Skip to main content

Experimental Models

  • Chapter
  • First Online:
The Right Heart

Abstract

Animal models that mimic key features of the transition from right ventricular (RV) adaptation towards decompensation and RV failure in the context of pulmonary hypertension are urgently needed to better understand disease-causing mechanisms and RV maladaptive remodeling processes. The availability of animal models in which changes in RV structure and function are induced, such as the pulmonary artery banding model, provides valuable tools to advance our current understanding of RV (mal-) adaptation processes. These models add value by informing about direct cardiac effects of established therapies for pulmonary hypertensive diseases, and as demonstrated by this model in particular can be used to study changes in RV structure and function independent of changes in the pulmonary vasculature. Here, we discuss the advantages and disadvantages of such animal models which allow informative studies on RV structure and function associated with pulmonary vasculopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COPD:

Chronic obstructive pulmonary disease

CTEPH:

Chronic thromboembolic pulmonary hypertension

CYP3A4:

Cytochrome P450

FDG:

18F-fluorodeoxyglucose

FHR:

Fawn-hooded rat

HFD:

High-fat diet

LAD:

Left anterior descending

LHD:

Left-heart disease

LV:

Left ventricular

MCT:

Monocrotaline

MCTP:

Dehydromonocrotaline

MI:

Myocardial infarction

MMP:

Matrix metalloproteinase

MS:

Metabolic syndrome

OSA:

Obstructive sleep apnea

PA AcT:

Pulmonary artery acceleration time

PAB:

Pulmonary artery banding

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary artery pressure

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RV:

Right ventricle

SUHx:

Sugen plus hypoxia

TAC:

Transverse aortic constriction

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VEGF:

Vascular endothelial growth factor

References

  1. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250–7.

    Article  PubMed  Google Scholar 

  2. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.

    Article  PubMed  Google Scholar 

  3. Huez S, Vachiery JL, Unger P, Brimioulle S, Naeije R. Tissue Doppler imaging evaluation of cardiac adaptation to severe pulmonary hypertension. Am J Cardiol. 2007;100:1473–8.

    Article  PubMed  Google Scholar 

  4. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8:443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, Hemnes AR, Kawut SM, Kline JA, Kolb TM, et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med. 2018;198:e15–43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.

    Article  PubMed  Google Scholar 

  7. Naeije R, Huez S. Expert opinion on available options treating pulmonary arterial hypertension. Expert Opin Pharmacother. 2007;8:2247–65.

    Article  CAS  PubMed  Google Scholar 

  8. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.

    Article  PubMed  Google Scholar 

  9. Peacock AJ, Naeije R, Galie N, Rubin L. End-points and clinical trial design in pulmonary arterial hypertension: have we made progress? Eur Respir J. 2009;34:231–42.

    Article  CAS  PubMed  Google Scholar 

  10. Borgdorff MA, Dickinson MG, Berger RM, Bartelds B. Right ventricular failure due to chronic pressure load: what have we learned in animal models since the NIH working group statement? Heart Fail Rev. 2015;20:475–91.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53(1):1801887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chesney CF, Allen JR. Endocardial fibrosis associated with monocrotaline-induced pulmonary hypertension in nonhuman primates (Macaca arctoides). Am J Vet Res. 1973;34:1577–81.

    CAS  PubMed  Google Scholar 

  13. Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, Wilson H, Reeves JT. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol. 1987;62:821–30.

    Article  CAS  PubMed  Google Scholar 

  14. Villamor E, Le Cras TD, Horan MP, Halbower AC, Tuder RM, Abman SH. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Phys. 1997;272:L1013–20.

    CAS  Google Scholar 

  15. Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S, Naeije R, Dewachter L. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J. 2012;33:1017–26.

    Article  CAS  PubMed  Google Scholar 

  16. Hubloue I, Rondelet B, Kerbaul F, Biarent D, Milani GM, Staroukine M, Bergmann P, Naeije R, Leeman M. Endogenous angiotensin II in the regulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit Care. 2004;8:R163–71.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ryan J, Bloch K, Archer SL. Rodent models of pulmonary hypertension: harmonisation with the World Health Organisation’s categorisation of human PH. Int J Clin Pract Suppl. 2011:15–34.

    Google Scholar 

  18. Tello K, Gall H, Richter M, Ghofrani A, Schermuly R. Right ventricular function in pulmonary (arterial) hypertension. Herz. 2019;44:509–16.

    Article  CAS  PubMed  Google Scholar 

  19. Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol. 1992;22:307–25.

    Article  CAS  PubMed  Google Scholar 

  20. Reid MJ, Lame MW, Morin D, Wilson DW, Segall HJ. Involvement of cytochrome P450 3A in the metabolism and covalent binding of 14C-monocrotaline in rat liver microsomes. J Biochem Mol Toxicol. 1998;12:157–66.

    Article  CAS  PubMed  Google Scholar 

  21. Kasahara Y, Kiyatake K, Tatsumi K, Sugito K, Kakusaka I, Yamagata S, Ohmori S, Kitada M, Kuriyama T. Bioactivation of monocrotaline by P-450 3A in rat liver. J Cardiovasc Pharmacol. 1997;30:124–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg HC, Rabinovitch M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Phys. 1988;255:H1484–91.

    CAS  Google Scholar 

  23. Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, Ermert M, Weissmann N, Rose F, Guenther A, et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004;169:39–45.

    Article  PubMed  Google Scholar 

  24. Stenmark K, Meyrick B, Galie N, Mooi WJ, Mcmurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–32.

    Article  CAS  PubMed  Google Scholar 

  25. Miranda CL, Henderson MC, Schmitz JA, Buhler DR. Protective role of dietary butylated hydroxyanisole against chemical-induced acute liver damage in mice. Toxicol Appl Pharmacol. 1983;69:73–80.

    Article  CAS  PubMed  Google Scholar 

  26. Yasuhara K, Mitsumori K, Shimo T, Onodera H, Takahashi M, Hayashi Y. Mice with focal pulmonary fibrosis caused by monocrotaline are insensitive to urethane induction of lung tumorigenesis. Toxicol Pathol. 1997;25:574–81.

    Article  CAS  PubMed  Google Scholar 

  27. Molteni A, Ward WF, Ts’ao CH, Solliday NH. Monocrotaline pneumotoxicity in mice. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;57:149–55.

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi S, Mitsumori K, Imaida K, Imazawa T, Yasuhara K, Uneyama C, Hayashi Y. Establishment of an animal model for pulmonary fibrosis in mice using monocrotaline. Toxicol Pathol. 1995;23:63–71.

    Article  CAS  PubMed  Google Scholar 

  29. Deyo JA, Kerkvliet NI. Immunotoxicity of the pyrrolizidine alkaloid monocrotaline following subchronic administration to C57Bl/6 mice. Fundam Appl Toxicol. 1990;14:842–9.

    Article  CAS  PubMed  Google Scholar 

  30. Deyo JA, Kerkvliet NI. Tier-2 studies on monocrotaline immunotoxicity in C57BL/6 mice. Toxicology. 1991;70:313–25.

    Article  CAS  PubMed  Google Scholar 

  31. Deyo JA, Reed RL, Buhler DR, Kerkvliet NI. Role of metabolism in monocrotaline-induced immunotoxicity in C57BL/6 mice. Toxicology. 1994;94:209–22.

    Article  CAS  PubMed  Google Scholar 

  32. Dumitrascu R, Koebrich S, Dony E, Weissmann N, Savai R, Pullamsetti SS, Ghofrani HA, Samidurai A, Traupe H, Seeger W, et al. Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury. BMC Pulm Med. 2008;8:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pak O, Janssen W, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT, Weissmann N. Animal models of pulmonary hypertension: role in translational research. Drug Disc Today Dis Models. 2010;7:89–97.

    Article  CAS  Google Scholar 

  34. Todorovich-Hunter L, Johnson DJ, Ranger P, Keeley FW, Rabinovitch M. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Investig. 1988;58:184–95.

    CAS  PubMed  Google Scholar 

  35. Schermuly RT, Pullamsetti SS, Kwapiszewska G, Dumitrascu R, Tian X, Weissmann N, Ghofrani HA, Kaulen C, Dunkern T, Schudt C, et al. Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: target for reverse-remodeling therapy. Circulation. 2007;115:2331–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kay JM, Harris P, Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax. 1967;22:176–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115:2811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buermans HP, Redout EM, Schiel AE, Musters RJ, Zuidwijk M, Eijk PP, van Hardeveld C, Kasanmoentalib S, Visser FC, Ylstra B, Simonides WS. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics. 2005;21:314–23.

    Article  CAS  PubMed  Google Scholar 

  39. Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, Tanonaka K. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci. 2009;111:33–43.

    Article  CAS  PubMed  Google Scholar 

  40. Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol. 2006;291:H2424–30.

    Article  CAS  PubMed  Google Scholar 

  41. Ruiter G, de Man FS, Schalij I, Sairras S, Grunberg K, Westerhof N, van der Laarse WJ, Vonk-Noordegraaf A. Reversibility of the monocrotaline pulmonary hypertension rat model. Eur Respir J. 2013;42:553–6.

    Article  CAS  PubMed  Google Scholar 

  42. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60.

    Article  PubMed  Google Scholar 

  43. Kojonazarov B, Sydykov A, Pullamsetti SS, Luitel H, Dahal BK, Kosanovic D, Tian X, Majewski M, Baumann C, Evans S, et al. Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. Int J Cardiol. 2012;167(6):2630–7.

    Article  PubMed  Google Scholar 

  44. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl). 2010;88:47–60.

    Article  CAS  Google Scholar 

  45. Kosanovic D, Kojonazarov B, Luitel H, Dahal BK, Sydykov A, Cornitescu T, Janssen W, Brandes RP, Davie N, Ghofrani HA, et al. Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension. Respir Res. 2011;12:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Campian ME, Hardziyenka M, Michel MC, Tan HL. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol. 2006;373:391–400.

    Article  CAS  PubMed  Google Scholar 

  47. Handoko ML, Lamberts RR, Redout EM, de Man FS, Boer C, Simonides WS, Paulus WJ, Westerhof N, Allaart CP, Vonk-Noordegraaf A. Right ventricular pacing improves right heart function in experimental pulmonary arterial hypertension: a study in the isolated heart. Am J Physiol Heart Circ Physiol. 2009;297:H1752–9.

    Article  CAS  PubMed  Google Scholar 

  48. Campian ME, Verberne HJ, Hardziyenka M, de Bruin K, Selwaness M, van den Hoff MJ, Ruijter JM, van Eck-Smit BL, de Bakker JM, Tan HL. Serial noninvasive assessment of apoptosis during right ventricular disease progression in rats. J Nucl Med. 2009;50:1371–7.

    Article  PubMed  Google Scholar 

  49. Ecarnot-Laubriet A, Assem M, Poirson-Bichat F, Moisant M, Bernard C, Lecour S, Solary E, Rochette L, Teyssier JR. Stage-dependent activation of cell cycle and apoptosis mechanisms in the right ventricle by pressure overload. Biochim Biophys Acta. 2002;1586:233–42.

    Article  CAS  PubMed  Google Scholar 

  50. de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, van der Velden J, Westerhof N, Paulus WJ, Vonk-Noordegraaf A. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5:97–105.

    Article  PubMed  CAS  Google Scholar 

  51. Campian ME, Hardziyenka M, de Bruin K, van Eck-Smit BL, de Bakker JM, Verberne HJ, Tan HL. Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur J Heart Fail. 2010;12:653–8.

    Article  CAS  PubMed  Google Scholar 

  52. Umar S, Hessel M, Steendijk P, Bax W, Schutte C, Schalij M, van der Wall E, Atsma D, van der Laarse A. Activation of signaling molecules and matrix metalloproteinases in right ventricular myocardium of rats with pulmonary hypertension. Pathol Res Pract. 2007;203:863–72.

    Article  CAS  PubMed  Google Scholar 

  53. Benoist D, Stones R, Drinkhill M, Bernus O, White E. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2011;300:H2230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, et al. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2012;302:H2381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Umar S, Lee JH, de Lange E, Iorga A, Partow-Navid R, Bapat A, van der Laarse A, Saggar R, Ypey DL, Karagueuzian HS, Eghbali M. Spontaneous ventricular fibrillation in right ventricular failure secondary to chronic pulmonary hypertension. Circ Arrhythm Electrophysiol. 2012;5:181–90.

    Article  PubMed  Google Scholar 

  56. Archer SL, Fang YH, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ. 2013;3:144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Partovian C, Adnot S, Eddahibi S, Teiger E, Levame M, Dreyfus P, Raffestin B, Frelin C. Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension. Am J Phys. 1998;275:H1948–56.

    CAS  Google Scholar 

  58. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, Thenappan T, Bache-Wiig P, Piao L, Paul J, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185:670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fang W, Zhao L, Xiong CM, Ni XH, He ZX, He JG, Wilkins MR. Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease. Pulm Circ. 2012;2:365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zehendner CM, Valasarajan C, Werner A, Boeckel JN, Bischoff FC, John D, Weirick T, Glaser SF, Rossbach O, Jaé N, et al. Long noncoding RNA TYKRIL plays a role in pulmonary hypertension via the p53-mediated regulation of PDGFRβ. Am J Respir Crit Care Med. 2020;202:1445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Y, Sun Z, Zhu J, Xiao B, Dong J, Li X. LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. J Cell Physiol. 2018;233:4801–14.

    Article  CAS  PubMed  Google Scholar 

  62. Lei S, Peng F, Li ML, Duan WB, Peng CQ, Wu SJ. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2020;319:H377–91.

    Article  CAS  PubMed  Google Scholar 

  63. Omura J, Habbout K, Shimauchi T, Wu WH, Breuils-Bonnet S, Tremblay E, Martineau S, Nadeau V, Gagnon K, Mazoyer F, et al. Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation. 2020;142:1464–84.

    Article  CAS  PubMed  Google Scholar 

  64. Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol. 1997;151:1019–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG, Kao PN. Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats. Am J Respir Crit Care Med. 2002;166:1403–8.

    Article  PubMed  Google Scholar 

  66. Nishimura T, Faul JL, Berry GJ, Veve I, Pearl RG, Kao PN. 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med. 2001;163:498–502.

    Article  CAS  PubMed  Google Scholar 

  67. Homma N, Nagaoka T, Karoor V, Imamura M, Taraseviciene-Stewart L, Walker LA, Fagan KA, McMurtry IF, Oka M. Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone. Am J Physiol Lung Cell Mol Physiol. 2008;295:L71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Faul JL, Nishimura T, Berry GJ, Benson GV, Pearl RG, Kao PN. Triptolide attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med. 2000;162:2252–8.

    Article  CAS  PubMed  Google Scholar 

  69. Welsh DJ, Peacock AJ, MacLean M, Harnett M. Chronic hypoxia induces constitutive p38 mitogen-activated protein kinase activity that correlates with enhanced cellular proliferation in fibroblasts from rat pulmonary but not systemic arteries. Am J Respir Crit Care Med. 2001;164:282–9.

    Article  CAS  PubMed  Google Scholar 

  70. Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ. Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2009;296:H1312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A, Wilkins MR. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation. 2001;104:424–8.

    Article  CAS  PubMed  Google Scholar 

  72. Dahal BK, Heuchel R, Pullamsetti SS, Wilhelm J, Ghofrani HA, Weissmann N, Seeger W, Grimminger F, Schermuly RT. Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-beta. Pulm Circ. 2011;1:259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwapiszewska G, Markart P, Dahal BK, Kojonazarov B, Marsh LM, Schermuly RT, Taube C, Meinhardt A, Ghofrani HA, Steinhoff M, et al. PAR-2 inhibition reverses experimental pulmonary hypertension. Circ Res. 2012;110:1179–91.

    Article  CAS  PubMed  Google Scholar 

  74. Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med. 2012;185:409–19.

    Article  CAS  PubMed  Google Scholar 

  75. Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, Mishima M, Uematsu M, Shimazu T, Hori M, Abe H. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68:302–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kojonazarov BK, Imanov BZ, Amatov TA, Mirrakhimov MM, Naeije R, Wilkins MR, Aldashev AA. Noninvasive and invasive evaluation of pulmonary arterial pressure in highlanders. Eur Respir J. 2007;29:352–6.

    Article  CAS  PubMed  Google Scholar 

  77. Scherrer-Crosbie M, Steudel W, Hunziker PR, Foster GP, Garrido L, Liel-Cohen N, Zapol WM, Picard MH. Determination of right ventricular structure and function in normoxic and hypoxic mice: a transesophageal echocardiographic study. Circulation. 1998;98:1015–21.

    Article  CAS  PubMed  Google Scholar 

  78. Thibault HB, Kurtz B, Raher MJ, Shaik RS, Waxman A, Derumeaux G, Halpern EF, Bloch KD, Scherrer-Crosbie M. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circ Cardiovasc Imaging. 2010;3:157–63.

    Article  PubMed  Google Scholar 

  79. Tournoux F, Petersen B, Thibault H, Zou L, Raher MJ, Kurtz B, Halpern EF, Chaput M, Chao W, Picard MH, Scherrer-Crosbie M. Validation of noninvasive measurements of cardiac output in mice using echocardiography. J Am Soc Echocardiogr. 2011;24:465–70.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lutgens E, Daemen MJ, de Muinck ED, Debets J, Leenders P, Smits JF. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc Res. 1999;41:586–93.

    Article  CAS  PubMed  Google Scholar 

  81. Mouraret N, Marcos E, Abid S, Gary-Bobo G, Saker M, Houssaini A, Dubois-Rande JL, Boyer L, Boczkowski J, Derumeaux G, et al. Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation. 2013;127:1664–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tabima DM, Hacker TA, Chesler NC. Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops. Am J Physiol Heart Circ Physiol. 2010;299:H2069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hameed AG, Arnold ND, Chamberlain J, Pickworth JA, Paiva C, Dawson S, Cross S, Long L, Zhao L, Morrell NW, et al. Inhibition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension. J Exp Med. 2012;209:1919–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ciuclan L, Bonneau O, Hussey M, Duggan N, Holmes AM, Good R, Stringer R, Jones P, Morrell NW, Jarai G, et al. A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184:1171–82.

    Article  CAS  PubMed  Google Scholar 

  85. Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza GL, Meister M, Muley T, Seeger-Nukpezah T, Samakovlis C, et al. A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun. 2019;10:2130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sato K, Webb S, Tucker A, Rabinovitch M, O’Brien RF, McMurtry IF, Stelzner TJ. Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis. 1992;145:793–7.

    Article  CAS  PubMed  Google Scholar 

  87. Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y. Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol. 2001;127:53–60.

    Article  CAS  PubMed  Google Scholar 

  88. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006;113:2630–41.

    Article  CAS  PubMed  Google Scholar 

  89. Aguirre JI, Morrell NW, Long L, Clift P, Upton PD, Polak JM, Wilkins MR. Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2000;278:L981–7.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao L, Sebkhi A, Nunez DJ, Long L, Haley CS, Szpirer J, Szpirer C, Williams AJ, Wilkins MR. Right ventricular hypertrophy secondary to pulmonary hypertension is linked to rat chromosome 17: evaluation of cardiac ryanodine Ryr2 receptor as a candidate. Circulation. 2001;103:442–7.

    Article  CAS  PubMed  Google Scholar 

  91. Herget J, Suggett AJ, Leach E, Barer GR. Resolution of pulmonary hypertension and other features induced by chronic hypoxia in rats during complete and intermittent normoxia. Thorax. 1978;33:468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon G, Waltenberger J, Voelkel NF, Tuder RM. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15:427–38.

    Article  CAS  PubMed  Google Scholar 

  93. Lang M, Kojonazarov B, Tian X, Kalymbetov A, Weissmann N, Grimminger F, Kretschmer A, Stasch JP, Seeger W, Ghofrani HA, Schermuly RT. The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS One. 2012;7:e43433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation. 2010;121:2747–54.

    Article  PubMed  Google Scholar 

  95. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999;59:99–106.

    CAS  PubMed  Google Scholar 

  96. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF. Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res. 2007;100:923–9.

    Article  CAS  PubMed  Google Scholar 

  97. de Raaf MA, Schalij I, Gomez-Arroyo J, Rol N, Happé C, de Man FS, Vonk-Noordegraaf A, Westerhof N, Voelkel NF, Bogaard HJ. SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction. Eur Respir J. 2014;44:160–8.

    Article  PubMed  Google Scholar 

  98. Kojonazarov B, Hadzic S, Ghofrani HA, Grimminger F, Seeger W, Weissmann N, Schermuly RT. Severe emphysema in the SU5416/hypoxia rat model of pulmonary hypertension. Am J Respir Crit Care Med. 2019;200:515–8.

    Article  CAS  PubMed  Google Scholar 

  99. Bogaard HJ, Legchenko E, Chaudhary KR, Sun XQ, Stewart DJ, Hansmann G. Emphysema is-at the most-only a mild phenotype in the Sugen/hypoxia rat model of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2019;200:1447–50.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Le Cras TD, Abman SH. Early disruption of VEGF receptor signaling and the risk for adult emphysema. Am J Respir Crit Care Med. 2020;201:620–1.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kojonazarov B, Hadzic S, Ghofrani HA, Grimminger F, Seeger W, Weissmann N, Schermuly RT. Reply to Bogaard et al.: Emphysema is-at the most-only a mild phenotype in the Sugen/hypoxia rat model of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2019;200:1450–2.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kojonazarov B, Belenkov A, Shinomiya S, Wilchelm J, Kampschulte M, Mizuno S, Ghofrani HA, Grimminger F, Weissmann N, Seeger W, Schermuly RT. Evaluating systolic and diastolic cardiac function in rodents using microscopic computed tomography. Circ Cardiovasc Imaging. 2018;11:e007653.

    Article  PubMed  Google Scholar 

  103. Jiang B, Deng Y, Suen C, Taha M, Chaudhary KR, Courtman DW, Stewart DJ. Marked strain-specific differences in the SU5416 rat model of severe pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2016;54:461–8.

    Article  CAS  PubMed  Google Scholar 

  104. Suen CM, Chaudhary KR, Deng Y, Jiang B, Stewart DJ. Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure. Cardiovasc Res. 2019;115:788–99.

    Article  CAS  PubMed  Google Scholar 

  105. Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L, Jonigk D, Baal N, Ruppert C, Dorfmuller P, et al. Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun. 2019;10:2204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, Paton L, Campbell A, Morecroft I, Loughlin L, McClure JD, et al. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation. 2012;126:1087–98.

    Article  CAS  PubMed  Google Scholar 

  107. Ciuclan L, Hussey MJ, Burton V, Good R, Duggan N, Beach S, Jones P, Fox R, Clay I, Bonneau O, et al. Imatinib attenuates hypoxia-induced pulmonary arterial hypertension pathology via reduction in 5-hydroxytryptamine through inhibition of tryptophan hydroxylase 1 expression. Am J Respir Crit Care Med. 2013;187:78–89.

    Article  CAS  PubMed  Google Scholar 

  108. Weissmann N. VEGF receptor inhibition as a model of pulmonary hypertension in mice. Am J Respir Crit Care Med. 2011;184:1103–5.

    Article  CAS  PubMed  Google Scholar 

  109. Butrous G, Ghofrani HA, Grimminger F. Pulmonary vascular disease in the developing world. Circulation. 2008;118:1758–66.

    Article  PubMed  Google Scholar 

  110. Warren KS. Hepatosplenic schistosomiasis: a great neglected disease of the liver. Gut. 1978;19:572–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Cleva R, Herman P, Pugliese V, Zilberstein B, Saad WA, Rodrigues JJ, Laudanna AA. Prevalence of pulmonary hypertension in patients with hepatosplenic mansonic schistosomiasis—prospective study. Hepatogastroenterology. 2003;50:2028–30.

    PubMed  Google Scholar 

  112. Lapa M, Dias B, Jardim C, Fernandes CJ, Dourado PM, Figueiredo M, Farias A, Tsutsui J, Terra-Filho M, Humbert M, Souza R. Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation. 2009;119:1518–23.

    Article  PubMed  Google Scholar 

  113. Tuder RM. Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med. 2009;30:376–85.

    Article  PubMed  Google Scholar 

  114. Graham BB, Chabon J, Bandeira A, Espinheira L, Butrous G, Tuder RM. Significant intrapulmonary Schistosoma egg antigens are not present in schistosomiasis-associated pulmonary hypertension. Pulm Circ. 2011;1:456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kolosionek E, Graham BB, Tuder RM, Butrous G. Pulmonary vascular disease associated with parasitic infection—the role of schistosomiasis. Clin Microbiol Infect. 2011;17:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, Butrous G, Dunne DW, Morrell NW. Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med. 2010;181:279–88.

    Article  CAS  PubMed  Google Scholar 

  117. Crosby A, Jones FM, Kolosionek E, Southwood M, Purvis I, Soon E, Butrous G, Dunne DE, Morrell NW. Praziquantel reverses pulmonary hypertension and vascular remodeling in murine schistosomiasis. Am J Respir Crit Care Med. 2011;184:467–73.

    Article  CAS  PubMed  Google Scholar 

  118. Graham BB, Chabon J, Kumar R, Kolosionek E, Gebreab L, Debella E, Edwards M, Diener K, Shade T, Bifeng G, et al. Protective role of IL6 in vascular remodeling in schistosoma-pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;49(6):951–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Graham BB, Mentink-Kane MM, El-Haddad H, Purnell S, Zhang L, Zaiman A, Redente EF, Riches DW, Hassoun PM, Bandeira A, et al. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am J Pathol. 2010;177:1549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wijeratne DT, Lajkosz K, Brogly SB, Lougheed MD, Jiang L, Housin A, Barber D, Johnson A, Doliszny KM, Archer SL. Increasing incidence and prevalence of World Health Organization groups 1 to 4 pulmonary hypertension: a population-based cohort study in Ontario, Canada. Circ Cardiovasc Qual Outcomes. 2018;11:e003973.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Vachiéry JL, Tedford RJ, Rosenkranz S, Palazzini M, Lang I, Guazzi M, Coghlan G, Chazova I, De Marco T. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019;53(1):1801897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, Frantz RP, Jenkins SM, Redfield MM. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 2018;137:1796–810.

    Article  PubMed  Google Scholar 

  124. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, Cingolani OH, Mudd JO, Borlaug BA, Redfield MM, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125:289–97.

    Article  PubMed  Google Scholar 

  125. Gorter TM, van Veldhuisen DJ, Bauersachs J, Borlaug BA, Celutkiene J, Coats AJS, Crespo-Leiro MG, Guazzi M, Harjola VP, Heymans S, et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:16–37.

    Article  PubMed  Google Scholar 

  126. Leung CC, Moondra V, Catherwood E, Andrus BW. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010;106:284–6.

    Article  PubMed  Google Scholar 

  127. Gorter TM, van Veldhuisen DJ, Voors AA, Hummel YM, Lam CSP, Berger RMF, van Melle JP, Hoendermis ES. Right ventricular-vascular coupling in heart failure with preserved ejection fraction and pre- vs. post-capillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2018;19:425–32.

    Article  PubMed  Google Scholar 

  128. Hoeper MM, Barberà JA, Channick RN, Hassoun PM, Lang IM, Manes A, Martinez FJ, Naeije R, Olschewski H, Pepke-Zaba J, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54:S85–96.

    Article  PubMed  Google Scholar 

  129. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126:975–90.

    Article  PubMed  Google Scholar 

  130. Breitling S, Ravindran K, Goldenberg NM, Kuebler WM. The pathophysiology of pulmonary hypertension in left heart disease. Am J Physiol Lung Cell Mol Physiol. 2015;309:L924–41.

    Article  CAS  PubMed  Google Scholar 

  131. Xiong PY, Potus F, Chan W, Archer SL. Models and molecular mechanisms of World Health Organization group 2 to 4 pulmonary hypertension. Hypertension. 2018;71:34–55.

    Article  CAS  PubMed  Google Scholar 

  132. Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay É, Omura J, Coté N, Abu-Alhayja’a R, Dumais V, Nachbar RT, et al. Metabolic syndrome exacerbates pulmonary hypertension due to left heart disease. Circ Res. 2019;125:449–66.

    Article  CAS  PubMed  Google Scholar 

  133. Patten RD, Aronovitz MJ, Deras-Mejia L, Pandian NG, Hanak GG, Smith JJ, Mendelsohn ME, Konstam MA. Ventricular remodeling in a mouse model of myocardial infarction. Am J Phys. 1998;274:H1812–20.

    CAS  Google Scholar 

  134. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, Lablanche JM. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32:948–54.

    Article  PubMed  Google Scholar 

  135. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44:503–12.

    Article  CAS  PubMed  Google Scholar 

  136. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Ballantyne CM. Myocardial ischemia and reperfusion: a murine model. Am J Phys. 1995;269:H2147–54.

    CAS  Google Scholar 

  137. Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, Izumo S. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics. 2004;16:349–60.

    Article  CAS  PubMed  Google Scholar 

  138. Wang J, Bo H, Meng X, Wu Y, Bao Y, Li Y. A simple and fast experimental model of myocardial infarction in the mouse. Texas Heart Inst J. 2006;33:290–3.

    Google Scholar 

  139. Nguyen QT, Colombo F, Rouleau JL, Dupuis J, Calderone A. LU135252, an endothelin(A) receptor antagonist did not prevent pulmonary vascular remodelling or lung fibrosis in a rat model of myocardial infarction. Br J Pharmacol. 2000;130:1525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ben Driss A, Devaux C, Henrion D, Duriez M, Thuillez C, Levy BI, Michel JB. Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation. 2000;101:2764–70.

    Article  CAS  PubMed  Google Scholar 

  141. Jasmin JF, Calderone A, Leung TK, Villeneuve L, Dupuis J. Lung structural remodeling and pulmonary hypertension after myocardial infarction: complete reversal with irbesartan. Cardiovasc Res. 2003;58:621–31.

    Article  CAS  PubMed  Google Scholar 

  142. Jiang BH, Nguyen QT, Tardif JC, Shi Y, Dupuis J. Single measurement of troponin T for early prediction of infarct size, congestive heart failure, and pulmonary hypertension in an animal model of myocardial infarction. Cardiovasc Pathol. 2011;20:e85–9.

    Article  PubMed  Google Scholar 

  143. Jiang BH, Tardif JC, Sauvageau S, Ducharme A, Shi Y, Martin JG, Dupuis J. Beneficial effects of atorvastatin on lung structural remodeling and function in ischemic heart failure. J Card Fail. 2010;16:679–88.

    Article  CAS  PubMed  Google Scholar 

  144. Toldo S, Bogaard HJ, Van Tassell BW, Mezzaroma E, Seropian IM, Robati R, Salloum FN, Voelkel NF, Abbate A. Right ventricular dysfunction following acute myocardial infarction in the absence of pulmonary hypertension in the mouse. PLoS One. 2011;6:e18102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Philip JL, Murphy TM, Schreier DA, Stevens S, Tabima DM, Albrecht M, Frump AL, Hacker TA, Lahm T, Chesler NC. Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right ventricular function. Am J Physiol Heart Circ Physiol. 2019;316:H1167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dayeh NR, Tardif JC, Shi Y, Tanguay M, Ledoux J, Dupuis J. Echocardiographic validation of pulmonary hypertension due to heart failure with reduced ejection fraction in mice. Sci Rep. 2018;8:1363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargava V, Ross J Jr, Chien KR. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A. 1994;91:2694–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de Almeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp. 2010;(38):1729.

    Google Scholar 

  149. Patten RD, Hall-Porter MR. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2009;2:138–44.

    Article  PubMed  Google Scholar 

  150. Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW. Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Phys Heart Circ Phys. 2007;292:H2119–30.

    CAS  Google Scholar 

  151. Patten RD, Pourati I, Aronovitz MJ, Alsheikh-Ali A, Eder S, Force T, Mendelsohn ME, Karas RH. 17 Beta-estradiol differentially affects left ventricular and cardiomyocyte hypertrophy following myocardial infarction and pressure overload. J Card Fail. 2008;14:245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, Lu Z, Kwak D, Xu Y, Gunther R, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension. 2012;59:1170–8.

    Article  CAS  PubMed  Google Scholar 

  153. Pradhan K, Sydykov A, Tian X, Mamazhakypov A, Neupane B, Luitel H, Weissmann N, Seeger W, Grimminger F, Kretschmer A, et al. Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. Int J Cardiol. 2016;216:85–91.

    Article  PubMed  Google Scholar 

  154. Meng Q, Lai YC, Kelly NJ, Bueno M, Baust JJ, Bachman TN, Goncharov D, Vanderpool RR, Radder JE, Hu J, et al. Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction. Am J Respir Cell Mol Biol. 2017;56:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Umar S, Partow-Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ. 2017;8:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lawrie A, Hameed AG, Chamberlain J, Arnold N, Kennerley A, Hopkinson K, Pickworth J, Kiely DG, Crossman DC, Francis SE. Paigen diet-fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin-1-dependent manner. Am J Pathol. 2011;179:1693–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fedullo P, Kerr KM, Kim NH, Auger WR. Chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:1605–13.

    Article  PubMed  Google Scholar 

  158. Mayer E, Klepetko W. Techniques and outcomes of pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc. 2006;3:589–93.

    Article  PubMed  Google Scholar 

  159. Bottiger BW, Motsch J, Dorsam J, Mieck U, Gries A, Weimann J, Martin E. Inhaled nitric oxide selectively decreases pulmonary artery pressure and pulmonary vascular resistance following acute massive pulmonary microembolism in piglets. Chest. 1996;110:1041–7.

    Article  CAS  PubMed  Google Scholar 

  160. Malik AB, van der Zee H. Time course of pulmonary vascular response to microembolization. J Appl Physiol Respir Environ Exerc Physiol. 1977;43:51–8.

    CAS  PubMed  Google Scholar 

  161. Palevsky HI, Fishman AP. Chronic cor pulmonale. Etiology and management. JAMA. 1990;263:2347–53.

    Article  CAS  PubMed  Google Scholar 

  162. Delcroix M, Vonk Noordegraaf A, Fadel E, Lang I, Simonneau G, Naeije R. Vascular and right ventricular remodelling in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2013;41:224–32.

    Article  PubMed  Google Scholar 

  163. Lang IM, Marsh JJ, Konopka RG, Olman MA, Binder BR, Moser KM, Schleef RR. Factors contributing to increased vascular fibrinolytic activity in mongrel dogs. Circulation. 1993;87:1990–2000.

    Article  CAS  PubMed  Google Scholar 

  164. Mitzner W, Wagner EM. Vascular remodeling in the circulations of the lung. J Appl Physiol. 2004;97:1999–2004.

    Article  PubMed  Google Scholar 

  165. Shelub I, van Grondelle A, McCullough R, Hofmeister S, Reeves JT. A model of embolic chronic pulmonary hypertension in the dog. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:810–5.

    CAS  PubMed  Google Scholar 

  166. Weimann J, Zink W, Schnabel PA, Jakob H, Gebhard MM, Martin E, Motsch J. Selective vasodilation by nitric oxide inhalation during sustained pulmonary hypertension following recurrent microembolism in pigs. J Crit Care. 1999;14:133–40.

    Article  CAS  PubMed  Google Scholar 

  167. Dantzker DR, Bower JS. Partial reversibility of chronic pulmonary hypertension caused by pulmonary thromboembolic disease. Am Rev Respir Dis. 1981;124:129–31.

    CAS  PubMed  Google Scholar 

  168. Moser KM, Cantor JP, Olman M, Villespin I, Graif JL, Konopka R, Marsh JJ, Pedersen C. Chronic pulmonary thromboembolism in dogs treated with tranexamic acid. Circulation. 1991;83:1371–9.

    Article  CAS  PubMed  Google Scholar 

  169. Marsh JJ, Konopka RG, Lang IM, Wang HY, Pedersen C, Chiles P, Reilly CF, Moser KM. Suppression of thrombolysis in a canine model of pulmonary embolism. Circulation. 1994;90:3091–7.

    Article  CAS  PubMed  Google Scholar 

  170. Li C-y, Deng W, Liao X-q, Deng J, Zhang Y-k, Wang D-x. The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension. Eur J Med Res. 2013;18(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Fadel E, Mazmanian GM, Chapelier A, Baudet B, Detruit H, de Montpreville V, Libert JM, Wartski M, Herve P, Dartevelle P. Lung reperfusion injury after chronic or acute unilateral pulmonary artery occlusion. Am J Respir Crit Care Med. 1998;157:1294–300.

    Article  CAS  PubMed  Google Scholar 

  172. Mercier O, Tivane A, Raoux F, Decante B, Eddahibi S, Dartevelle PG, Fadel E. A reliable piglet model of chronic thrombo-embolic pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:A2415.

    Google Scholar 

  173. Bär H, Kreuzer J, Cojoc A, Jahn L. Upregulation of embryonic transcription factors right ventricular hypertrophy. Basic Res Cardiol. 2003;98:285–94.

    Article  PubMed  CAS  Google Scholar 

  174. Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JM, Helbing WA. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Phys Heart Circ Phys. 2006;291:H1580–6.

    CAS  Google Scholar 

  175. Kreymborg K, Uchida S, Gellert P, Schneider A, Boettger T, Voswinckel R, Wietelmann A, Szibor M, Weissmann N, Ghofrani AH, et al. Identification of right heart-enriched genes in a murine model of chronic outflow tract obstruction. J Mol Cell Cardiol. 2010;49:598–605.

    Article  CAS  PubMed  Google Scholar 

  176. Janssen W, Schymura Y, Novoyatleva T, Kojonazarov B, Boehm M, Wietelmann A, Luitel H, Murmann K, Krompiec DR, Tretyn A, et al. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed Res Int. 2015;2015:438403.

    PubMed  PubMed Central  Google Scholar 

  177. Boehm M, Lawrie A, Wilhelm J, Ghofrani HA, Grimminger F, Weissmann N, Seeger W, Schermuly RT, Kojonazarov B. Maintained right ventricular pressure overload induces ventricular-arterial decoupling in mice. Exp Physiol. 2017;102:180–9.

    Article  PubMed  Google Scholar 

  178. Kojonazarov B, Novoyatleva T, Boehm M, Happe C, Sibinska Z, Tian X, Sajjad A, Luitel H, Kriechling P, Posern G, et al. p38 MAPK inhibition improves heart function in pressure-loaded right ventricular hypertrophy. Am J Respir Cell Mol Biol. 2017;57:603–14.

    Article  CAS  PubMed  Google Scholar 

  179. Budas GR, Boehm M, Kojonazarov B, Viswanathan G, Tian X, Veeroju S, Novoyatleva T, Grimminger F, Hinojosa-Kirschenbaum F, Ghofrani HA, et al. ASK1 inhibition halts disease progression in preclinical models of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2018;197:373–85.

    Article  CAS  PubMed  Google Scholar 

  180. Boehm M, Arnold N, Braithwaite A, Pickworth J, Lu C, Novoyatleva T, Kiely DG, Grimminger F, Ghofrani HA, Weissmann N, et al. Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulm Med. 2018;18:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Boehm M, Novoyatleva T, Kojonazarov B, Veit F, Weissmann N, Ghofrani HA, Seeger W, Schermuly RT. Nitric oxide synthase 2 induction promotes right ventricular fibrosis. Am J Respir Cell Mol Biol. 2019;60:346–56.

    Article  CAS  PubMed  Google Scholar 

  182. Giardini A, Lovato L, Donti A, Formigari R, Oppido G, Gargiulo G, Picchio FM, Fattori R. Relation between right ventricular structural alterations and markers of adverse clinical outcome in adults with systemic right ventricle and either congenital complete (after Senning operation) or congenitally corrected transposition of the great arteries. Am J Cardiol. 2006;98:1277–82.

    Article  PubMed  Google Scholar 

  183. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mundhenke M, Schwartzkopff B, Stark P, Schulte HD, Strauer BE. Myocardial collagen type I and impaired left ventricular function under exercise in hypertrophic cardiomyopathy. Thorac Cardiovasc Surg. 2002;50:216–22.

    Article  CAS  PubMed  Google Scholar 

  185. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res. 1989;64:1041–50.

    Article  CAS  PubMed  Google Scholar 

  186. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol. 2000;32:2151–62.

    Article  CAS  PubMed  Google Scholar 

  187. Kheyfets VO, Dufva MJ, Boehm M, Tian X, Qin X, Tabakh JE, Truong U, Ivy D, Spiekerkoetter E. The left ventricle undergoes biomechanical and gene expression changes in response to increased right ventricular pressure overload. Physiol Rep. 2020;8:e14347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Piao L, Fang YH, Parikh K, Ryan JJ, Toth PT, Archer SL. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J Mol Med (Berl). 2013;91:1185–97.

    Article  CAS  Google Scholar 

  189. Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl). 2010;88:1011–20.

    Article  CAS  Google Scholar 

  190. Borgdorff MA, Koop AM, Bloks VW, Dickinson MG, Steendijk P, Sillje HH, van Wiechen MP, Berger RM, Bartelds B. Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction. J Mol Cell Cardiol. 2015;79:244–53.

    Article  CAS  PubMed  Google Scholar 

  191. Boehm M, Tian X, Mao Y, Ichimura K, Dufva MJ, Ali K, Dannewitz Prosseda S, Shi Y, Kuramoto K, Reddy S, et al. Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding. Cardiovasc Res. 2020;116:1700–9.

    Article  CAS  PubMed  Google Scholar 

  192. Penumatsa KC, Warburton RR, Hill NS, Fanburg BL. CrossTalk proposal: the mouse SuHx model is a good model of pulmonary arterial hypertension. J Physiol. 2019;597:975–7.

    Article  CAS  PubMed  Google Scholar 

  193. Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax. 2005;60:605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Seimetz M, Parajuli N, Pichl A, Veit F, Kwapiszewska G, Weisel FC, Milger K, Egemnazarov B, Turowska A, Fuchs B, et al. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell. 2011;147:293–305.

    Article  CAS  PubMed  Google Scholar 

  195. Ferrer E, Peinado VI, Castañeda J, Prieto-Lloret J, Olea E, González-Martín MC, Vega-Agapito MV, Díez M, Domínguez-Fandos D, Obeso A, et al. Effects of cigarette smoke and hypoxia on pulmonary circulation in the guinea pig. Eur Respir J. 2011;38:617–27.

    Article  CAS  PubMed  Google Scholar 

  196. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365:1046–53.

    Article  PubMed  Google Scholar 

  197. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, O’Connor GT, Boland LL, Schwartz JE, Samet JM. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163:19–25.

    Article  CAS  PubMed  Google Scholar 

  198. Dumitrascu R, Heitmann J, Seeger W, Weissmann N, Schulz R. Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxidative Med Cell Longev. 2013;2013:234631.

    Article  CAS  Google Scholar 

  199. Sajkov D, McEvoy RD. Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis. 2009;51:363–70.

    Article  PubMed  Google Scholar 

  200. Fagan KA. Selected contribution: Pulmonary hypertension in mice following intermittent hypoxia. J Appl Physiol (1985). 2001;90:2502–7.

    Article  CAS  Google Scholar 

  201. Campen MJ, Shimoda LA, O’Donnell CP. Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice. J Appl Physiol (1985). 2005;99:2028–35.

    Article  CAS  Google Scholar 

  202. Pullamsetti SS, Kojonazarov B, Storn S, Gall H, Salazar Y, Wolf J, Weigert A, El-Nikhely N, Ghofrani HA, Krombach GA, et al. Lung cancer-associated pulmonary hypertension: role of microenvironmental inflammation based on tumor cell-immune cell cross-talk. Sci Transl Med. 2017;9(416):eaai9048.

    Article  PubMed  CAS  Google Scholar 

  203. Eul B, Cekay M, Pullamsetti SS, Tello K, Wilhelm J, Gattenlöhner S, Sibelius U, Grimminger F, Seeger W, Savai R. Non-invasive surrogate markers of PH are associated with poor survival in lung cancer patients. Am J Respir Crit Care Med. 2021; https://doi.org/10.1164/rccm.202005-2023LE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Theo Schermuly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boehm, M., Schermuly, R.T., Kojonazarov, B. (2021). Experimental Models. In: Gaine, S.P., Naeije, R., Peacock, A.J. (eds) The Right Heart. Springer, Cham. https://doi.org/10.1007/978-3-030-78255-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78255-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78254-2

  • Online ISBN: 978-3-030-78255-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics