Skip to main content
Log in

Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death. Extracellular hsp act as signaling molecules directed at activating a systemic response to stress. The export of hsp requires the translocation from the cytosol into the extracellular milieu across the plasma membrane. We have proposed that membrane insertion is the initial step in this export process. We investigated the interaction of the major inducible hsp from mammalian (Hsp70) and bacterial (DnaK) species with liposomes. We found that mammalian Hsp70 displayed a high specificity for negatively charged phospholipids, such as phosphatidyl serine, whereas DnaK interacted with all lipids tested regardless of the charge. Both proteins were inserted into the lipid bilayer as demonstrated by resistance to acid or basic washes that was confirmed by partial protection from proteolytic cleavage. Several regions of mammalian Hsp70 were inserted into the membrane with a small portion of the N-terminus end exposed to the outer phase of the liposome. In contrast, the N-terminus end of DnaK was inserted into the membrane, exposing the C-terminus end outside the liposome. Mammalian Hsp70 was found to make high oligomeric complexes upon insertion into the membranes whereas DnaK only formed dimers within the lipid bilayer. These observations suggest that both Hsp70s interact with lipids, but mammalian Hsp70 displays a high degree of specificity and structure as compared with the bacterial form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, Doh M, De Maio A (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645

    Article  CAS  PubMed  Google Scholar 

  • Armijo G, Okerblom J, Cauvi DM, Lopez V, Schlamadinger DE, Kim J, Arispe N, De Maio A (2014) Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress Chaperones 19:877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  • Bausero MA, Page DT, Osinaga E, Asea A (2004) Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol 25:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botzeler C, Li G, Issels RD, Multhoff G (1998) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3:6–11

    Article  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Reilly P, McCarty J, Walker GC (1993) Immunogold localization of the DnaK heat shock protein in Escherichia coli cells. J Gen Microbiol 139:95–99

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249

    Article  CAS  PubMed  Google Scholar 

  • De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehrmann M, Liegisch G, Schmitz G, Anderson R, Steinem C, De Maio A, Pockley G, Multhoff G (2008) Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3. PLoS One 3, e1925

    Article  PubMed  PubMed Central  Google Scholar 

  • Genevaux P, Georgopoulos C, Kelley WL (2007) The Hsp70 chaperone of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66:840–857

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Murakami T, Tea SS, Takeuchi A, Koga T, Okada S, Suico MA, Shuto T, Kai H (2007) Heat shock suppresses human NK cell cytotoxicity via regulation of perforin. Int J Hyperth 23:657–665

    Article  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  CAS  PubMed  Google Scholar 

  • Horváth I, Multhoff G, Sonnleitner A, Vígh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778:1653–1664

    Article  PubMed  Google Scholar 

  • Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    Article  CAS  PubMed  Google Scholar 

  • Kityk R, Vogel M, Schlecht R, Bukau B, Mayer MP (2015) Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun 6:8308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Macazo FC, White RJ (2014) Monitoring charge flux to quantify unusual ligand-induced ion channel activity for use in biological nanopore-based sensors. Anal Chem 86:5519–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCalister C, Kdeiss B, Nikolaidis N (2016) Biochemical characterization of the interaction between HspA1A and phospholipids. Cell Stress Chaperones 21:41–53

    Article  Google Scholar 

  • Mills DR, Haskell MD, Callanan HM, Flanagan D, Brilliant K, Yang D, Hixson D (2010) Monoclonal antibody to novel cell surface epitope on Hsc70 promotes morphogenesis of bile ducts in newborn rat liver. Cell Stress Chaperones 15:39–53

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G (2007) Heat shock protein (Hsp70): membrane location, export and immunological relevance. Methods 43:229–237

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24:287–308

    Article  CAS  PubMed  Google Scholar 

  • Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Høyer-Hansen M, Weber E, Multhoff G, Rohde M, Jäättelä M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockley AG, Henderson B, Multhoff G (2014) Extracellular cell stress proteins as biomarkers of human disease. Biochem Soc Trans 42:1744–1751

    Article  CAS  PubMed  Google Scholar 

  • Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125:5251–5255

    Article  CAS  PubMed  Google Scholar 

  • Roberts J, Menoret A, Cohen N (1999) Cell surface expression of the endoplasmic reticular heat shock protein gp96 is phylogenetically conserved. J Immunol 163:4133–4139

    Google Scholar 

  • Sarbeng EB, Liu Q, Tian X, Yang J, Li H, Wong JL, Zhou L, Liu Q (2015) A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein. J Biol Chem 290:8849–8862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling D, Gehrmann M, Steinem C, De Maio A, Pockley AG, Abend M, Molls M, Multhoff G (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23:2467–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seydlova G, Halada P, Fiser R, Toman O, Ulrych A, Svobodova J (2012) DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. J Appl Microbiol 112:765–774

    Article  CAS  PubMed  Google Scholar 

  • Skar CK, Kruger PG, Bakken V (2003) Characterisation and subcellular localisation of the GroEL-like and DnaK-like proteins isolated from Fusobacterium nucleatum ATCC 10953. Anaerobe 9:305–312

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev 9:581–593

    CAS  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    Article  CAS  PubMed  Google Scholar 

  • Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY (2006) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107:1636–1642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, grant numbers GM R01 09845 and GM R25 083275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Maio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, V., Cauvi, D.M., Arispe, N. et al. Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes. Cell Stress and Chaperones 21, 609–616 (2016). https://doi.org/10.1007/s12192-016-0685-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0685-5

Keywords

Navigation