Skip to main content
Log in

Interaction of heat shock protein 70 with membranes depends on the lipid environment

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock proteins (hsp) are well recognized for their protein folding activity. Additionally, hsp expression is enhanced during stress conditions to preserve cellular homeostasis. Hsp are also detected outside cells, released by an active mechanism independent of cell death. Extracellular hsp appear to act as signaling molecules as part of a systemic response to stress. Extracellular hsp do not contain a consensus signal for their secretion via the classical ER-Golgi compartment. Therefore, they are likely exported by an alternative mechanism requiring translocation across the plasma membrane. Since Hsp70, the major inducible hsp, has been detected on surface of stressed cells, we propose that membrane interaction is the first step in the export process. The question that emerges is how does this charged cytosolic protein interact with lipid membranes? Prior studies have shown that Hsp70 formed ion conductance pathways within artificial lipid bilayers. These early observations have been extended herewith using a liposome insertion assay. We showed that Hsp70 selectively interacted with negatively charged phospholipids, particularly phosphatidyl serine (PS), within liposomes, which was followed by insertion into the lipid bilayer, forming high-molecular weight oligomers. Hsp70 displayed a preference for less fluid lipid environments and the region embedded into the lipid membrane was mapped toward the C-terminus end of the molecule. The results from our studies provide evidence of an unexpected ability of a large, charged protein to become inserted into a lipid membrane. This observation provides a new paradigm for the interaction of proteins with lipid environments. In addition, it may explain the export mechanism of an increasing number of proteins that lack the consensus secretory signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angelidis CE, Lazaridis I, Pagoulatos GN (1999) Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms. Eur J Biochem 259:505–512

    Article  CAS  PubMed  Google Scholar 

  • Aprile FA, Dhulesia A, Stengel F, Roodveldt C, Benesch JL, Tortora P, Robinson CV, Salvatella X, Dobson CM, Cremades N (2013) Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One 8:e67961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1–40)] in bilayer membranes. Proc Natl Acad Sci U S A 90:10573–10577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci U S A 93:1710–1715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N, Triniolles F, Ladjimi MM (1996) Effect of nucleotides, peptides, and unfolded proteins on the self-association of the molecular chaperone HSC70. J Biol Chem 271:18471–18476

    Article  CAS  PubMed  Google Scholar 

  • Bhargava K, Feix JB (2004) Membrane binding, structure, and localization of cecropin-mellitin hybrid peptides: a site-directed spin-labeling study. Biophys J 86:329–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botzler C, Schmidt J, Luz A, Jennen L, Issels R, Multhoff G (1998) Differential Hsp70 plasma-membrane expression on primary human tumors and metastases in mice with severe combined immunodeficiency. Int J Cancer 77:942–948

    Article  CAS  PubMed  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    Article  CAS  PubMed  Google Scholar 

  • Buchsteiner A, Hauss T, Dante S, Dencher NA (2010) Alzheimer's disease amyloid-beta peptide analogue alters the ps-dynamics of phospholipid membranes. Biochim Biophys Acta 1798:1969–1976

    Article  CAS  PubMed  Google Scholar 

  • Chang YW, Sun YJ, Wang C, Hsiao CD (2008) Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. J Biol Chem 283:15502–15511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles and the Stress Observation System: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246

    Article  PubMed  Google Scholar 

  • Gable JE, Schlamadinger DE, Cogen AL, Gallo RL, Kim JE (2009) Fluorescence and UV resonance raman study of peptide-vesicle interactions of human cathelicidin LL-37 and its F6W and F17W mutants. Biochemistry 48:11264–11272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao B, Eisenberg E, Greene L (1996) Effect of constitutive 70-kDa heat shock protein polymerization on its interaction with protein substrate. J Biol Chem 271:16792–16797

    Article  CAS  PubMed  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guidon PT Jr, Hightower LE (1986) Purification and initial characterization of the 71-kilodalton rat heat-shock protein and its cognate as fatty acid binding proteins. Biochemistry 25:3231–3239

    Article  CAS  PubMed  Google Scholar 

  • Guilvout I, Chami M, Berrier C, Ghazi A, Engel A, Pugsley AP, Bayan N (2008) In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD. J Mol Biol 382:13–23

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Structural Mol Biol 16:574–581

    Article  CAS  Google Scholar 

  • Heuck AP, Hotze EM, Tweten RK, Johnson AE (2000) Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  CAS  PubMed  Google Scholar 

  • Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K + channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Lee YJ, Corry PM (1992) Constitutive HSP70: oligomerization and its dependence on ATP binding. J Cell Physiol 153:353–361

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K + channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102:15441–15446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CC, Sun Y, Huang HW (2010) Membrane-mediated peptide conformation change from alpha-monomers to beta-aggregates. Biophys J 98:2236–2245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K + channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K + channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  • Mahalka AK, Kirkegaard T, Jukola LT, Jaatela M, Kinnunen PKJ (2014) Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. Biochim Biophys Acta 1838:1344–1361

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Schroder H, Rudiger S, Paal K, Laufen T, Bukau B (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586–593

    Article  CAS  PubMed  Google Scholar 

  • Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271:1988–1992

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G (2007) Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43:229–237

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Elwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341–4350

    CAS  PubMed  Google Scholar 

  • Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24:287–308

    Article  CAS  PubMed  Google Scholar 

  • Otzen DE, Andersen KK (2013) Folding of outer membrane proteins. Arch Biochem Biophys 531:34–43

    Article  CAS  PubMed  Google Scholar 

  • Rojas E, Arispe N, Haigler HT, Burns AL, Pollard HB (1992) Identification of annexins as calcium channels in biological membranes. Bone Miner 17:214–218

    Article  CAS  PubMed  Google Scholar 

  • Schilling D, Gehrmann M, Steinem C, De Maio A, Pockley AG, Abend M, Molls M, Multhoff G (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23:2467–2477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schow EV, Freites JA, Cheng P, Bernsel A, von Heijne G, White SH, Tobias DJ (2011) Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol 239:35–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz GE (2000) Beta-Barrel membrane proteins. Curr Opin Struct Biol 10:443–447

    Article  CAS  PubMed  Google Scholar 

  • Shanmugavadivu B, Apell HJ, Meins T, Zeth K, Kleinschmidt JH (2007) Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. J Mol Biol 368:66–78

    Article  CAS  PubMed  Google Scholar 

  • Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299

    Article  CAS  PubMed  Google Scholar 

  • Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39:10284–10293

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Stanley AM, Fleming KG (2008) The process of folding proteins into membranes: challenges and progress. Arch Biochem Biophys 469:46–66

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  • Vega VL, Rodriguez-Silva M, Frey T, Gehrmann M, Diaz JC, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Andersen KK, Vad BS, Otzen DE (2013) OmpA can form folded and unfolded oligomers. Biochim Biophys Acta 1834:127–136

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1998) Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 376:339–352

    Article  Google Scholar 

  • Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wimley WC, Hristova K, Ladokhin AS, Silvestro L, Axelsen PH, White SH (1998) Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J Mol Biol 277:1091–1110

    Article  CAS  PubMed  Google Scholar 

  • Witte K, Olausson BE, Walrant A, Alves ID, Vogel A (2013) Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochim Biophys Acta 1828:824–833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, grant numbers GM R01 098455 and GM R25 083275. We would like to thank Dr. Majid Ghassemian for the mass spectrometry analysis. We are also grateful to Dr. C.C. King for providing us with Hsp70-GST construct. The editorial assistance of Molly Wofford is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Maio.

Additional information

Gabrielle Armijo, Jonathan Okerblom, and David M. Cauvi contributed equally to this project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armijo, G., Okerblom, J., Cauvi, D.M. et al. Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress and Chaperones 19, 877–886 (2014). https://doi.org/10.1007/s12192-014-0511-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0511-x

Keywords

Navigation