shock proteins. Infect Immun 67:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 10:3699–3707

    Article  CAS  PubMed  Google Scholar 

  • Külzer S, Rug M, Brinkmann K, Cannon P, Cowman A, Lingelbach K, Blatch GL, Maier AG, Przyborski JM (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12:1398–1420

    Article  PubMed  CAS  Google Scholar 

  • Külzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER, Blatch GL, Crabb BS, Gilson PR, Przyborski JM (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–1795

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Ng S, Engwerda C (2019) The role of IL-10 in malaria: a double edged sword. Front Immunol 10:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG (2020) Complement in malaria immunity and vaccines. Immunol Rev 293:38–56

    Article  CAS  PubMed  Google Scholar 

  • LaMonte GM, Orjuela-Sanchez P, Calla J, Wang LT, Li S, Swann J, Cowell AN, Zou BY, Mohamed AM, Galarce ZH, Moreno M (2019) Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection. Nat Commun 10:1–3

    Article  CAS  Google Scholar 

  • Lamprecht C, Gehrmann M, Madl J, Römer W, Multhoff G, Ebner A (2018) Molecular AFM imaging of Hsp70-1A association with dipalmitoyl phosphatidylserine reveals membrane blebbing in the presence of cholesterol. Cell Stress Chaperones 23:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurens MB (2018) The promise of a malaria vaccine—are we closer? Annu Rev Microbiol 72:273–292

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren H-G, Kärre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  CAS  PubMed  Google Scholar 

  • Lopez V, Cauvi DM, Arispe N, De Maio A (2016) Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes. Cell Stress Chaperones 21:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughland JR, Woodberry T, Boyle MJ, Tipping PE, Piera KA, Amante FH, Kenangalem E, Price RN, Engwerda CR, Anstey NM, McCarthy JS (2019) Plasmodium falciparum activates CD16+ dendritic cells to produce tumor necrosis factor and interleukin-10 in subpatent malaria. J Infect Dis 219:660–671

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Song G, Beale K, Yan J, Garst E, Feng J, Lund E, Catteruccia F, Springer TA (2020) Design and assessment of TRAP-CSP fusion antigens as effective malaria vaccines. Plos One 15:e0216260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz HU, Nater M, Stammler P (1993) Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology 80:191–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mabate B, Zininga T, Ramatsui L, Makumire S, Achilonu I, Dirr HW, Shonhai A (2018) Structural and biochemical characterization of Plasmodium falciparum Hsp70-x reveals functional versatility of its C-terminal EEVN motif. Proteins 86:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri R, Ali-Hassanzadeh M, Shafiei R, Savardashtaki A, Karimazar M, Anvari E, Nguewa P, Rashidi S (2020) The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum. Parasitology 147:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Matthews KM, Kalanon M, de Koning-Ward TF (2019) Uncoupling the threading and unfoldase actions of Plasmodium HSP101 reveals differences in export between soluble and insoluble proteins. mBio 10:e01106-19

    Google Scholar 

  • Mavoungou E, Luty AJ, Kremsner PG (2003) Natural killer (NK) cell-mediated cytolysis of Plasmodium falciparum-infected human red blood cells in vitro. Eur Cytokine Netw 14:134–142

    CAS  PubMed  Google Scholar 

  • Moebius J, Guha R, Peterson M, Abdi K, Skinner J, Li S, Arora G, Traore B, Rajagopalan S, Long EO (2020) PD-1 Expression on NK cells in malaria-exposed individuals is associated with diminished natural cytotoxicity and enhanced antibody-dependent cellular cytotoxicity. Infect Immun 88:e00711–e00719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan K, Moulin P, Stevenson MM (1997) Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J Immunol 159:4990–4998

    Article  CAS  PubMed  Google Scholar 

  • Morishima Y, Kanelakis KC, Murphy PJM, Lowe ER, Jenkins GJ, Osawa Y, Sunahara RK, Bratt WB (2003) The hsp90 cochaperone p23 is the limiting component of the multiprotein hsp90/hsp70-based chaperone system in vivo where it acts to stabilize the client protein: hsp90 complex. J Biol Chem 278:48754–48763

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18:576–585

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G (2009) Activation of natural killer cells by heat shock protein 70. 2002. Int J Hyperthermia 25:169–175

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Multhoff G, Seier S, Stangl S, Sievert W, Shevtsov M, Werner C, Pockley AG, Blankenstein C, Hildebrandt M, Offner R, Ahrens N, Kokowski K, Hautmann M, Rödel C, Fietkau R, Huber RM, Hautmann H, Duell T, Molls M, Specht H, Devechka M, Haller B, Sauter A, Combs SE (2020) Targeted natural killer cell–based adoptive immunotherapy for the treatment of patients with NSCLC after radiochemotherapy: a randomized phase II clinical trial. Clin Cancer Res 26:5368–5379

    Article  CAS  PubMed  Google Scholar 

  • Njunge JM, Mandal P, Przyborski JM, Boshoff A, Pesce E-R, Blatch GL (2015) PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity. Int J Biochem Cell Biol 62:47–53

    Article  CAS  PubMed  Google Scholar 

  • Nylandsted J, Hansen MG, Danielewich A, Fehrenbach N, Hoyer-Hansen M, Lademann U, Multhof G, Rhode M, Jäättelä M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley MS, Gerald N, McCutchan TF, Aravind L, Kumar S (2011) Clinical and molecular aspects of malaria fever. Trends Parasitol 27:442–449

    Article  CAS  PubMed  Google Scholar 

  • Orago AS, Facer CA (1991) Cytotoxicity of human natural killer (NK) cell subsets for Plasmodium falciparum erythrocytic schizonts: stimulation by cytokines and inhibition by neomycin. Clin Exp Immunol 86:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallavi R, Acharya P, Chandran S, Daily JP, Tatu U (2010) Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malar J 9:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavithra SR, Banumathy G, Joy O, Singh V, Tatu U (2004) Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279:46692–46699

    Article  CAS  PubMed  Google Scholar 

  • Perl M, Denk S, Kalbitz M, Huber-Lang M (2012) Granzyme B: a new crossroad of complement and apoptosis. In: Current topics in innate immunity II. Springer, pp 135–146

    Chapter  Google Scholar 

  • Perraut R, Mercereau-Puijalon O, Mattei D, Bourreau E, Garraud O, Bonnemains B, Pereia de Silva L, Michel JC (1995) Induction of opsonizing antibodies after injection of recombinant Plasmodium falciparum vaccine candidate antigens in preimmune Saimiri sciureus monkeys. Infect Immun 63:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen W, Külzer S, Engels S, Zhang Q, Ingmundson A, Rug M, Maier AG, Przyborski JM (2016) J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes. Int J Parasitol 46:519–525

    Article  CAS  PubMed  Google Scholar 

  • Pihlajamaa T, Kajander T, Knuuti J, Horkka K, Sharma A, Permi P (2013) Structure of Plasmodium falciparum TRAP (thrombospondin-related anonymous protein) A domain highlights distinct features in apicomplexan von Willebrand factor A homologues. Biochem J 450:469–476

    Article  CAS  PubMed  Google Scholar 

  • Pooe OJ, Köllisch G, Heine H, Shonhai A (2017) Plasmodium falciparum Heat shock protein 70 lacks immune modulatory activity. Protein Peptide Lett 24:503–510

    Article  CAS  Google Scholar 

  • Posfai D, Eubanks AL, Keim AI, Lu K-Y, Wang GZ, Hughes PF, Kato N, Haystead TA, Derbyshire ER (2018) Identification of Hsp90 inhibitors with anti-Plasmodium activity. Antimicrob Agents Chemother 62:e01799–e01717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39:1977–2000

    Article  CAS  PubMed  Google Scholar 

  • Priya PP, Grover M, Tatu US, Natarajan V (2015) Characterization of precursor PfHsp60 in Plasmodium falciparum cytosol during its asexual development in human erythrocytes. PLoS One 10:e0136401

    Article  CAS  Google Scholar 

  • Qiao Y, Liu B, Li Z (2008) Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells. Cancer Immun 8:12

    PubMed  PubMed Central  Google Scholar 

  • Raballah E, Kempaiah P, Karim Z, Orinda GO, Otieno MF, Perkins DJ, Ong’echa JM (2017) CD4 T cell expression of IFN-γ and IL-17 in pediatric malarial anemia. PLoS One 12:e0175864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rénia L, Mattei D, Goma J, Pied S, Dubois P, Miltgen F, Nussler A, Matile H, Menegaux F, Gentilini M (1990) A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. Eur J Immunol 20:1445–1449

    Article  PubMed  Google Scholar 

  • Rhiel M, Bittl V, Tribensky A, Charnaud SC, Strecker M, Müller S, Lanzer M, Sanchez C, Schaeffer-Reiss C, Westermann B, Crabb BS, Gilson PR, Külzer S, Przyborski JM (2016) Trafficking of the exported P. falciparum chaperone PfHsp70x. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  • Roetynck S, Baratin M, Johansson S, Lemmers C, Vivier E, Ugolini S (2006) Natural killer cells and malaria. Immunol Rev 214:251–263

    Article  CAS  PubMed  Google Scholar 

  • Röhl A, Wengler D, Madl T, Lagleder S, Tippel F, Herrmann M, Hendrix J, Richter K, Hack G, Schmid AB (2015) Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 6:1–14

    Article  CAS  Google Scholar 

  • Roy N, Nageshan RK, Ranade S, Tatu U (2012) Heat shock protein 90 from neglected protozoan parasites. Biochim Biophys Acta 1823:707–711

    Article  CAS  PubMed  Google Scholar 

  • Rug M, Maier AG (2011) The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 63:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Sanchez GI, Sedegah M, Rogers WO, Jones TR, Sacci J, Witney A, Carucci DJ, Kumar N, Hoffman SL (2001) Immunogenicity and protective efficacy of a Plasmodium yoelii Hsp60 DNA vaccine in BALB/c mice. Infect Immun 69:3897–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling D, Gehrmann M, Steinem C, De Maio A, Pockley AG, Abend M, Molls M, Multhoff G (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23:2467–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze J, Kwiatkowski M, Borner J, Schlüter H, Bruchhaus I, Burmester T, Spielmann T, Pick C (2015) The Plasmodium falciparum exportome contains non-canonical PEXEL/HT proteins. Mol Microbiol 97:301–314

    Article  CAS  PubMed  Google Scholar 

  • Seraphim TV, Ramos CHI, Borges JC (2014) The interaction networks of Hsp70 and Hsp90 in the Plasmodium and Leishmania parasites. In: The molecular chaperones interaction networks in protein folding and degradation, pp 445–481. Springer

    Google Scholar 

  • Seraphim TV, Chakafana G, Shonhai A, Houry WA (2019) Plasmodium falciparum R2TP complex: driver of parasite Hsp90 function. Biophys Rev 11:1007–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Shevtsov M, Multhoff G (2016) Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Shonhai A (2010) Plasmodial heat shock proteins: targets for chemotherapy. FEMS Immunol Med Microbiol 58:61–74

    Article  CAS  PubMed  Google Scholar 

  • Sijwali PS (2018) Interaction with complement proteins and dendritic cells implicates LCCL domain-containing proteins (CCps) of malaria parasites in immunomodulation. Biochem J 475:3311–3314

    Article  CAS  PubMed  Google Scholar 

  • Silva NSM, Bertolino-Reis DE, Dores-Silva PR, Anneta FB, Seraphim TV, Barbosa LRS, Borges JC (2020) Structural studies of the Hsp70/Hsp90 organizing protein of Plasmodium falciparum and its modulation of Hsp70 and Hsp90 ATPase activities. BBA Proteins Proteom 1868:140282

    Article  CAS  Google Scholar 

  • Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L (2019) Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 16:430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JD, Craig AG (2005) The surface of the Plasmodium falciparum-infected erythrocyte. Curr Issues Mol Biol 7:81–93

    PubMed  Google Scholar 

  • Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US, Günther C, Gunther S, Habl G, Hautmann H (2015) Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx)—from preclinical studies to a clinical phase II trial. Front Immunol 6:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spielmann T, Gilberger T-W (2015) Critical steps in protein export of Plasmodium falciparum blood stages. Trends Parasitol 31:514–525

    Article  CAS  PubMed  Google Scholar 

  • Stangl S, Wortmann A, Guertler U, Multhoff G (2006) Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. J Immunol 176:6270–6276

    Article  CAS  PubMed  Google Scholar 

  • Stanisic DI, McCall MB (2021) Correlates of malaria vaccine efficacy. Expert Rev Vaccines. https://doi.org/10.1080/14760584.2021.1882309

  • Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL (2011) NK cells and immune “memory”. J Immunol 186:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhuo X, Zhao X, Yang Y, Chen X, Yao C, Du A (2017) The heat shock protein 90 of Toxoplasma gondii is essential for invasion of host cells and tachyzoite growth. Parasite 24:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega VL, Rodriguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2020) World Malaria Report 2020. World Health Organisation, Geneva. https://www.who.int/publications/i/item/9789240015791

  • Zhang H, Huang W (2006) Fusion proteins of Hsp70 with tumor-associated antigen acting as a potent tumor vaccine and the C-terminal peptide-binding domain of Hsp70 being essential in inducing antigen-independent anti-tumor response in vivo. Cell Stress Chaperones 11:216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Hisaeda H, Kano S, Matsumoto Y, Hao YP, Looaresuwan S, Aikawa M, Himeno K (2001) Antibodies specific for heat shock proteins in human and murine malaria. Microb Infect 3:363–367

    Article  CAS  Google Scholar 

  • Zhang Q, Ma C, Oberli A, Zinz A, Engels S, Przyborski JM (2017) Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep 7:42188

    Google Scholar 

  • Zininga T, Shonhai A (2019) Small molecule inhibitors targeting the heat shock protein system of human obligate protozoan parasites. Int J Mol Sci 20:5930

    Article  CAS  PubMed Central  Google Scholar 

  • Zininga T, Makumire S, Gitau GW, Njunge JM, Pooe OJ, Klimek H, Scheurr R, Raifer H, Prinsloo E, Przyborski JM, Hoppe H, Shonhai A (2015) Plasmodium falciparum hop (PfHop) interacts with the Hsp70 chaperone in a nucleotide-dependent fashion and exhibits ligand selectivity. PLoS One 10:1–28

    Article  Google Scholar 

  • Zininga T, Ramatsui L, Shonhai A (2018) Heat shock proteins as immunomodulants. Molecules 23:2846

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawanda Zininga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zininga, T., Böttger, E., Multhoff, G. (2021). Role of Heat Shock Proteins in Immune Modulation in Malaria. In: Shonhai, A., Picard, D., Blatch, G.L. (eds) Heat Shock Proteins of Malaria. Advances in Experimental Medicine and Biology, vol 1340. Springer, Cham. https://doi.org/10.1007/978-3-030-78397-6_7

Download citation

Publish with us

Policies and ethics