Skip to main content
Log in

How valid are animal models to evaluate treatments for pulmonary hypertension?

  • Editorial
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Various animal models of pulmonary hypertension (PH) exist, among which injection of monocrotaline (MCT) and exposure to hypoxia are used most frequently. These animal models have not only been used to characterize the pathophysiology of PH and its sequelae such as right ventricular hypertrophy and failure, but also to test novel therapeutic strategies. This manuscript summarizes the available treatment studies in animal models of PH, and compares the findings to those obtained in patients with PH. The analysis shows that all approaches which have proven successful in patients, most notably prostacyclin and its analogs and endothelin receptor antagonists, are also effective in various animal models. However, the opposite it not always true. Therefore, promising results in animals have to be interpreted carefully until confirmed in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ACE:

angiotensin converting enzyme

ET:

endothelin

IPAH:

idiopathic pulmonary arterial hypertension

5-HT:

(5-hydroxytryptamine); serotonin

5-HTT:

serotonin plasmatic membrane transporter

MCT:

monocrotaline

PAP:

pulmonary aterial pressure

PASMCs:

pulmonary artery smooth muscle cells

PDE5:

phosphodiesterase 5

PH:

pulmonary hypertension

RV:

right ventricle

References

  • Abman SH, Shanley PF, Accurso FJ (1989) Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J Clin Invest 83:1849–1858

    Article  PubMed  CAS  Google Scholar 

  • Archer SJ, Michelakis ED (2006) An evidence-based approach to the management of pulmonary arterial hypertension. Curr Opin Cardiol 21:385–392

    Article  PubMed  Google Scholar 

  • Badesch DB, Abman SH, Ahearn GS, Barst RJ, McCrory DC, Simonneau G, McLaughlin VV (2004) Medical therapy for pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126:35–62

    Article  Google Scholar 

  • Belik J, Halayko AJ, Rao K, Stephens NL (1993) Fetal ductus arteriosus ligation. Pulmonary vascular smooth muscle biochemical and mechanical changes. Circ Res 72:588–596

    PubMed  CAS  Google Scholar 

  • Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    Article  PubMed  CAS  Google Scholar 

  • Bonvallet SA, Zamora MR, Hasunuma K, Sato K, Hanasato N, Anderson D, Stelzner T (1994) BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am J Physiol 266:H1327–H1331

    PubMed  CAS  Google Scholar 

  • Bottiger BW, Motsch J, Dorsam J (1996) Inhaled nitric oxide selectively decreases pulmonary artery pressure and pulmonary vascular resistance following acute massive pulmonary microembolism in piglets. Chest 110:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Bresser P, Fedullo PF, Auger WR, Channick RN, Robbins IM, Kerr KM, Jamieson SW, Rubin LJ (2004) Continuous intravenous epoprostenol for chronic thromboembolic pulmonary hypertension. Eur Resp J 23:595–600

    Article  CAS  Google Scholar 

  • Budts W, Pokreisz P, Nong Z, Van Pelt N, Gillijns H, Gerard R, Lyons R, Collen D, Block KD, Janssen S (2000) Aerosol gene transfer with inducible nitric oxide synthase reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation 102:2880–2885

    PubMed  CAS  Google Scholar 

  • Channick RN, Simonneau G, Sitbon O (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomized placebo-controlled study. Lancet 358:1119–1123

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Chen Y, Meng QC, Durand J, Dicarlo VS, Opari S (1995) Endothelin- receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats. J Appl Physiol 79:2122–2131

    PubMed  CAS  Google Scholar 

  • Chen S, Chen Y, Opgenorth TJ, Wessale JL, Meng QC, Durand J, Dicarlo VS, Opari S (1997) The orally active nonpeptide endothelin A-receptor antagonist A-127722 prevents and reverses hypoxia- induced pulmonary hypertension and pulmonary vascular remodeling in Sprague-Dawley rats. J Cardiovasc Pharmacol 29:713–725

    Article  PubMed  CAS  Google Scholar 

  • Clozel JP, Saunier C, Hartmann D, Fischli W (1991) Effects of cilazapril, a novel angiotensin converting enzyme inhibitors, on the structure and function of pulmonary arteries of rats expos to chronic hypoxia. J Cardiovasc Pharmacol 17:36–40

    Article  PubMed  CAS  Google Scholar 

  • Dantzker DR, Bower JS (1981) Partial reversibility of chronic pulmonary hypertension caused by pulmonary thromboembolic disease. Am Rev Respir Dis 124:129–131

    PubMed  CAS  Google Scholar 

  • Das S, Kumar N (1995) Nitric oxide: its identity and role in blood pressure control. Life Sci 57:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA (2004) Familial primary pulmonary hypertension (gene PPH1) is caused by mutation in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744

    Article  Google Scholar 

  • Di Carlo VS, Chen SG, Meng QC, Durand J, Yano M, Chen YF, Oparil S (1995) ETA-receptor antagonist prevents and reverses chronic hypoxia- induced pulmonary hypertension in rat. Am J Physiol 269:L690–L697

    Google Scholar 

  • Dingemanse J, van Giersbergen LM (2004) Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacochinet 43(15):1089–1115

    Article  CAS  Google Scholar 

  • Eddahibi S, Raffestin B, Cloze M, Levame M, Adnot S (1995) Protection from pulmonary hypertension with an orally active endothelin receptor antagonist in hypoxic rats. Am J Physiol 268:H828–H835

    PubMed  CAS  Google Scholar 

  • Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, Adnoy S (2000a) Attenuated hypoxic pulmonary hypertension in mice lacking 5-hydroxytryptamine transporter gene. J Clin Invest 105:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Eddahibi S, Hanoun N, Lanfumey L, Lesch K, Raffestin B, Hamon M, Adnot S (2000b) Attenuated hypoxic pulmonary hypertension in mice lacking the 5- hydroxytriptamine B11transporter gene. J Clin Invest 105:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Eddahibi S, Humbert M, Fadel E, Raffestestin B, Darmon M, Capron F, Simonneau G, Dartevelle P, Hamon M, Adnoy S (2001) Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 108:1141–1150

    PubMed  CAS  Google Scholar 

  • Faul JL, Nishimura T, Berry GJ, Benson GV, Pearl RG, Kao PN (2000) Triptolide attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 162:2252–2258

    PubMed  CAS  Google Scholar 

  • Fishman AP (2001) Clinical classification of pulmonary hypertension. Clin Chest Med 22:385–391

    Article  PubMed  CAS  Google Scholar 

  • Fung YC, Lin Q (1991) Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 70:2455–2470

    Article  PubMed  CAS  Google Scholar 

  • Galie N, Hossein AG, Torbicki A, Barts RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Girgis RE, Li D, Zhan X, Garcia JGN, Tuder RM, Hassoun PM, Johns RA (2003) Attenuation of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Heart Cir Physiol 285:H938–H945

    CAS  Google Scholar 

  • Gomberg-Maitland M, Tapson VF, Benza RL, McLaughlin VV, Krichman A, Widlitz AC, Barst RJ (2005) Transition from intravenous epoprostenol to intravenous treprostinil in pulmonary hypertension. Am J Respir Crit Care Med 172:1586–1589

    Article  PubMed  Google Scholar 

  • Guerard P, Rakotoniaina Z, Goirand F, Rochette L, Dumas M, Lirussi F, Bardou M (2006) The HMG-CoA reductase inhibitor, pravastatin, prevents the development of monocrotaline-induced pulmonary hypertension in the rat through reduction of endothelial cell apoptosis and overexpression of eNOS. Naunyn-Schmiedeberg’s Arch Pharmacol (in press)

  • Guignabert C, Izikki M, Tu LI, Li Z, Zadigue P, Barlier-Mur A-M, Hanoun N, Rodman D, Hamon M, Adnoy S, Eddahibi S (2006) Transgenic mice overexpressing 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res 98:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Hamelin BA, Turgeon J (1998) Hydrophilicity/lipophilicity relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 19:26–37

    Article  PubMed  CAS  Google Scholar 

  • Hardziyenka M, Campian ME, de Bruin R, Michel MC, Tan HL (2006) Sequence of echocardiographic changes during the development of right ventricular failure in rats. J Am Soc Echocardiogr (in press)

  • Hashida H, Hamada M, Shigematsu Y (1998) Beneficial hemodynamic effect of oral prostacyclin (PGI2) analogue, beraprost sodium, on a patient with primary pulmonary hypertension: a case report. Angiology 49:161–164

    PubMed  CAS  Google Scholar 

  • Hill NS, Warburton RR, Pietras L, Klinger JR (1997) Non-specific endothelin- receptor antagonists blunts monocrotaline-induced pulmonary hypertension in rats. J Appl Physiol 83:1209–1215

    PubMed  CAS  Google Scholar 

  • Hoeper MM, Schwarze M, Ehlerding S, Adler-Shuermeyer A, Spiekerkoetter E, Niedermeyer J, Hamm M, Fabel H (2000) Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 342:1866–1870

    Article  PubMed  CAS  Google Scholar 

  • Horstman DJ, Frank DU, Rich GF (1998) Prolonged inhaled NO attenuates hypoxic, but not monocrotaline-induced pulmonary vascular remodeling in rats. Anesth Analg 86:74–81

    Article  PubMed  CAS  Google Scholar 

  • Hughes RJ, Jais X, Bonderman D, Suntharalingam J, Humbert M, Lang I, Simmoneau G, Pepke-Zaba J (2006) The efficacy of bosentan in inoperable chronic thromboembolic pulmonary hypertension: a 1-year follow-up study. Eur Respir J 26:138–143

    Google Scholar 

  • Ikeda D, Tsujimo I, Ohira H, Itoh N, Kamgaki M, Ishimaru S, Sakaue S, Nishimura M (2005) Addition of oral sildenafil to beraprost is a safe and effective therapeutic option for patients with pulmonary hypertension. J Cardiovasc Pharmacol 45:286–289

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Yano K, Noto T, Takagi M, Ikeo T, Kikkawa (2002) Acute and chronic effects of T-1032, a novel selective phosphodiesterase type 5 inhibitor, on monocrotaline-induced pulmonary hypertension in rats. Biol Pharm Bull 25(11):1422–1426

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Nagaya N, Fujii T, Iwase T, Nakanishi N, Hamada K, Kangawa K, Kimura H (2004) A combination of oral sildenafil and beraprost ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med 169:34–38

    Article  PubMed  Google Scholar 

  • Ivy DD, Parker TA, Ziegler JW, Galan HL, Kinsella JP, Tuder RM, Abman SH (1997) Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus. J Clin Invest 99:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Ivy DD, Le Cras TD, Horan MP, Abman S (1998) Increased lung prepoET-1 and decrease ETB-receptor gene expression in fetal pulmonary hypertension. Am J Physiol 274:L535–L541

    PubMed  CAS  Google Scholar 

  • Jasmin JF, Lucas M, Cernacek J, Dupuis J (2001) Effectiveness of nonselective ETA/B and a selective ETA antagonist in rats with monocrotaline-induced pulmonary hypertension. Circulation 103:314–318

    PubMed  CAS  Google Scholar 

  • Jeffery TK, Wanstall JC (2001) Pulmonary vascular remodeling in hypoxic rats: effect of amlodipine, alone and with perindropil. Eur J Pharmacol 416:123–131

    Article  PubMed  CAS  Google Scholar 

  • Kao PN (2005) Simvastatin treatment of pulmonary hypertension: an observational case series. Chest 127:1446–1452

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Nagaya N, Satoh T, Itoh T, Murakami S, Iwase T, Miyahara Y, Kyotani S, Sakai Y, Kangawa K, Ogawa S (2005) A long- acting prostacyclin antagonist with tromboxane inhibitory activity for pulmonary hypertension. Am J Respir Crit Care Med 172:1575–1580

    Article  PubMed  Google Scholar 

  • Kim H, Yung GL, Marsh JJ, Konopka RG, Pedersen CA, Chiles PG, Morros TA, Channick RN (2000) Endothelin mediates pulmonary vascular remodeling in a canine model of chronic embolic pulmonary hypertension. Eur Resp J 15:640–648

    Article  CAS  Google Scholar 

  • Koh KK (2000) Effects of statins on vascular wall: vasomotor function, inflammation, and plaque stability. Cardiovasc Res 47:648–657

    Article  PubMed  CAS  Google Scholar 

  • Kwak B, Mulhaupt F, Myit S (2000) Statins as a new recognized type of immunomodulator. Nat Med 6:1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thebaud B (2005) Sildenafil improves alveolar growth and pulmonary hypertension in hypoxia-induced lung injury. Am J Respir Crit Care Med 172:750–756

    Article  PubMed  Google Scholar 

  • Lalich JJ, Merkow L (1961) Pulmonary arteritis produced in rats by feeding Crotolaria spectabilis. Lab Invest 10:744–750

    PubMed  CAS  Google Scholar 

  • Lane KB, Machado RD, Pauciulo MW, Thomson JR, Philips JA III, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutation in BMPR2, encoding a TGF- beta receptor, cause familial primary pulmonary hypertension. The international PPH Consortium. Nat Genet 26:81–84

    Article  PubMed  CAS  Google Scholar 

  • Levin DL, Heymann MA, Kitterman JA, Gregory GA, Phibbs RH, Rudolph AM (1976) Persistent pulmonary hypertension of the newborn infant. J Pediatr 89:626–630

    Article  PubMed  CAS  Google Scholar 

  • Lopes AA, Maeda NY, Goncalves RC, Bydlowski S (2000) Endothelial cell dysfunction correlates differentially with survival in primary and secondary pulmonary hypertension. Am Heart J 139:618–623

    Article  PubMed  CAS  Google Scholar 

  • Loscalzo J (1992) Endothelial dysfunction in pulmonary hypertension. N Engl J Med 27(2):117–119

    Article  Google Scholar 

  • Maiya S, Hislop AA, Flynn Y, Haworth SG (2006) Response to bosentan in children with pulmonary hypertension. Heart 92:664–670

    Article  PubMed  CAS  Google Scholar 

  • Malik AB, van de Zee H (1977) Time course of pulmonary vascular response to microembolization. J Appl Physiol 43:51–58

    PubMed  CAS  Google Scholar 

  • Maruyama J, Maruyama K, Mitani Y, Kitabatake M, Yamauchi T, Miyasaka K (1997) Continuous low-dose NO inhalation does not prevent monocrotaline-induced pulmonary hypertension in rats. Am J Physiol 272:H517–H524

    PubMed  CAS  Google Scholar 

  • Mattocks AR (1968) Toxicity of pirrolizidine alkaloids. Nature 217:723–728

    Article  PubMed  CAS  Google Scholar 

  • Mattocks AR (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic, New York

    Google Scholar 

  • McLaughlin VV, Rich S (1998) Pulmonary hypertension- advances in medical and surgical intervention. J Heart Lung Transplant 17:739–743

    PubMed  CAS  Google Scholar 

  • McLaughlin VV, Gentthner DE, Panella MM, Rich S (1998) Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. N Engl J Med 338:273–277

    Article  PubMed  CAS  Google Scholar 

  • Meyrick B, Read L (1978) The effect of continuous hypoxia on rat pulmonary arterial circulation: an ultra structural study. Lab Invest 38:188–200

    PubMed  CAS  Google Scholar 

  • Meyrick B, Read L (1980) Hypoxia- induced structural changes in the media and adventitia of rat hilar pulmonary artery and their regression. Am J Pathol 100:151–178

    PubMed  CAS  Google Scholar 

  • Mitani Y, Maruyama K, Sakurai M (1997) Prolonged administration of L- arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation 96:689–697

    PubMed  CAS  Google Scholar 

  • Miyata M, Ueno M, Sekine H (1996) Protective effect of beraprost sodium, a stable prostacyclin analogue, in development of monocrotaline-induced pulmonary hypertension. J Cardiovasc Pharmacol 27:20–26

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi T, Yorikane R, Sakai S, Sakurai T, Okada M, Nishikibe M, Yano M, Yanaguchi I, Sugishita Y, Goto K (1993) Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alteration in rats with monocrotaline- induced pulmonary hypertension. Circ Res 73:887–897

    PubMed  CAS  Google Scholar 

  • Molteni A, Ward WF, Ts’ao CH, Solliday NH, Dunne M (1985) Monocrotaline-induced pulmonary fibrosis in rats: amelioration by captopril and penicillamine. Proc Soc Exp Biol Med 180:112–120

    PubMed  CAS  Google Scholar 

  • Morel OE, Buvry A, Le Corvoisier P, Tual L, Favret F, Leon-Velarde F, Crozatier B, Richalet JP (2003) Effects of nifedipine-induced pulmonary vasodilatation on cardiac receptors and protein kinaze C isoform in the chronically hypoxic rats. Eur J Physiol 446:356–364

    CAS  Google Scholar 

  • Morin FC III (1989) Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr Res 25:245–250

    Article  PubMed  Google Scholar 

  • Murphy JD, Rabinovitch M, Goldstein JD, Reid LM (1981) The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr 98:962–967

    Article  PubMed  CAS  Google Scholar 

  • Naeije R, Melot CH, Mols P, Hallemans R (1982) Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 82:404–410

    Article  PubMed  CAS  Google Scholar 

  • Nagaya N, Yokoyama C, Kyotani S, Shimonishi M, Morishita R, Uematsu M, Nishikimi T, Nakanishi N, Ogihara T, Yamagishi M (2000) Gene transfer of human prostacyclin synthase ameliorates monocrotaline-induced pulmonary hypertension in rats. Circulation 102:2005–2012

    PubMed  CAS  Google Scholar 

  • Nakamoto T, Harasawa H, Akimot K, Hirata H, Kaneko H, Kaneko N, Sorimachi K (2005) Effects of olmesartan medoxomil as an angiotensin II-receptor blockers in chronic hypoxic rats. Eur J Pharmacol 528:43–51

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QT, Colombo F, Rouleau JL, Dupuis J, Calderone A (2000) LU135252, an endothelin (a) receptor antagonist did not prevent pulmonary vascular remodeling or lung fibrosis in a rat model of myocardial infarction. Br J Pharmacol 130:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Faul JL, Berry GJ, Veve I, Kao PN, Pearl RG (2001) 40-0-(2-Hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 163:498–502

    PubMed  CAS  Google Scholar 

  • Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG, Kao P (2002) Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats. Am J Respir Crit Care Med 166:1403–1408

    Article  PubMed  Google Scholar 

  • Nishimura T, Vaszar LT, Faul JL, Zhao G, Berry GJ, Shi L, Qiu D, Benson G, Pearl RG, Kao PN (2003) Simvastatin rescue rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cell. Circulation 108:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Nong Z, Stassen JM, Moons L, Collen D, Janssen S (1996) Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation 94:1941–1947

    PubMed  CAS  Google Scholar 

  • Okada K, Bernstein ML, Zhang W, Schuster DP, Botney MD (1998) Angiotensin -converting enzyme inhibition delays pulmonary vascular neointimal formation. Am J Respir Crit Care Med 158:939–950

    PubMed  CAS  Google Scholar 

  • Olschewski H, Walmrath D, Schermuly R, Ghofrani A, Grimminger F, Seeger W (1996) Aerosolized prostacyclin and iloprost in severe pulmonary hypertension. Ann Intern Med 124:820–824

    PubMed  CAS  Google Scholar 

  • Palevsky HI, Fishman AP (1990) Chronic cor pulmonale: etiology and management. JAMA 263:2347–2353

    Article  PubMed  CAS  Google Scholar 

  • Pauvert O, Bonnet S, Rousseau E, Marthan R, Savineau JP (2004) Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287:L577–L583

    Article  PubMed  CAS  Google Scholar 

  • Pomeranze HD, Bhavsar A (2005) Nonarteritic ischemic optic neuropathy developing soon after use of sildenafil (viagra): a case report of seven cases. J Neurol Ophthalmo l25:9–13

    Article  Google Scholar 

  • Prie S, Leung TK, Cernacek P, Ryan JW, Dupuis J (1997) The orally active ET (A) receptor antagonist (+)-(S)-2-(4,6-dimethoxy-pyrimidin-2-yloxy)-3-methoxy-3,3-dipheyl-propionic acid (LU135252) prevents the development of pulmonary hypertension and endothelial metabolic dysfunction in monocrotaline-treated rats. J Pharmacol Exp Ther 282:1312–1318

    PubMed  CAS  Google Scholar 

  • Reeve JT, Wagner WW Jr, McMurtry IF, Grover RF (1979) Physiological effects of high altitude on the pulmonary circulation. Int Rev Physiol 20:289–310

    Google Scholar 

  • Reid MJ, Lame MW, Morin D, Wilson DW, Segall HJ (1998) Involvement of cytochrome P450 3A in the metabolism and covalent binding of 14C-monocrotaline in rat liver microsomes. J Biochem Tox 12:157–166

    Article  CAS  Google Scholar 

  • Rich S, McLaughlin VV (1999) The effect of chronic prostacyclin therapy on cardiac output and symptoms in primary pulmonary hypertension. J Am Coll Cardio 34:1184–1187

    Article  CAS  Google Scholar 

  • Rich S, Kaufmann E, Levy PS (1992) The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327:76–81

    Article  PubMed  CAS  Google Scholar 

  • Richalet JP, Gratadour P, Robach P, Pham I, Dechaux M, Joncquiert-Latarjet A, Mollard P, Brugniaux J, Cornolo J (2005) Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med 171:275–281

    Article  PubMed  Google Scholar 

  • Roberts JD, Chiche JD, Weimann J, Stedel W, Zapol WM, Bloch KD (2000) Nitric oxide inhalation decreases pulmonary artery remodeling in the injured lungs or rat pup. Circ Res 84:140–145

    Google Scholar 

  • Rosenzweig EB, Wildlitz AD, Oran A, Claussen LR, Yung D, Abman SH, Morganti A, Barst RJ (2005) Effect on long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol 16:697–704

    Article  CAS  Google Scholar 

  • Rossaint R, Falke KJ, Lopez FA, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405

    Article  PubMed  CAS  Google Scholar 

  • Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, Landzberg M, Simonneau G (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346:896–903

    Article  PubMed  CAS  Google Scholar 

  • Saji T, Ozawa Y, Ishikita T, Matsuura H, Matsuo N (1996) Short- term hemodynamic effect of anew oral PGI2 analogue, beraprost, in primary and secondary pulmonary hypertension. Am J Cardiol 78:244–247

    Article  PubMed  CAS  Google Scholar 

  • Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermet L, Ermet M, Weissmann N, Rose F, Guenther A, Walmrath D, Seeger W, Grimminger F (2004) Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 169:39–45

    Article  PubMed  Google Scholar 

  • Schermuly RT, Yilmaz H, Ghofrani HA, Woyda K, Pullamsetti S, Schulz A, Gessler T, Dumitrascu R, Weissmann N, Grimminger F, Seeger W (2005) Inhaled iloprost reverses vascular remodeling in chronic experimental pulmonary hypertension. Am J Respir Crit Care Med 172:358–363

    Article  PubMed  Google Scholar 

  • Segall HJ, Wilson DW, Lame MW, Morin D, Winter CK (1991) Toxicology of plant and fungal compounds. In: Keeler RF, Tu AT (eds) Handbook of natural toxins, Vol 6, pp 3–26

    Google Scholar 

  • Shelub I, van Grondelle A, McCullough R, Hofmeister S, Reeves JT (1984) A model of embolic chronic pulmonary hypertension in dog. J Appl Physiol 56(3):810–885

    Article  PubMed  CAS  Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43(12):5S–12S

    Article  PubMed  Google Scholar 

  • Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111(23):3105–3111

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Loh E, Roddy MA (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy human. Circulation 89:2035–2040

    PubMed  CAS  Google Scholar 

  • Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 114:464–469

    PubMed  CAS  Google Scholar 

  • Takahashi T, Kanda T, Imai S, Suzuki T, Kobayashi I, Nagai R (1996) Amlodipine inhibits the development of right ventricular hypertrophy and medial thickening of pulmonary arteries in a rate model of pulmonary hypertension. Res Commun Mol Path Pharmacol 91:17–32

    CAS  Google Scholar 

  • Tantini B, Manes A, Fiumana E, Pignatti C, Guarnieri C, Zannoli R, Branzi A, Galie N (2005) Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 100:131–138

    Article  PubMed  CAS  Google Scholar 

  • Tilton RG, Munsch CL, Sherwood SJ, Chen S, Chen Y, Wu C, Block N, Dixon RA, Brock TA (2000) Attenuation of pulmonary vascular hypertension and cardiac hypertrophy with sitaxsentan sodium, an orally active ET (A) receptor antagonist. Pulm Pharmacol Ther 13:87–97

    Article  PubMed  CAS  Google Scholar 

  • Tozzi CA, Poiani GJ, Harangozo AM, Boyd CD, Riley DJ (1989) Pressure induced connective tissue synthesis in pulmonary artery segments in dependent on intact endothelium. J Clin Invest 84:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Tuder RM, Groves B, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesion of pulmonary hypertension. Am J Pathol 144(2):275–285

    PubMed  CAS  Google Scholar 

  • Ueno M, Miyauchi T, Sakai S, Yamauchi-Kohno R, Goto K, Yamaguchi I (2002) A combination of oral endothelin-A receptor analogue is superior to each drug alone in ameliorating pulmonary hypertension in rats. J Am Coll Cardiol 40:175–181

    Article  PubMed  CAS  Google Scholar 

  • Van Suylen RJ, Smits JF, Daemen MJ (1998) Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med 157:1423–1428

    PubMed  Google Scholar 

  • Voelkel NF, Tuder RM, Bridges J, Arend WP (1994) Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol 11:664–675

    PubMed  CAS  Google Scholar 

  • Wanstall JC, Jeffery TK (1998) Recognition and management of pulmonary hypertension. Drugs 56:989–1007

    Article  PubMed  CAS  Google Scholar 

  • Weimann J, Zink W, Schnabel PA, Jakob H, Gebhard MM, Martin E, Motsch J (1999) Selective vasodilatation by nitric oxide inhalation during sustained pulmonary hypertension following recurrent microembolism in pigs. J Critical Care 14(3):133–140

    Article  CAS  Google Scholar 

  • Weitzenblum E, Chauat A (2001) Hypoxic pulmonary hypertension in man: what minimum daily duration of hypoxaemia is required? Eur Respir J 18:251–253

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Paul GA, Strange JW (2005) Sildenafil versus endothelin receptor antagonist fro pulmonary hypertension (SERAPH) study. Am J Respir Crit Care Med 171:1292–1297

    Article  PubMed  Google Scholar 

  • Witt W, Muller B (1987) Antitrombotic profile of iloprost in experimental models of in vivo platelet aggregation and thrombosis. Adv Prostaglandin Thromboxane Leukot Res 17A:279–284

    PubMed  CAS  Google Scholar 

  • Yi ES, Kim H, Ahn H, Strother J, Morris T, Masliah E, Hansen LA, Park K, Friedman PJ (2000) Distribution of obstructive intima lesion and their cellular phenotypes in chronic pulmonary hypertension: a morphometric and immunohistochemical study. Am J Respir Crit Care Med 162:1577–1586

    PubMed  CAS  Google Scholar 

  • Zakheim RM, Mattioli L, Molteni A, Mullis KB, Bartley J (1975) Prevention of pulmonary vascular changes of chronic alveolar hypoxia by inhibition of angiotensin-II converting enzyme in rat. Lab Invest 33:57–61

    PubMed  CAS  Google Scholar 

  • Zhao L, Al-Tubuly R, Sebkhi A, Owji AA, Nunez DJR, Wilkins MR (1996) Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung. Br J Pharmacol 119:1217–1222

    PubMed  CAS  Google Scholar 

  • Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A, Wilkins MR (2001) Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 104:424–428

    Google Scholar 

Download references

Acknowledgements

Dr. Tan was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW) and the Netherlands Heart Foundation (NHS 2002B191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno L. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campian, M.E., Hardziyenka, M., Michel, M.C. et al. How valid are animal models to evaluate treatments for pulmonary hypertension?. Naunyn-Schmied Arch Pharmacol 373, 391–400 (2006). https://doi.org/10.1007/s00210-006-0087-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0087-9

Keywords

Navigation